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Abstract

Some new inequalities for quotient function of quermassintegrals of the radial Blaschke-
Minkowski homomorphisms are established. The results in special cases yield some of
the recent results on inequalities of this type.
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1 Introduction

The setting for this paper is n-dimensional Euclidean space Rn. We reserve the letter u
for unit vectors, and the letter B is reserved for the unit ball centered at the origin. The
surface of B is Sn−1. The volume of the unit n-ball is denoted by ωn. We use V (K) for the
n-dimensional volume of a body K.

Associated with a compact subset K of Rn, which is star-shaped with respect to the
origin, is its radial function ρ(K, ·) : Sn−1 → R, defined for u ∈ Sn−1, by

ρ(K,u) = max{λ ≥ 0 : λu ∈ K}.

If ρ(K, ·) is positive and continuous, K will be called a star body. Let Sn denote the
set of star bodies in Rn. Let δ̃ denote the radial Hausdorff metric, i.e., if K,L ∈ Sn, then
δ̃(K,L) = |ρK−ρL|∞, where | · |∞ denotes the sup-norm on the space of continuous functions
C(Sn−1).

For K,L ∈ Sn and α, β ≥ 0, Lutwak [14] defined the radial Blaschke linear combination,
α ·K+̈β · L, as the star body whose radial function is given by

ρ(α ·K+̈β · L, ·)n−1 = αρ(K, ·)n−1 + βρ(L, ·)n−1.

For K ∈ Sn, there is a unique star body IK whose radial function satisfies for u ∈ Sn−1,

ρ(IK,u) = v(K ∩ Eu),

where v is (n− 1)-dimensional volume and Eu denotes the hyperplane orthogonal to u. It is
called the intersection body of K. The volume of the intersection body of K is given by

V (IK) =
1

n

∫
Sn−1

v(K ∩ Eu)ndS(u).
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The mixed intersection body of K1, . . . ,Kn−1 ∈ Sn, I(K1, . . . ,Kn−1), is defined by

ρ(I(K1, . . . ,Kn−1), u) = ṽ(K1 ∩ Eu, . . . ,Kn−1 ∩ Eu),

where ṽ is (n − 1)-dimensional dual mixed volume (see below for the definition). If K1 =
· · · = Kn−i−1 = K,Kn−i = · · · = Kn−1 = L, then I(K1, . . . ,Kn−1) is written as Ii(K,L). If
L = B, then Ii(K,L) is written as IiK and called the ith intersection body of K. For I0K
we simply write IK.

1. Dual mixed volumes

The radial Minkowski linear combination, λ1K1+̃ · · · +̃λrKr is defined by

λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈ Ki, i = 1, . . . , r}, (1.1)

for K1, . . . ,Kr ∈ Sn and λ1, . . . , λr ∈ R. It has the following important property (see [14])

ρ(λK+̃µL, ·) = λρ(K, ·) + µρ(L, ·), (1.2)

for K,L ∈ Sn and λ, µ ≥ 0. For K1, . . . ,Kr ∈ Sn and λ1, . . . , λr ≥ 0, the volume of the radial
Minkowski linear combination λ1K1+̃ · · · +̃λrKr is a homogeneous polynomial of degree n
in the λi,

V (λ1K1+̃ · · · +̃λrKr) =
∑

Ṽ (Ki1 , . . . ,Kin)λi1 · · ·λin , (1.3)

where the sum is taken over all n-tuples (i1, . . . , in) whose entries are positive integers not
exceeding r. If we require the coefficients of the polynomial in (1.3) to be symmetric in
their arguments, then they are uniquely determined. The coefficient Ṽ (Ki1 , . . . ,Kin) is
nonnegative and depends only on the bodies Ki1 , . . . ,Kin . It is called the dual mixed volume
of Ki1 , . . . ,Kin .

If K1, . . . ,Kn ∈ Sn, then the dual mixed volume Ṽ (K1, . . . ,Kn) can be represented in
the form (see [15])

Ṽ (K1, . . . ,Kn) =
1

n

∫
Sn−1

ρ(K1, u) · · · ρ(Kn, u)dS(u). (1.4)

If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L, then the dual mixed volume is written as
Ṽi(K,L). If L = B, then the dual mixed volume Ṽi(K,L) = Ṽi(K,B) is written as W̃i(K).
For K,L ∈ Sn, the i-th dual mixed volume of K and L, Ṽi(K,L), can be extended to all
i ∈ R by

Ṽi(K,L) =
1

n

∫
Sn−1

ρ(K,u)n−iρ(L, u)idS(u). (1.5)

Thus, if K ∈ Sn, then for i ∈ R

W̃i(K) =
1

n

∫
Sn−1

ρ(K,u)n−idS(u). (1.6)
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2 Radial Blaschke-Minkowski homomorphisms and Lp-radial addition

Definition 2.1 ([18]) A map Ψ : Sn → Sn is called a radial Blaschke-Minkowski homo-
morphism, if it satisfies the following conditions:

(a) Ψ is continuous.
(b) For all K,L ∈ Sn,

Ψ(K+̈L) = Ψ(K)+̃Ψ(L).

(c) For all K,L ∈ Sn and every ϑ ∈ SO(n),

Ψ(ϑK) = ϑΨ(K),

where SO(n) is the group of rotations in n dimensions.
Radial Blaschke-Minkowski homomorphisms are important examples of star body valued

valuations. Their natural duals, Blaschke-Minkowski homomorphisms are an important no-
tion in the theory of convex body valued valuations (see, e.g., [6-7, 10-11, 16, 21, 25] and
[1-2, 8-9, 12-13, 22-23]). In 2006, Schuster [18] established the following Brunn-Minkowski
inequality for radial Blaschke-Minkowski homomorphisms of star bodies. If K and L are star
bodies in Rn, then

V (Ψ(K+̃L))1/n(n−1) ≤ V (ΨK)1/n(n−1) + V (ΨL)1/n(n−1), (2.1)

with equality if and only if K and L are dilates.
If K and L are star bodies in Rn, p 6= 0 and λ, µ ≥ 0, then λ ·K+̃pµ ·L, is the star body

whose radial function is given by (see e.g., [5])

ρ(λ ·K+̃pµ · L, ·)p = λρ(K, ·)p + µρ(L, ·)p. (2.2)

The addition +̃p is called Lp-radial addition. The Lp dual Brunn-Minkowski inequality
states: If K,L ∈ Sn and 0 < p ≤ n, then

V (K+̃pL)p/n ≤ V (K)p/n + V (L)p/n,

with equality when p 6= n if and only if K and L are dilates. The inequality is reversed when
p > n or p < 0 (see [5]).

Very recently, an Lp Brunn-Minkowski inequality for radial Blaschke-Minkowski homo-
morphisms was established in [24]: If K and L are star bodies in Rn, and 0 < p < n − 1,
then

V (Ψ(K+̃pL))p/n(n−1) ≤ V (ΨK)p/n(n−1) + V (ΨL)p/n(n−1), (2.3)

with equality if and only if K and L are dilates. Taking p = 1, (2.3) reduces to (2.1).
Theorem 2.2 (see [18]) Let Ψ : Sn → Sn be a radial Blaschke-Minkowski homomorphism.

There is a continuous operator Ψ : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn, symmetric in its arguments such

that, for K1, . . . ,Km ∈ Sn and λ1, . . . , λm ≥ 0,

Ψ(λ1K1+̃ · · · +̃λmKm) =
∑

i1,...,in−1

λi1 · · ·λin−1
Ψ(Ki1 , . . . ,Kin−1

). (2.4)



150 Chang-Jian Zhao, Wing-Sum Cheung

Clearly, Theorem 2.2 generalizes the notion of radial Blaschke-Minkowski homomorphisms.
We call Ψ : Sn × · · · × Sn → Sn mixed radial Blaschke-Minkowski homomorphism induced
by Ψ. Mixed radial Blaschke-Minkowski homomorphisms were first studied in more detail
in [19-20]. If K1 = · · · = Kn−i−1 = K,Kn−i = · · · = Kn−1 = L, we write Ψi(K,L) for
Ψ(K, . . . ,K︸ ︷︷ ︸

n−i−1

, L, . . . , L︸ ︷︷ ︸
i

). If K1 = · · · = Kn−i−1 = K,Kn−i = · · · = Kn−1 = B, we write ΨiK

for Ψ(K, . . . ,K︸ ︷︷ ︸
n−i−1

, B, . . . , B︸ ︷︷ ︸
i

) and call ΨiK the mixed Blaschke-Minkowski homomorphism of

order i of K.

Lemma 2.3 (see [18]) A map Ψ : Sn → Sn is a radial Blaschke-Minkowski homomor-
phism if and only if there is a measure µ ∈M+(Sn−1, ê) such that

ρ(ΨK, ·) = ρ(K, ·)n−1 ∗ µ, (2.5)

where M+(Sn−1, ê) denotes the set of nonnegative zonal measures on Sn−1.

For the mixed radial Blaschke-Minkowski homomorphism induced by Ψ, Schuster [18]
proved that

ρ(Ψ(K1, . . . ,Kn−1), ·) = ρ(K1, ·) · · · ρ(Kn−1, ·) ∗ µ.

We now define the mixed Blaschke-Minkowski homomorphism of order i of K, for all i ∈ R,
by

ρ(ΨiK, ·) = ρ(K, ·)n−1−i ∗ µ. (2.6)

This extended definition will be required in the following.

In 2013, the quotient function of the volumes was first introduced in [27]: Let K and D
be star bodies in Rn, then the dual quermassintegral quotient function of star bodies K and
D, QW̃i,j(K,D), defined by

QW̃i,j(K,D) =
W̃i(K)

W̃j(D)
, i, j ∈ R.

The aim of this paper is to establish the following inequalities for quermassintegral of
quotient function of radial Blaschke-Minkowski homomorphisms with respect to Lp-radial
addition.

Theorem 2.4 Let K,L,D,D′ ∈ Sn. If p 6= 0, and i ≤ n− 1 ≤ j ≤ n, then(
W̃i(Ψn−1−p(K+̃pL))

W̃j(Ψn−1−p(D+̃pD′))

)1/(j−i)

≤

(
W̃i(Ψn−1−pK)

W̃j(Ψn−1−pD)

)1/(j−i)

+

(
W̃i(Ψn−1−pL)

W̃j(Ψn−1−pD′)

)1/(j−i)

,

(2.7)
with equality if and only if Ψn−1+pK and Ψn−1+pL are dilates, and Ψn−1+pD and Ψn−1+pD

′

are dilates, and(
W̃i(Ψn−1−pK)1/(n−i), W̃i(Ψn−1−pL)1/(n−i)

)
= µ

(
W̃j(Ψn−1−pD)1/(n−j), W̃j(Ψn−1−pD

′)1/(n−j)
)
,

for some constant.
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Remark 2.4 Putting D = K and D′ = L in (2.7), (2.7) becomes an inequality established
in [28]. Let D = K and D′ = L, and putting j = n in (2.7), (2.7) becomes the following
inequality: If K,L ∈ Sn, p 6= 0, and i ≤ n− 1, then

W̃i(Ψn−1−p(K+̃pL))1/(n−i) ≤ W̃i(Ψn−1−pK)1/(n−i) + W̃i(Ψn−1−pL)1/(n−i),

with equality if and only if Ψn−1−pK and Ψn−1−pL are dilates. Taking p = n − 1 in (2.7),
(2.7) reduces to the following inequality: If K,L,D,D′ ∈ Sn and i ≤ n− 1 ≤ j ≤ n, then(

W̃i(Ψ(K+̃n−1L))

W̃j(Ψ(D+̃n−1D′))

)1/(j−i)

≤

(
W̃i(ΨK)

W̃j(ΨD)

)1/(j−i)

+

(
W̃i(ΨL)

W̃j(ΨD′)

)1/(j−i)

, (2.8)

with equality if and only if ΨK and ΨL are dilates, and ΨD and ΨD′ are dilates, and(
W̃i(ΨK)1/(n−i), W̃i(ΨL)1/(n−i)

)
= µ

(
W̃j(ΨD)1/(n−j), W̃j(ΨD

′)1/(n−j)
)
,

for some constant.
Taking j = n in (2.8), (2.8) reduces to the following inequality: If K,L ∈ Sn and i ≤ n−1,

then
W̃i(Ψ(K+̃n−1L))1/(n−i) ≤ W̃i(ΨK)1/(n−i) + W̃i(ΨL)1/(n−i),

with equality if and only if ΨK and ΨL are dilates.

3 Radial Blaschke-Minkowski homomorphisms and Lp-harmonic addition

If K,L ∈ Sn, and λ, µ ≥ 0 (not both zero), then for p ≥ 1, the Lp-harmonic combination,
λ♦K+̂pµ♦L ∈ Sn was defined by

ρ(λ♦K+̂pµ♦L, ·)−p = λρ(K,u)−p + µρ(L, u)−p. (3.1)

In 1996, Lutwak [17] established an Lp-Brunn-Minkowski inequality for harmonic addition.
If K,L ∈ Sn and p ≥ 1, then

V (K+̂pL)−p/n ≥ V (K)−p/n + V (L)−p/n, (3.2)

with equality if and only if K and L are dilates.
Another aim of this paper is to establish the following Dresher type inequality for radial

Blaschke-Minkowski homomorphisms with respect to Lp-harmonic addition.
Theorem 3.1 Let K,L,D,D′ ∈ Sn. If p ≥ 1, and i ≤ n− 1 ≤ j ≤ n, then(
W̃i(Ψn−1+p(K+̂pL))

W̃j(Ψn−1+p(D+̂pD′))

)1/(j−i)

≤

(
W̃i(Ψn−1+pK)

W̃j(Ψn−1+pD)

)1/(j−i)

+

(
W̃i(Ψn−1+pL)

W̃j(Ψn−1+pD′)

)1/(j−i)

,

(3.3)
with equality if and only if Ψn−1+pK and Ψn−1+pL are dilates, and Ψn−1+pD and Ψn−1+pD

′

are dilates, and(
W̃i(Ψn−1+pK)1/(n−i), W̃i(Ψn−1+pL)1/(n−i)

)
= µ

(
W̃j(Ψn−1+pD)1/(n−j), W̃j(Ψn−1+pD

′)1/(n−j)
)
,
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for some constant.
Remark 3.2 Putting D = K and D′ = L in (3.3), (3.3) becomes an inequality established

in [28]. Let D = K and D′ = L, and putting j = n in (3.3), (3.3) becomes the following
inequality: If K,L ∈ Sn, p ≥ 1, and i ≤ n− 1, then

W̃i(Ψn−1+p(K+̂pL))1/(n−i) ≤ W̃i(Ψn−1+pK)1/(n−i) + W̃i(Ψn−1+pL)1/(n−i),

with equality if and only if Ψn−1+pK and Ψn−1+pL are dilates. Taking i = 0 in (3.3), (3.3)
becomes the following inequality: If K,L,D,D′ ∈ Sn and n− 1 ≤ j ≤ n, then(

V (Ψn−1+p(K+̂pL))

W̃j(Ψn−1+p(D+̂pD′))

)1/j

≤

(
V (Ψn−1+pK)

W̃j(Ψn−1+pD)

)1/j

+

(
V (Ψn−1+pL)

W̃j(Ψn−1+pD′)

)1/j

, (3.3)

with equality if and only if Ψn−1+pK and Ψn−1+pL are dilates, and Ψn−1+pD and Ψn−1+pD
′

are dilates, and(
V (Ψn−1+pK)1/(n−i), V (Ψn−1+pL)1/(n−i)

)
= µ

(
W̃j(Ψn−1+pD)1/(n−j), W̃j(Ψn−1+pD

′)1/(n−j)
)
,

for some constant.

4. Inequalities for radial Blaschke-Minkowski homomorphisms

An extension of Beckenbach’s inequality (see [3], p.27) was obtained by Dresher [4] by
means of moment-space techniques: If p ≥ 1 ≥ r ≥ 0, f, g ≥ 0, and φ is a distribution
function, then(∫

(f + g)pdφ∫
(f + g)rdφ

)1/(p−r)

≤
(∫

fpdφ∫
frdφ

)1/(p−r)

+

(∫
gpdφ∫
grdφ

)1/(p−r)

.

Recently, a new Dresher type inequality was derived in [26] as follows.
Lemma 4.1 Let E be a bounded measurable subset of Rn, let φ be a distribution function

and let f1, f2, g1, g2 : E → R+. If p ≥ 1 ≥ r ≥ 0, then(∫
E

(f1 + f2)pdφ∫
E

(g1 + g2)rdφ

) 1
p−r

≤
(∫

E
fp1 dφ∫

E
gr1dφ

) 1
p−r

+

(∫
E
fp2 dφ∫

E
gr2dφ

) 1
p−r

(4.1)

with equality if and only if f1 = k1f2, g1 = k2g2 and (‖f1‖p, ‖f2‖p) = µ(‖g1‖r, ‖g2‖r) where
k1, k2, µ are constants.

We prove now Theorem 3.1. The following statement is just a slight reformulation of it:
Theorem 4.2 Let K,L,D,D′ ∈ Sn. If p ≥ 1, and s, t ∈ R satisfy s ≥ 1 ≥ t ≥ 0, then

(
W̃n−s(Ψn−1+p(K+̂pL))

W̃n−t(Ψn−1+p(D+̃pD′))

)1/(s−t)

≤
(

W̃n−s(Ψn−1+pK)

W̃n−t(Ψn−1+pD)

)1/(s−t)

+

(
W̃n−s(Ψn−1+pL)

W̃n−t(Ψn−1+pD′)

)1/(s−t)

,(4.2)

with equality if and only if Ψn−1+pK and Ψn−1+pL are dilates, and Ψn−1+pD and Ψn−1+pD
′

are dilates, and(
W̃n−s(Ψn−1+pK)1/s, W̃n−s(Ψn−1+pL)1/s

)
= µ

(
W̃n−t(Ψn−1+pD)1/t, W̃n−t(Ψn−1+pD

′)1/t
)
.
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Proof From (3.1), we have for p ≥ 1

ρ(K+̂pL, ·)−p ∗ µ = ρ(K, ·)−p ∗ µ+ ρ(L, ·)−p ∗ µ,

where µ is the generating measure of Ψ from Lemma 2.3. Hence, from (2.6), we obtain

ρ(Ψn−1+p(K+̂pL), ·) = ρ(Ψn−1+pK, ·) + ρ(Ψn−1+pL, ·).

Therefore, by (1.6), we have

W̃n−s(Ψn−1+p(K+̂pL)) =
1

n

∫
Sn−1

(ρ(Ψn−1+pK,u) + ρ(Ψn−1+pL, u))
s
dS(u) (4.3)

and

W̃n−t(Ψn−1+p(D+̂pD
′)) =

1

n

∫
Sn−1

(ρ(Ψn−1+pD,u) + ρ(Ψn−1+pD
′, u))

t
dS(u). (4.4)

From (4.3), (4.4) and Lemma 4.1, we obtain(
W̃n−s(Ψn−1+p(K+̂pL))

W̃n−t(Ψn−1+p(D+̃pD′))

)1/(s−t)

=

( ∫
Sn−1 (ρ(Ψn−1+pK,u) + ρ(Ψn−1+pL, u))

s
dS(u)∫

Sn−1 (ρ(Ψn−1+pD,u) + ρ(Ψn−1+pD′, u))
t
dS(u)

)1/(s−t)

≤
(∫

Sn−1 ρ(Ψn−1+pK,u)sdS(u)∫
Sn−1 ρ(Ψn−1+pD,u)tdS(u)

)1/(s−t)

+

( ∫
Sn−1 ρ(Ψn−1+pL, u)sdS(u)∫
Sn−1 ρ(Ψn−1+pD′, u)tdS(u)

)1/(s−t)

=

(
W̃n−s(Ψn−1+pK)

W̃n−t(Ψn−1+pD)

)1/(s−t)

+

(
W̃n−s(Ψn−1+pL)

W̃n−t(Ψn−1+pD′)

)1/(s−t)

.

From the equality condition of Lemma 4.1, equality in (4.2) holds if and only if the functions
ρ(Ψn−1+pK,u) and ρ(Ψn−1+pL, u) are proportional, and ρ(Ψn−1+pD,u) and ρ(Ψn−1+pD

′, u)
are proportional, and(
W̃n−s(Ψn−1+pK)1/s, W̃n−s(Ψn−1+pL)1/s

)
= µ

(
W̃n−t(Ψn−1+pD)1/t, W̃n−t(Ψn−1+pD

′)1/t
)
.

Taking s = n− i and t = n− j in Theorem 4.2, Theorem 4.2 becomes Theorem 3.1 stated
in Section 3.

If Ψ : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn is the mixed intersection operator I : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn in

(4.2) and n− s = i and n− t = j, we obtain the following result: If K,L,D,D′ ∈ Sn, p ≥ 1
and i ≤ n− 1 ≤ j ≤ n, then(

W̃i(In−1+p(K+̂pL))

W̃j(In−1+p(D+̃pD′))

)1/(j−i)

≤

(
W̃i(In−1+pK)

W̃j(In−1+pD)

)1/(j−i)

+

(
W̃i(In−1+pL)

W̃j(In−1+pD′)

)1/(j−i)

,

(4.5)
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with equality if and only if In−1+pK and In−1+pL are dilates, In−1+pD and In−1+pD
′ are

dilates, and(
W̃i(In−1+pK)1/(n−i), W̃i(In−1+pL)1/(n−i)

)
= µ

(
W̃j(In−1+pD)1/(n−j), W̃j(In−1+pD

′)1/(n−j)
)
.

Taking j = n in (4.5) and noting that W̃n(K) =
∫
Sn−1 dS(u) = nωn, (4.5) becomes the

following inequality: If K,L ∈ Sn, p ≥ 1, and i ≤ n− 1, then

W̃i(In−1+p(K+̂pL))1/(n−i) ≤ W̃i(In−1+pK)1/(n−i) + W̃i(In−1+pL)1/(n−i),

with equality if and only if In−1+pK and In−1+pL are dilates.
Theorem 4.3 Let K,L,D,D′ ∈ Sn. If p 6= 0, and s, t ∈ R satisfy s ≥ 1 ≥ t ≥ 0, then(
W̃n−s(Ψn−1−p(K+̃pL))

W̃n−t(Ψn−1−p(D+̃pD′))

)1/(s−t)

≤

(
W̃n−s(Ψn−1−pK)

W̃n−t(Ψn−1−pD)

)1/(s−t)

+

(
W̃n−s(Ψn−1−pL)

W̃n−t(Ψn−1−pD′)

)1/(s−t)

,

(4.6)
with equality if and only if Ψn−1+pK and Ψn−1+pL are dilates, and Ψn−1+pD and Ψn−1+pD

′

are dilates, and(
W̃n−s(Ψn−1+pK)1/s, W̃n−s(Ψn−1+pL)1/s

)
= µ

(
W̃n−t(Ψn−1+pD)1/t, W̃n−t(Ψn−1+pD

′)1/t
)
.

Proof From (2.2), we have for p 6= 0

ρ(K+̃pL, ·)p ∗ µ = ρ(K, ·)p ∗ µ+ ρ(L, ·)p ∗ µ.

Hence, from (2.6), we obtain

ρ(Ψn−1−p(K+̃pL), ·) = ρ(Ψn−1−pK, ·) + ρ(Ψn−1−pL, ·).

By (1.6), we have

W̃n−s(Ψn−1−p(K+̃pL)) =
1

n

∫
Sn−1

(ρ(Ψn−1−pK,u) + ρ(Ψn−1−pL, u))
s
dS(u) (4.7)

and

W̃n−t(Ψn−1−p(D+̂pD
′)) =

1

n

∫
Sn−1

(ρ(Ψn−1−pD,u) + ρ(Ψn−1−pD
′, u))

t
dS(u). (4.8)

From (4.7), (4.8) and Lemma 4.1, we obtain(
W̃n−s(Ψn−1−p(K+̃pL))

W̃n−t(Ψn−1−p(D+̃pD′))

)1/(s−t)

=

( ∫
Sn−1 (ρ(Ψn−1−pK,u) + ρ(Ψn−1−pL, u))

s
dS(u)∫

Sn−1 (ρ(Ψn−1−pD,u) + ρ(Ψn−1−pD′, u))
t
dS(u)

)1/(s−t)

≤
(∫

Sn−1 ρ(Ψn−1−pK,u)sdS(u)∫
Sn−1 ρ(Ψn−1−pD,u)tdS(u)

)1/(s−t)

+

( ∫
Sn−1 ρ(Ψn−1−pL, u)sdS(u)∫

Sn−1 ρ(Ψn−1−pD′L, u)tdS(u)

)1/(s−t)



Quotient for radial Blaschke-Minkowski homomorphisms 155

=

(
W̃n−s(Ψn−1−pK)

W̃n−t(Ψn−1−pD)

)1/(s−t)

+

(
W̃n−s(Ψn−1−pL)

W̃n−t(Ψn−1−pD′)

)1/(s−t)

.

From the equality condition of Lemma 4.1, equality in (4.6) holds if and only if the functions
ρ(Ψn−1+pK,u) and ρ(Ψn−1+pL, u) are proportional, and ρ(Ψn−1+pD,u) and ρ(Ψn−1+pD

′, u)
are proportional, and(
W̃n−s(Ψn−1+pK)1/s, W̃n−s(Ψn−1+pL)1/s

)
= µ

(
W̃n−t(Ψn−1+pD)1/t, W̃n−t(Ψn−1+pD

′)1/t
)
.

Taking s = n− i and t = n− j in Theorem 4.3, Theorem 4.3 becomes Theorem 2.4 stated
in Section 2.

If Ψ : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn is the mixed intersection operator I : Sn × · · · × Sn︸ ︷︷ ︸
n−1

→ Sn in

(4.6) and i = n− s and j = n− t, we obtain the following result: If K,L,D,D′ ∈ Sn, p 6= 0
and i ≤ n− 1 ≤ j ≤ n, then(

W̃i(In−1−p(K+̃pL))

W̃j(In−1−p(D+̃pD′))

)1/(j−i)

≤

(
W̃i(In−1−pK)

W̃j(In−1−pD)

)1/(j−i)

+

(
W̃i(In−1−pL)

W̃j(In−1−pD′)

)1/(j−i)

,

(4.9)
with equality if and only if In−1−pK and In−1−pL are dilates, and In−1−pD and In−1−pD

′

are dilates, and(
W̃n−s(In−1−pK)1/s, W̃n−s(In−1−pL)1/s

)
= µ

(
W̃n−t(In−1−pD)1/t, W̃n−t(In−1−pD

′)1/t
)
.

Taking j = n in (4.9) and noting that W̃n(K) =
∫
Sn−1 dS(u) = nωn, (4.9) becomes the

following inequality: If K,L ∈ Sn, p 6= 0, and i ≤ n− 1, then

W̃i(In−1−p(K+̃pL))1/(n−i) ≤ W̃i(In−1−pK)1/(n−i) + W̃i(In−1−pL)1/(n−i), (4.10)

with equality if and only if In−1−pK and In−1−pL are dilates.
Taking p = n − 1 in (4.10), (4.10) reduces to the following inequality: If K,L ∈ Sn and

i ≤ n− 1, then

W̃i(I(K+̃n−1L))1/(n−i) ≤ W̃i(IK)1/(n−i) + W̃i(IL)1/(n−i),

with equality if and only if IK and IL are dilates. Taking p = n − 1 in (4.9), (4.9) reduces
to the following inequality: If K,L,D,D′ ∈ Sn and i ≤ n− 1 ≤ j ≤ n, then(

W̃i(I(K+̃n−1L))

W̃j(I(D+̃n−1D′))

)1/(j−i)

≤

(
W̃i(IK)

W̃j(ID)

)1/(j−i)

+

(
W̃i(ΨL)

W̃j(ΨD′)

)1/(j−i)

,

with equality if and only if IK and IL are dilates, and ID and ID′ are dilates, and(
W̃n−s(IK)1/s, W̃n−s(IL)1/s

)
= µ

(
W̃n−t(ID)1/t, W̃n−t(ID

′)1/t
)
.
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