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Abstract

In this manuscript, we propose a new highly efficient and optimal scheme of order
sixteen for obtaining simple roots of nonlinear equations. The derivation of this scheme
is based on the rational approximation approach. The proposed scheme requires four
evaluations of the involved function and one evaluation of its first-order derivative,
being optimally consistent with the conjecture of Kung-Traub. In addition, we fully
investigated theoretical and computational properties of the proposed scheme along
with a main theorem describing the order of convergence. Moreover, we find from the
numerical experiments that our proposed methods perform better than the existing
optimal sixteenth-order methods when we checked the performance in multi precision
digits, on a variety of nonlinear equations.
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1 Introduction

Multi-point iterative belong to the class of most powerful methods that overcome from the
theoretical limitations of one-point iterative methods regarding their order of convergence
and efficiency (for the details please see [19]). The main advantage of these type of methods
is that they only require the value/values of first-order derivative/derivatives of the involved
function. This topic become the point of attention of many scholars from the worldwide,
when Traub [19] presented the qualitative as well as the quantitative analysis of one-point
and multi-point iterative methods. Very recently, Petković et al. [15] also presented the
extensive study of the multi-point iterative methods.

In the past, Russian mathematician A.M. Ostrowski was the first person who introduced
an optimal fourth-order multi-point method which requires two evaluations of the involved
function and one of its firs-order derivative. In addition, other researchers like Jarratt
[8, 9] and King [10], had proposed several new optimal fourth-order multi-point methods
in 1966 and 1975, respectively. Moreover, King also showed that Ostrowski’s method was
a particular case of his proposed family.

With the advancement of digital computer and symbolic computation, a large number of
optimal eighth-order methods have been proposed by various scholars in [1, 2, 4, 5, 12, 16,
17, 18, 20], within the last two decade. Most of them are the extension of Newton’s method



128 R. Behl, A. Cordero, S.S. Motsa, J.R. Torregrosa

or Newton-like method at the expense of additional functional evaluations or increase the
sub step of the original methods.

Further, it is often desirable to obtain higher-order and more accurate root-finding tech-
niques for obtaining the roots of nonlinear equations. In 1974, Kung and Traub [11], pro-
posed two general classes of n-point iterative methods with first-order derivative/derivatives
of the involved function and without any derivative. Moreover, they also given a remarkable
conjecture regarding order of convergence which state that a multi-point iterative method
with n-functional evaluations (total evaluations of the involved functions and its derivatives)
can have maximum order of convergence 2n−1. Any method which satisfy this conjecture
is known as optimal method.

In the past, Neta [14], proposed an optimal sixteenth-order family of multi-point iterative
methods. However, Neta did not present an explicit form of the error equation and more
recently it was given by Geum and Kim [6]. In the recent years, researchers as Geum and
Kim [6, 7], Sharma et al. [16], Ullah et al. [13], have also presented optimal sixteenth-
order extension of iterative methods. Nowadays, obtaining new four-step optimal methods
of order sixteen is very interesting and challenging task in the field of numerical analysis.
On of the reason behind the attention of sixteenth-order iterative methods is the efficiency
indices of these methods E = 5

√
16 ≈ 1.741, which is far better than the classical Newton’s

method E = 2
√

2 ≈ 1.414.

The principle aim of this manuscript is to propose a more accurate and efficient solution
technique of order sixteen as compared to the existing ones. According to the Kung-Traub
conjecture, our proposed scheme is optimal. The beauty of the proposed scheme is that we
can develop several new optimal methods of order sixteen by considering different types of
weight functions The efficiency of the proposed methods is tested on a variety of numerical
examples which is a mixture of polynomial, trigonometry, inverse trigonometry, logarithmic
and exponential functions. From the numerical experiment, it is observed that our proposed
methods perform better than existing optimal methods of order sixteen.

The outline of the paper is as follows. In Section 2, we proposed a new four-point
scheme and also demonstrate the convergence analysis which confirm the sixteenth-order
convergence of the proposed scheme. Some stability properties are deduced from the basins
of attraction of proposed and some known methods on quadratic polynomials and other
nonlinear functions in Section 3. Moreover, Section 4 is devoted to the are performance
of some numerical experiments where the proposed methods are compared with existing
methods of the same order. Section 5 contains the concluding remarks.

2 Design and convergence of an optimal sixteenth-order
scheme

In this section, we will propose an optimal sixteenth-order family of iterative methods.
Therefore, we rewrite the eighth-order scheme proposed by Artidiello et al. [5], in the
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following way

zn = wn −
f(wn)

f ′(xn)
P (h),

kn = zn −
f(zn)

f ′(xn)
S(h, t),

(2.1)

where wn is a Newton’s stept and weight functions P : C→ C and S : C2 → C are analytic

in a neighborhood of (0, 0) with h = f(wn)
a1f(xn)+a2f(wn)

= O(en) and t = f(zn)
f(wn)

= O(e2n).

Let us consider the rational function, which is given by

Q(x) =
(x− xn) + b1

b2(x− xn)3 + b3(x− xn)2 + b4(x− xn) + b5
, (2.2)

where b1, b2, b3, b4 and b5 are arbitrary parameters. We can determine these parameters
by imposing the following tangency conditions

Q(xn) = f(xn), Q′(xn) = f ′(xn), Q(wn) = f(wn), Q(zn) = f(zn), Q(kn) = f(kn).

In addition, we assume that the above rational function meets the x – axis at the point
x = xn+1 to obtain the next approximation xn+1, which is given by

Q(xn+1) = 0, (2.3)

which further yields xn+1 = xn − b1. In this way, we obtain the next approximation xn+1.
We will impose the first two tangency conditions to obtain the value of disposable parameter
b1. Then, we have

b1 = b5f(xn), b4 =
1− b5f ′(xn)

f(xn)
. (2.4)

Moreover, we will impose the last three tangency conditions to obtain the value of b5. Then,
we obtain the following three equations involving b2, b3 and b5,

f(wn)
[
f ′(xn)

(
f ′(xn) (2b5f

′(xn)− 1) + b3f(xn)2
)
− b2f(xn)3

]
= f ′(xn)2f(xn) (b5f

′(xn)− 1) ,

f(zn)

[
(1− b5f ′(xn))(zn − xn)

f(xn)
+ b2(zn − xn)3 + b3(xn − zn)2 + b5

]
= b5f(xn) + zn − xn,

f(kn)

[
(1− b5f ′(xn))(kn − xn)

f(xn)
+ b2(kn − xn)3 + b3(kn − xn)2 + b5

]
= b5f(xn) + kn − xn.

By eliminating b2 and b3 from the above equations, we obtain the following value of b5

b5 =
(xn − zn)(kn − xn)

(
θ1f(xn)2f(wn) + θ2f

′(xn)f(kn)f(zn)
)

θ3f(xn)3 + θ4f ′(xn)f(kn)f(zn)
, (2.5)
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where

θ1 = f(kn)
(
(kn − xn)2f ′(xn) + (kn − xn)f(xn)− (kn − zn)f(zn)

)
+(xn − zn)

(
f(xn)− (xn − zn)f ′(xn)

)
f(zn),

θ2 = (xn − zn)(kn − xn)(kn − zn)f ′(xn)
(
f(wn)− f(xn)

)
+(kn − zn)f(wn)f(xn)(2xn − zn − kn),

θ3 = f(wn)
[
(kn − xn)f(kn)

(
(kn − xn)2f ′(xn) + (kn − xn)f(xn)− (kn − zn)f(zn)

)
+
(
(xn − zn)3f ′(xn) + (kn − zn)(xn − zn)f(kn)− (xn − zn)2f(xn)

)
f(zn)

]
,

θ4 = (xn − zn)2(kn − xn)2(kn − zn)f ′(xn)2
(
2f(wn)− f(xn)

)
+(xn − zn)(kn − xn)(kn − zn)(2xn − zn − kn)f ′(xn)f(wn)f(xn)

+(kn − zn)(2knxn − k2n + 2xnzn − 2x2n − z2n)f(wn)f(xn)2.

Now, by using the equations (2.1), (2.4) and (2.5), we yield

zn = wn −
f(wn)

f ′(xn)
P (h),

kn = zn −
f(zn)

f ′(xn)
S(h, k),

xn+1 = xn − b5f(xn),

(2.6)

where wn is a Newton’s step and b5 is previously defined in equation (2.5). The following
theorem demonstrates that the order of convergence reachs at the optimal sixteenth-order
without using any additional functional evaluations.

Theorem 1. Let us assume that f : C→ C has a simple zero r and analytic function in the
region containing the zero r. In addition, we consider that an initial approximation x = x0
is sufficiently close to r for the guaranteed convergence. Then, the iterative scheme defined
by (2.6), reaches an optimal sixteenth-order convergence, when the following conditions are
satisfied,

P (0) = 1, P ′(0) = 2a1, P ′′(0) = 2a1(2a1 + a2), S00 = 1,

S01 = 1, S10 = 2a1, S11 = 4a1, S20 = 2a1(3a1 + a2),
(2.7)

where Sij = ∂i+j

∂hi∂kj S(h, k)|(h=0, k=0) for i, j = 1, 2.

Proof. Let us consider en = xn − r be the error in the nth iteration. The Taylor’s series
expansion of the function f(xn) and its first order derivative f ′(xn) around x = r with the
assumption f ′(r) 6= 0 leads us to:

f(xn) = f ′(r)

[
16∑
i=1

cie
i
n +O(e17n )

]
, (2.8)

and

f ′(xn) = f ′(r)

[
16∑
i=1

icie
i−1
n +O(e17n )

]
, (2.9)
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where ci = f(i)(r)
i!f ′(r) for i = 1, 2, . . . , 16.

By using the equations (2.8) and (2.9) in the first sub step of scheme (2.6), we have

wn − r = c2e
2
n + (2c3 − 2c22)e3n + (4c32 − 7c3c2 + 3c4)e4n +

16∑
i=5

Aie
i
n +O(e17n ), (2.10)

where A5 = −8c42 + 20c3c
2
2 − 10c4c2 − 6c23 + 4c5, A6 = 16c52 − 52c3c

3
2 + 28c4c

2
2 + (33c23 −

13c5)c2 − 17c3c4 + 5c6, etc.
Now, we expand the function f(wn) about x = r, by using Taylor series expansion.

Then, we obtain

f(wn) = f ′(r)

[
c2e

2
n + (2c3 − 2c22)e3n + (5c32 − 7c3c2 + 3c4)e4n +

16∑
i=5

Bie
i
n +O(e17n )

]
,

(2.11)
whereB5 = −2(6c42−12c3c

2
2+5c4c2+3c23−2c5), B6 = 28c52−73c3c

3
2+34c4c

2
2+
(
37c23 − 13c5

)
c2−

17c3c4 + 5c6, etc.
Further, by using equations (2.8) and (2.11), we have

h =
c2
a1
en +

2a1c3 − c22(3a1 + a2)

a21
e2n +

c32
(
8a21 + 6a1a2 + a22

)
+ 3a21c4 − 2a1c3c2(5a1 + 2a2)

a31
e3n

+

16∑
k=4

Cie
i
n +O(e17n ),

(2.12)
where C4 = 1

a41

[
a1c3c

2
2(37a21+32a1a2+6a22)−2a21c4c2(7a1+3a2)−4a21

(
c23(2a1 + a2)− a1c5

)
−

c42(20a31 + 25a21a2 + 9a1a
2
2 + a32)

]
, etc.

Since, it is clear from the equations (2.12), h = O(en). Therefore, we can expand the
weight function P (h) in the neighborhood of zero by Taylor series expansion up to second
terms as follows:

P (h) = P (0) + P ′(0)h+
1

2!
P ′′(0). (2.13)

Using the values P (0) = 1, P ′(0) = 2a1, P ′′(0) = 4a21 + 2a1a2 (which are defined in
(2.7)) and equations (2.8), (2.9), (2.11) –(2.13) in the second sub step of scheme (2.6), we
obtain bi-quadratic convergence

zn − r =
c32(3a1 + a2)− a1c2c3

a1
e4n +

16∑
i=5

Die
i
n +O(e17n ), (2.14)

where D5 = − 2
a1

[
c42(8a1 + 3a2)− c3c22(10a1 + 3a2) + a1c4c2 + a1c

2
3

]
, etc.

Now, we obtain the following expansion of f(zn) about x = r, by using Taylor series
expansion

f(zn) = f ′(r)

[
c32(3a1 + a2)− a1c2c3

a1
e4n +

16∑
i=4

D̄ie
i
n +O(e17n )

]
. (2.15)
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In addition, we define the new variable t = f(zn)
f(wn)

=
3a1c

2
2−a1c3+a2c

2
2

a1
e2n + O(e3n) and

expand the weight function S(h, t) in the neighborhood of (0, 0), up to second-order term
with the help Taylor series expansion. Then ,we have

S(h, t) = S00 + S10h+ S01t+
1

2!

(
S20h

2 + 2S11ht+ S02t
2
)
. (2.16)

Then, from the third step kn = zn − f(zn)
f ′(xn)

S(h, t), we further yields

kn − r =

16∑
i=8

Eie
i
n +O(e17n ), (2.17)

where E8 = − 1
2a31

c2((3a1+a2)c22−a1c3)
[
c42
{

9a21(S02 − 6) + 2a1a2(3S02 − 13) + a22(S02 − 2)
}

+

a21c
2
3(S02 − 2)− 2a21c4c2 − 2a1c3c

2
2{a1(3S02 − 17) + a2(S02 − 5)}

]
, etc.

Again, we obtain the following expansion of f(kn) about x = r, by using the Taylor
series expansion,

f(kn) = f ′(r)

[
E8e

9
n +

16∑
i=9

Ēie
i
n +O(e17n )

]
. (2.18)

In order to obtain optimal sixteenth-order of convergence, we will use equations (2.7) –
(2.18), in the fourth-step of scheme (2.6) and after some simplification, we have

en+1 = −
c32
(
c22(3a1 + a2)− a1c3

)2
2a41

[
c42{S02(3a1 + a2)2 − 2(27a21 + 13a1a2 + a22)}+ a21c

2
3(S02 − 2)

− 2a21c4c2 − 2a1c3c
2
2{a1(3S02 − 17) + a2(S02 − 5)}

]
(c42 − 3c3c

2
2 + 2c4c2 + c23 − c5)e16n

+O(e17n ).
(2.19)

Finally, we obtain the above error equation which reveals that the our proposed scheme
(2.6) reaches at optimal sixteenth-order convergence by using only five functional evalua-
tions per iteration. This completes the proof.

3 Basins of attraction

In this section, we will compare the stability and reliability of the proposed methods with
other existing ones, in terms of dependence on initial estimations. In order to get this aim,
the performance of all proposed and known methods will be checked on a simple nonlinear

function x2−1, and also on a much more complex one, x3

x4+1 +
√
x4 + 8 sin

(
π

x2+2

)
−
√

6+ 8
17

(this one will be also used in the numerical section). For a wide set of initial estimation in
the complex plane, all the methods will be tested by drawing their corresponding dynamical
phase spaces.

We shall compare the proposed schemes with the optimal sixteenth-order method (5), for
(a=1), of Neta [14], denoted by (N16). we will also compare them with the optimal families
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(a) (M1) (b) (M2) (c) (M3)

(d) (N16) (e) (G116) (f) (G216)

Figure 1: Dynamical planes of 16th-order methods on x2 − 1

of sixteenth-order methods proposed by Geum and Kim in [7, 6], out of these families we
shall choose the expression (Y1) (defined in Table 1 of Geum and Kim [7]) and expression
(K2) (for details of this method please see Table 1 of Geum and Kim [6]), respectively called
by (G116) and (G216). These methods will be also used for numerical performances in the
following section.

These dynamical planes have been generated by using the routines appearing in [3].
They are generated by using each point of the complex plane as initial estimation (we
have used a mesh of 400× 400 points). We paint in different colors the points whose orbit
converges to different attracting fixed points (all fixed points appear marked as a white
star in the figures) and in black if it reaches the maximum number of 40 iterations without
converging to any of the fixed points. The basin of attraction of each fixed points is defined
by the set of initial estimations that converge to it. So, wider basins of attraction mean
more stable behavior and lower dependence on initial estimations of the methods.

In Figure 1, the basins of attraction of the different 16th-order schemes are represented.
In this case, there are only two real fixed points, x = ±1, and the basins of attraction
of these points are plotted in green and orange. Methods (M1), (M2) and (M3) show
a very stable behavior (see Figures 1a to 1c), specially (M1) whose basins of attraction
are apparently the same as one of Newton’s scheme, but with 16-th order of convergence.
Case of (N16) (Figure 1d) is similar, but with small black regions of no convergence to the
roots. More different are the basins of attraction of schemes (G116) and (G216) (Figures 1e
and 1f), as in addition of green and orange basins, a blue basin of convergence to infinity
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(a) (M1) (b) (M2) (c) (M3)

(d) (N16) (e) (G116) (f) (G216)

Figure 2: Dynamical planes of 16th-order methods on x3

x4+1 +
√
x4 + 8 sin

(
π

x2+2

)
−
√

6+ 8
17

(divergence) is shown and also black areas of convergence to other attracting points different
from the roots appear.

When a much more complicated function is analyzed, the basins of attraction are also
much more devious. In this function, two real and twelve complex roots are plotted as
white stars. Their respective basins of attraction are plotted in different colors. It can be
observed as these basins are much more wider in case of proposed methods (Figures 2a
to 2c) than in case of the rest of schemes that, although converge to the real roots in all
cases, have tiny basins of attraction of some of the complex roots and wide black areas of
no convergence (see Figures 2d to 2f).

4 Numerical experiments

This section is fully devoted to check the effectiveness and validity of our theoretical results
which have been proposed in section 2. Therefore, we consider the following special cases of
our proposed scheme to see the comparison of them with the other existing optimal methods
of order sixteen {

P (h) = 1 + 2a1h+ a1(2a1 + a2)h2,

S(h, k) = 1 + 2a1h+ k + a1(3a1 + a2)h2 + 4a1hk.
(4.1)
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Using the above weight function in the scheme (2.6) with a1 = 1 and a2 = −2, we obtain
a new sixteenth-order modification of Ostrowski method, denoted by (M1). In addition,
we also insert the above weight function in the proposed scheme (2.6) with ( a1 = 1 &
a2 = −3) and ( a1 = 1 and a2 = − 17

5 ), respectively, called by (M2) and (M3). As in
case of the comparison by means of basins of attraction, we shall compare them with the
optimal sixteenth-order method (N16) and those from Geum and Kim (G116) and (G216).

Further, we consider the approximated zero of test functions when the exact zero is
not available, which is corrected up to 200 significant digits to calculate |xn − r|. For
the computer programming, all computations have been performed using the programming
package Mathematica 9 with multiple precision arithmetic. The test functions to be used
and the searched roots in the numerical performances are:

1. f1(x) = x3

x4+1 +
√
x4 + 8 sin

(
π

x2+2

)
−
√

6 + 8
17 , r = 2.

2. f2(x) = e−x
2 sin(x)
x2−1 + x2 log(x− π + 1), r = π.

3. f3(x) = − log
(
4x2 − π + 1

)
+ sin

(
2x2
)
− 1, r =

√
π
4 .

4. f4(x) = e2x + sin−1(x2 − 1)− 7, r ≈ 0.976291868878610753725804032590.

5. f5 = 10xe−x
2 − 1, r ≈ 1.67963061042844994067492033884.

Methods n xn |f(xn)| |xn − r|
∣∣∣∣ en
e16n−1

∣∣∣∣ η
log |en/η|
log |en−1|

N16

0 −1.9 3.2e(−2) 1.0e(−1)
1 −2.00000000000 2.0e(−16) 6.1e(−16) 6.087155557 0.2361281910 14.589
2 −2.00000000000 2.8e(−245) 8.4e(−245) 0.2361281910 16.000

G116

0 −1.9 3.2e(−2) 1.0e(−1)
1 −2.00000000000 6.5e(−16) 2.0e(−15) 19.69885532 0.08418846348 13.631
2 −2.00000000000 1.4e(−237) 4.3e(−237) 0.08418846348 16.000

G216

0 −1.9 3.2e(−2) 1.0e(−1)
1 −2.00000000000 1.4e(−14) 4.1e(−14) 414.1970377 3.625713950 13.942
2 −2.00000000000 9.0e(−215) 2.7e(−214) 3.625713950 16.000

M1
0 −1.9 3.2e(−2) 1.0e(−1)
1 −2.00000000000 1.8e(−17) 5.3e(−17) 0.5313647842 0.04662092834 14.943
2 −2.00000000000 6.3e(−263) 1.9e(−262) 0.04662092834 16.000

M2
0 −1.9 3.2e(−2) 1.0e(−1)
1 −2.00000000000 1.6e(−18) 4.7e(−18) 0.04723703076 0.01317792297 15.446
2 −2.00000000000 2.7e(−280) 8.1e(−280) 0.01317792297

M3
0 −1.9 3.2e(−2) 1.0e(−1)
1 −2.00000000000 2.1e(−19) 6.3e(−19) 0.006263947505 0.005798398834 15.966
2 −2.00000000000 1.1e(−294) 3.3e(−294) 0.005798398834 16.000

Table 1: Convergence for f1(x) with r = −2

For better comparisons of our proposed methods with the other existing ones, we have
displayed the number of iteration indexes (n), approximated zeros (xn), absolute residual

error of the corresponding function (|f(xn)|), errors |en| (where en = xn − r),
∣∣∣ en+1

e16n

∣∣∣ and
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the asymptotic error constant η = lim
n→∞

∣∣∣∣en+1

e16n

∣∣∣∣. In order to calculate the asymptotic com-

putational order of convergence (ρ) , we use the formula p ≈ ρ =
log |en/η|
log |en−1|

. We calculate

the computational order of convergence and asymptotic error constant and other constants
up to several number of significant digits (minimum 1000 significant digits) to minimize the
round off error.

Methods n xn |f(xn)| |xn − r|
∣∣∣∣ en
e16n−1

∣∣∣∣ η
log |en/η|
log |en−1|

N16

0 4 9.9 8.6e(−1)
1 3.14159265392 3.3e(−9) 3.4e(−10) 3.876697e(−9) 2.895997e(−8) 29.171
2 3.14159265358 7.9e(−159) 8.0e(−160) 2.895997e(−8) 16.000

G116

0 4 9.9 8.6e(−1)
1 3.14159265422 6.6e(−9) 6.3e(−10) 7.299548e(−9) 1.462815e(−10) −9.6099
2 3.14159265358 9.9e(−157) 1.0e(−157) 1.462815e(−10) 16.000

G216

0 4 9.9 8.6e(−1)
1 3.14159265116 2.4e(−8) 2.4e(−9) 2.790258e(−8) 1.458588e(−10) −18.412
2 3.14159265358 2.1e(−147) 2.1e(−148) 1.458588e(−10) 16.000

M1
0 4 9.9 8.6e(−1)
1 3.14159265358 1.3e(−13) 1.3e(−14) 1.467022e(−13) 2.668433e(−8) 95.326
2 3.14159265358 1.3e(−229) 1.3e(−230) 2.668436e(−8) 16.000

M2
0 4 9.9 8.6e(−1)
1 3.14159265373 1.4e(−9) 1.4e(−10) 1.623296e(−9) 1.241222e(−8) 29.324
2 3.14159265358 3.0e(−165) 3.1e(−166) 1.241222e(−8) 16.000

M3
0 4 9.9 8.6e(−1)
1 3.14159265392 3.3e(−9) 3.3e(−10) 3.850528e(−9) 1.832566e(−9) 11.137
2 3.14159265358 4.5e(−160) 4.5e(−161) 1.832566e(−9) 16.000

Table 2: Convergence for f2(x) with r = π

As we mentioned in the above paragraph that we calculate the values of all the constants
and functional residuals up to several number of significant digits but due to the limited

paper space, we display the value of xn up to 15. In addition, ρ and
(∣∣∣ en+1

e16n

∣∣∣ and η
)

are

presented up to 5 and 10 significant digits, respectively. Moreover, all the other constants
namely, |en|, and absolute residual error in the function |f(xn)|, are display up to 2 signif-
icant digits with exponent power which are mentioned in the Tables 1 – 5. Furthermore,
the approximated zeros up to 35 significant digits are also displayed in the caption of the
Tables 1 – 5, although minimum 1000 significant digits are available with us.

In 1, results from the test made on function f1(x) are shown. In it, is clear that the
theoretical 16th-order of convergence is reached and the numerical results obtained after
three iterations are similar. However, proposed methods M1, M2 and M3 show better
precision and lower asymptotic error constant. Similar results can be observed in Table 2.

Regarding Table 3, the showed results give us similar information about the same aspects
of the test: estimated errors, approximated order of convergence; however, the asymptotic
error constant of methods G116, G216 and M3 are extremely high, meanwhile that of N16,
M1 and M2 remain in reasonable values.

In case of function f4(x), the results obtained by M1, M2 and M3 are clearly better than
those got by known schemes, including the error estimations and the asymptotic constant
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Methods n xn |f(xn)| |xn − r|
∣∣∣∣ en
e16n−1

∣∣∣∣ η
log |en/η|
log |en−1|

N16

0 0.9 9.5e(−2) 1.4e(−2)
1 0.886226925452 1.0e(−24) 1.5e(−25) 87098.28165 9012.374837 15.471
2 0.886226925452 2.7e(−393) 3.9e(−394) 9012.374837 16.000

G116

0 0.9 9.5e(−2) 1.4e(−2)
1 0.886226925452 2.9e(−23) 4.1e(−24) 2.431552414e(+6) 1.558675557e(+7) 16.434
2 0.886226925452 6.4e(−367) 9.1e(−368) 1.558675557e(+7) 16.000

G216

0 0.9 9.5e(−2) 1.4e(−2)
1 0.886226925452 7.0e(−22) 9.8e(−23) 5.857298039e(+7) 2.712508318e(+8) 16.358
2 0.886226925452 1.4e(−343) 2.0e(−344) 2.712508318e(+8) 16.000

M1
0 0.9 9.5e(−2) 1.4e(−2)
1 0.886226925452 1.0e(−24) 1.4e(−25) 85238.09626 140880.4065 16.117
2 0.886226925452 3.0e(−392) 4.3e(−393) 140880.4065 16.000

M2
0 0.9 9.5e(−2) 1.4e(−2)
1 0.886226925452 3.3e(−23) 4.7e(−24) 0.08655188030 0.06653652987 16.218
2 0.886226925452 2.7e(−366) 3.8e(−367) 0.06653652987 16.000

M3
0 0.9 9.5e(−2) 1.4e(−2)
1 0.886226925452 5.8e(−23) 8.2e(−24) 4.914422055e(+6) 1.351536840e(+7) 16.000
2 0.886226925452 4.3e(−362) 6.1e(−363) 1.351536840e(+7) 16.000

Table 3: Convergence for f3(x) with r ≈
√

π
4

Methods n xn |f(xn)| |xn − r|
∣∣∣∣ en
e16n−1

∣∣∣∣ η
log |en/η|
log |en−1|

N16

0 1.2 4.5 2.2e(−1)
1 0.976291868946 1.1e(−9) 6.8e(−11) 1.731187559 7.703357883 16.997
2 0.976291868878 2.7e(−161) 1.7e(−162) 7.703357883 16.000

G116

0 1.2 4.5 2.2e(−1)
1 0.976291868713 2.7e(−9) 1.7e(−10) 4.208028085 15.27838262 16.861
2 0.976291868878 7.8e(−155) 4.9e(−156) 15.27838262 16.000

G216

0 1.2 4.5 2.2e(−1)
1 0.976291868102 1.2e(−8) 7.8e(−10) 19.73714501 2414.275399 19.210
2 0.976291868878 6.8e(−142) 4.2e(−143) 2414.275399 16.000

M1
0 1.2 4.5 2.2e(−1)
1 0.976291868878 1.6e(−12) 1.0e(−13) 0.002590514342 0.001630150285 15.691
2 0.976291868878 3.6e(−210) 2.2e(−211) 0.001630150285 16.000

M2
0 1.2 4.5 2.2e(−1)
1 0.976291868882 5.5e(−11) 3.4e(−12) 0.08655188030 0.06653652987 15.824
2 0.976291868878 3.5e(−184) 2.2e(−185) 0.06653652987 16.000

M3
0 1.2 4.5 2.2e(−1)
1 0.976291868897 1.9e(−10) 1.2e(−11) 0.3071658708 0.976291868878611 15.738
2 0.976291868878 6.9e(−175) 4.3e(−176) 0.2073478134 16.000

Table 4: Convergence for f4(x) with r ≈ 0.976291868878610753725804032590

error. Nevertheless, all of them hold the theoretical order of convergence.

The differences among the methods in terms of stability are clearly stated in Table 5.
In it, best results of M1, M2 and M3 in all the checked elements of the numerical process
can be observed. Also better, but in a smaller amount, are the results got by M1, M2 and
M3 respect to the ones of the comparison methods N16, G116 and G216 (see Table 5).
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Methods n xn |f(xn)| |xn − r|
∣∣∣∣ en
e16n−1

∣∣∣∣ η
log |en/η|
log |en−1|

N16

0 1.5 5.8e(−1) 1.8e(−1)
1 1.67963061042 1.8e(−11) 6.5e(−12) 5.537170610 153.6631200 17.936
2 1.67963061042 4.4e(−177) 1.6e(−177) 153.6631200 16.000

G116

0 1.5 5.8e(−1) 1.8e(−1)
1 1.67963061043 1.0e(−11) 3.6e(−12) 3.083765922 100.3740333 18.029
2 1.67963061042 2.5e(−181) 8.9e(−181) 100.3740333 16.000

G216

0 1.5 5.8e(−1) 1.8e(−1)
1 1.67963061036 1.7e(−10) 6.0e(−11) 50.84310947 10753.24541 19.119
2 1.67963061042 7.8e(−160) 2.8e(−160) 10753.24541 16.000

M1
0 1.5 5.8e(−1) 1.8e(−1)
1 1.67963061042 2.1e(−14) 7.5e(−15) 0.006390604103 0.06863566058 17.383
2 1.67963061042 1.9e(−227) 7.0e(−228) 0.06863566058 16.000

M2
0 1.5 5.8e(−1) 1.8e(−1)
1 1.67963061042 1.6e(−15) 5.8e(−16) 0.0004898530879 0.0004802161904 15.988
2 1.67963061042 1.9e(−247) 7.0e(−248) 0.0004802161904 16.000

M3
0 1.5 5.8e(−1) 1.8e(−1)
1 1.67963061042 1.4e(−15) 5.2e(−16) 0.0004453340558 0.03036170171 18.459
2 1.67963061042 2.7e(−246) 9.6e(−247) 0.03036170171 16.000

Table 5: Convergence for f5(x) with r ≈ 1.67963061042844994067492033884
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(4) Instituto de Matemáticas Multidisciplinar, Universitat Politècnica de València,
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