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Abstract

Fraenkel-Mostowski set theory represents a tool for managing infinite structures in
terms of finite objects. In this paper we provide a connection between the concept
of logical notions invariant under permutations introduced by Tarski and Fraenkel-
Mostowski set theory. More precisely, we prove that some particular sets defined by
using the axioms of Fraenkel-Mostowski set theory are logical notions in Tarski’s sense.
We also investigate whether a new and specific Fraenkel-Mostowski binding operator
is logical in Tarski’s sense.
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1 Introduction

It does not exist a full philosophical consensus on the distinction between logical and non-
logical notions. This fact leads to certain doubts regarding our understanding of the nature
of logic and its relationship to mathematics. Some logicians have suggested that what is
distinctive about logical notions is their invariance under permutations of the domain of
objects. In order to clarify this invariance under permutations, we mention that the set of
numbers between 1 and 9 is invariant under the permutation of these numbers (it does not
matter how we switch these numbers, we end up with the same set), but the set of prime
numbers between 1 and 9 is not invariant under any permutation of these first 9 numbers
(for instance, the related set formed by 2, 3, 5 and 7 is not invariant under the permutation
that switches numbers 5 and 8 and maps all the other numbers to themselves).

In a logical sentence, signs for negation, conjunction, disjunction and the quantifiers
should be invariant under any permutation of words, and so they count as logical notions
(or logical constants), while words like “dog”, “tall” and “blue” cannot be invariant under
permutations of (a larger set of) words, and so they are not logical notions. The invariance
criterion seems to fit with common intuition about logical notions. Certain technical results
increase our confidence in this invariance criterion: in [19] it is proved that all of the relations
definable in the language of Principia Mathematica are invariant under permutations, while
in [16] every permutation-invariant operation can be defined in terms of logical operations
such as identity, variable substitution, disjunction, negation and existential quantification,
and each operation so definable is invariant under permutations.



114 A. Alexandru, G. Ciobanu

Alfred Tarski gave a lecture in 1966 for a general audience at Bedford College in London
entitled “What are logical notions?” Tarski’s answer to this question is presented in [20].
Essentially, logical notions are considered to be relations between individuals and classes,
as well as relations over an arbitrary non-empty domain D of individuals. Tarski identified
logical relations as exactly those invariant under arbitrary permutations of D. This thesis
characterizes logical notions and logical operations by invariance under permutations.

As Tarski himself pointed out, the permutation invariance criterion for logical notions
can be seen as a generalization of Felix Klein’s idea that different geometries can be distin-
guished by the groups of transformations under which their basic notions are invariant [14].
In his Erlangen Program, Klein classified the notions to be studied in various geometries
(such as Euclidean, affine and projective geometry) according to the groups of (one-one
and onto) transformations under which they are invariant. With logic thought of as the
most general theory, logical notions should be those invariant under the largest group of
transformations, namely the class of permutations. The “generality” argument for Tarski’s
thesis is given by Bonnay in [9] as follows:

1. The distinctive feature of logic among other theories is that it is the most general
theory one can think of.

2. The bigger the group of transformations associated with a theory, the more general
the theory.

3. The biggest group of transformations is the class of all permutations.

Thus, it is concluded that logical notions are those invariant under permutation.

Tarski’s thesis and related results assimilate logical notions to mathematics. From
Whitehead and Russell’s Principia Mathematica, we know that the whole of mathemat-
ics can be formalized within set theory. In [19], set theory is described as a mathematically
universal language. For Tarski, this universality provides a foundational status in math-
ematics (and metamathematics) to set theory, and so the whole of mathematics can be
expressed in the language of an appropriate set theory. In Tarski’s words, “... we need only
one non-logical constant (...) for a two-termed relation which holds between an element and
a set (...). Then the only concern lies in a careful selection of the axioms. They must be
weak enough to escape the antinomies, but at the same time they must be strong enough to
ensure, within our universe of discourse, the existence of sets which correspond to as large
a class of sentential functions as possible.”

Logical operations and notions in Tarski’s sense meet the permutation invariance cri-
terion. If they are described set-theoretically, they should have the same meaning (inde-
pendent of the set-theoretical universe). By considering an appropriate set theory, we also
take into account that if semantic concepts cannot be reduced to logical concepts, then we
cannot proceed in “harmony with the postulates of the unity of science and of physicalism”.
This is why Tarski preferred to link mathematical universality to domain universality [19].

According to [18], invariance under permutation reflects the formality of notions from
logic. Thus, invariant notions are formal in the sense that they do not depend on the
identity of objects. For example, in a formal language the extension of the existential
quantifier ∃ consists of all non-empty subsets of a specific domain. Obviously, all the one-
to-one applications of this domain onto itself transform any non-empty subset of the domain
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in another non-empty subset of the domain. Therefore, the interpretation of the existential
quantifier is invariant under any permutation.

Tarski’s thesis makes sense for objects in the finite relational type structure over a
domain of basic objects D, where the objects at each level are relations of one or more
arguments between objects of lower levels. Rather than considering the entire set of per-
mutations of a universe built as a cumulative hierarchy over D, we can consider only those
permutations of the objects in D. Thus, the logical notions (and the logical operations) are
those invariant under arbitrary permutations of objects from D.

Based on the previous remark and the approach in [18], we can provide a practical
method of verifying logicality in cumulative hierarchies. The general idea is to study the
effect of permutations over sets. More precisely, we consider an initial domain D of basic
objects, and construct a hierarchy of sets starting with the objects in D. After that we
consider any permutation of objects from D, and see what effect have these permutations
on the sets of various levels. The sets which are fixed under all permutations are exactly
the sets that can be denoted by a logical symbol. It is easy to see that both the identity
relation between basic objects and its negation are fixed under every permutation. At a
higher level, the sets of sets that are fixed include the set of all non-empty sets (which is
related to the existential quantifier) and the set consisting of just the empty set (which is
related to the negated universal quantifier). This means that all of them can be denoted
by logical symbols, and thus they represent formal notions.

Formally, Tarski’s logicality criterion can be expressed as
“Given a domain D of basic objects, an operation f in the type hierarchy
over D is logical if and only if it is invariant under all permutations on D.”

We relate all these aspects to a recently developed Fraenkel-Mostowski set theory [11].
Our goal is to connect the concept of logical notions in Tarski sense to the sets of the
Fraenkel-Mostowski universe. We also show that the newly developed Fraenkel-Mostowski
axiomatic set theory has historical roots in Tarski’s approach regarding logicality.

2 Fraenkel-Mostowski Cumulative Universe

First-order Fraenkel-Mostowski (FM) set theory has its origins in an approach developed
initially in the 1930s [10, 15] in order to prove the independence of the axiom of choice
and other axioms in Zermelo-Fraenkel with atoms (ZFA) set theory, where ZFA is Zermelo-
Fraenkel set theory with the Axiom of Extensionality modified to allow the existence of
atoms. In 2001, the basic Fraenkel model of ZFA without axiom of choice (model N1 in
[12]) was axiomatized and presented as an independent set theory named FM axiomatic set
theory [11]. The axioms of FM set theory are precisely those of ZFA over an infinite set
of atoms [11], together with the special axiom of finite support which claims that for each
element x in an arbitrary set we can find a finite set supporting x. The original purpose of
the FM axiomatic set theory was to provide a mathematical model for variables in a certain
syntax. Atoms have the same properties as variables and names; they do not have internal
structure, and are used for their ability to identify and for their distinctness. The finite
support axiom is motivated by the fact that syntax can only involve finitely many distinct
(free) names.
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The construction of the universe of all FM sets, i.e. sets defined according to FM
axioms [11], is inspired by the construction of the universe of all admissible sets over an
arbitrary collection of atoms [6]. The FM sets represent a generalization of hereditary finite
sets (which are particular admissible sets); actually, any FM set is an hereditary finitely
supported set.

The FM set theory is also related to the alternative theory of nominal sets [17]. Nominal
sets provide a formalism for describing λ-terms modulo α-conversion [11]. They also have a
lot of applications in algebra, semantics, logic, topology, proof theory and in domain theory
(see [5] for applications of nominal sets in calculability theory and [1] for a survey on some
applications of nominal sets). Nominal sets can be defined both in the ZF framework [17]
and in the FM framework [11]. In ZF, a fixed infinite set A is considered as a set of names,
and a nominal set is defined as a usual ZF set endowed with a particular group action
of the group of permutations over A that satisfies a certain a finite support requirement.
There exists also an alternative definition for nominal sets in the FM framework. They can
be defined as sets constructed according to the FM axioms with the additional property
of being empty supported (invariant under all permutations). These two ways of defining
nominal sets finally lead to similar properties as it is proved in [4].

The theory of nominal sets over a fixed set A whose elements can be checked only for
equality is extended to generalized nominal sets in [7] by using new data symmetries over
arbitrary sets of data which may have a certain internal structure. Generalized nominal
sets are used to study automata on data words [7], languages over infinite alphabets [7],
and Turing machines operating over finite alphabets [8].

We consider that FM set theory is an appropriate framework for experimental sciences,
providing a characterization of infinite structures by using a ‘finitary’ representation. More
precisely, in the FM framework we can model infinite structures by using the notion of finite
support [3, 5]. Note that FM set theory provides a balance between an informal reason-
ing and a rigorous representation; this is discussed in [17], where principles of structural
recursion and induction are explained in the FM framework.

Let A be a fixed infinite ZF set. The following results make also sense if A is considered
to be the set of atoms in the ZFA framework (characterized by the axiom “y ∈ x⇒ x /∈ A”),
and if ‘ZF’ is replaced by ‘ZFA’ in their statement. This means that the theory of nominal
sets makes sense in both ZF and ZFA.

A transposition is a function (a b) : A → A defined by (a b)(a) = b, (a b)(b) = a, and
(a b)(n) = n for n 6= a, b. A finite permutation of A is generated by composing finitely
many transpositions. Let SA be the set of all finite permutations of A (i.e. the set of all
bijections on A which leave unchanged all but finitely many elements).

Definition 1. 1. Let X be a ZF set. An SA-action on X is a function · : SA ×X → X
having the properties that Id · x = x and π · (π′ · x) = (π ◦ π′

) · x for all π, π′ ∈ SA
and x ∈ X. An SA-set is a pair (X, ·), where X is a ZF set and · : SA ×X → X is
an SA-action on X.

2. Let (X, ·) be an SA-set; we say that S ⊂ A supports x whenever for each π ∈ Fix(S)
we have π · x = x, where Fix(S) = {π |π(a) = a, for all a ∈ S}.

3. Let (X, ·) be an SA-set; we say that X is a nominal set if for each x ∈ X, there exists
a finite set Sx ⊂ A supporting x.
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4. Let X be an SA-set and x ∈ X. If there exists a finite set supporting x, then there
exists a least finite set supporting x which is called the support of x and is denoted by
supp(x). According to [11], the support of x is defined as the intersection of all finite
sets of atoms supporting x. An empty supported element is called equivariant.

Proposition 1. Let (X, ·) be an SA-set and π ∈ SA. If x ∈ X is finitely supported, then
π · x is also finitely supported, and supp(π · x) = π(supp(x)).

Example 1.

1. The set A of atoms is an SA-set with the SA-action · : SA × A → A defined by
π · a := π(a) for all π ∈ SA and a ∈ A. (A, ·) is a nominal set because for each a ∈ A
we have that {a} supports a. Moreover, supp(a) = {a}.

2. The set SA is an SA-set with the SA-action · : SA×SA → SA defined by π ·σ := π◦σ◦
π−1 for all π, σ ∈ SA. (SA, ·) is a nominal set because for each σ ∈ SA we have that
the finite set {a ∈ A |σ(a) 6= a} supports σ. Moreover, supp(σ) = {a ∈ A |σ(a) 6= a}
for each σ ∈ SA.

3. Any ordinary ZF-set X is an SA-set with the SA-action · : SA ×X → X defined by
π · x := x for all π ∈ SA and x ∈ X. Moreover, X is a nominal set because for each
x ∈ X we have that ∅ supports x.

4. If (X, ·) is an SA-set, then ℘(X) = {Y |Y ⊆ X} is also an SA-set with the SA-action
? : SA × ℘(X) → ℘(X) defined by π ? Y := {π · y | y ∈ Y } for all π of A and all
subsets Y of X. For each nominal set (X, ·) we denote by ℘fs(X) the set formed from
those subsets of X which are finitely supported according to SA-action ? . According
to Proposition 1, (℘fs(X), ?|℘fs(X)) is a nominal set, where ?|℘fs(X) represents the
action ? restricted to ℘fs(X).

5. Let (X, ·) and (Y, �) be two SA-sets. The Cartesian product X × Y is also an SA-set
with the SA-action ? : SA× (X×Y )→ (X×Y ) defined by π ? (x, y) = (π ·x, π �y) for
all π ∈ SA and all x ∈ X, y ∈ Y . If (X, ·) and (Y, �) are nominal sets, then (X×Y, ?)
is also a nominal set.

6. Let (X, ·) and (Y, �) be two SA-sets. The disjoint union of X and Y is defined by
X + Y = {(0, x) |x ∈ X} ∪ {(1, y) | y ∈ Y }. X + Y is an SA-set with the SA-action
? : SA×(X+Y )→ (X+Y ) defined by π?z = (0, π ·x) if z = (0, x) and π?z = (1, π�y)
if z = (1, y). If (X, ·) and (Y, �) are nominal sets, then (X + Y, ?) is also a nominal
set: each z ∈ X + Y is either of the form (0, x) and so supported by the finite set
supporting x in X, or of the form (1, y) and so supported by the finite set supporting
y in Y .

Definition 2. Let (X, ·) be a nominal set. A subset Z of X is called finitely supported if
and only if Z ∈ ℘fs(X) defined in Example 1(4).

Since functions are particular relations, we have the following results.

Definition 3. Let X and Y be nominal sets. A function f : X → Y is finitely supported
if f ∈ ℘fs(X × Y ).
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We use the notation Y X = {f ⊆ X × Y | f is a function from X to Y }.

Proposition 2. Let (X, ·) and (Y, �) be nominal sets. Then Y X is an SA-set with the
SA-action ? : SA × Y X → Y X defined by (π ? f)(x) = π � (f(π−1 · x)) for all π ∈ SA,
f ∈ Y X and x ∈ X. A function f : X → Y is finitely supported in the sense of Definition
3 if and only if it is finitely supported with respect the permutation action ? .

Proposition 3. Let (X, ·) and (Y, �) be nominal sets. Let f ∈ Y X and σ ∈ SA be arbitrary
elements. Let ? be the SA-action on Y X defined in Proposition 2. Then σ ? f = f if and
only if for all x ∈ X we have f(σ · x) = σ � f(x).

Let us consider the set A of atoms in the ZFA framework. As in [11], we can take a set-
theoretic approach and construct a single ‘large’ SA-set, i.e. a class FM(A) equipped with
an SA-action and in which all the elements have the finite support property. One benefit is
that if a particular construction can be expressed in this language, then the action of finite
permutations can be obtained from the universe FM(A) without defining it explicitly, and
without being necessary to prove the associated finite support property.

Recall the usual von Neumann cumulative hierarchy of sets:
ν0 = ∅, να+1 = ℘(να), νλ = ∪

α<λ
να (λ a limit ordinal).

More generally, it can be analogously defined a cumulative hierarchy of sets involving
atoms from a certain set of atoms U , as in [11]:

• ν0(U) = ∅;

• να+1(U) = U + ℘(να(U)), where + is the disjoint union from Example 1(6);

• νλ(U) = ∪
α<λ

να(U).

Let ν(U) be the union of all να(U). The class of sets built on atoms U is ν(U). We define
the notions of SA-set and finite support property in such a hierarchy by considering U to be
the SA-set A of atoms, and replacing ℘(−) by ℘fs(−) (using the notations of Example 1).
Thus, the FM cumulative hierarchy is:

• FM0(A) = ∅;

• FMα+1(A) = A+ ℘fs(FMα(A));

• FMλ(A) = ∪
α<λ

FMα(A), where λ is a limit ordinal.

According to Example 1, each FMα(A) is a nominal set. When we consider the union of
all FMα(A), we get one ‘large’ SA-set (i.e. an SA-class) in which every element has finite
support property. The union of all FMα(A) is called the Fraenkel-Mostowski universe; it
is denoted by FM(A). Using the notations of Example 1 and names atm and set for the
functions x 7→ (0, x) and x 7→ (1, x), it follows that every element x of FM(A) is either
of the form atm(a) with a ∈ A, or of the form set(X) where X is a finitely supported set
formed at an earlier ordinal stage than x. The elements of the form set(X) are called FM
sets, while the elements of the form atm(a) are called atoms.

The SA-action · on the FM universe FM(A) is defined recursively by:
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• π · atm(a) = atm(π(a))

• π · set(X) = set({π · x |x ∈ X}).

We can say that x ∈ ν(A) is an FM set (i.e. x ∈ FM(A)) if and only if the following
conditions are satisfied:

• y is a FM set or an atom for all y ∈ x,

• x has finite support property.

Thus, we can say that a ZFA set is an FM set if and only if it has finite support and all its
elements have hereditary finite supports. More precisely, any FM set is a finitely supported
element of the large nominal set FM(A) which additionally has a recursive property of
finite support for its elements. An FM set X is not itself closed under the SA-action on
FM(A), unless supp(X) = ∅. Hence an FM set is not necessarily equivariant in FM(A)
in the sense of Definition 1. This means that the restriction on a certain FM set X of
the SA-action · on FM(A) does not necessarily lead to a new group action of SA on X
(since the codomain of the function ·|X is not necessarily X). Only an FM set with empty
support is itself closed under the restriction of the SA-action · on it. According to these
remarks, and because nominal sets need to be closed under the actions with who they are
equipped (meaning that nominality requires equivariance at the following order stage in
an hierarchical construction), the nominal sets in the FM cumulative hierarchy are defined
as those equivariant (i.e. empty supported) elements of the Fraenkel-Mostowski universe
FM(A). This means that an FM set X is nominal if and only if the restriction ·|X of · on
X is itself an SA-action on X in the sense of Definition 1(1).

Definition 4. The following axioms define the Fraenkel-Mostowski set theory:

1. ∀x.(∃y.y ∈ x) implies x /∈ A (only non-atoms can have elements)

2. ∀x, y.(x /∈ Aand y /∈ A and ∀z.(z ∈ x iff z ∈ y)) implies x = y

(axiom of extensionality)

3. ∀x, y.∃z.z = {x, y} (axiom of pairing)

4. ∀x.∃y.y = {z | z ⊆ x} (axiom of powerset)

5. ∀x.∃y.y /∈ Aand y = {z | ∃w.(z ∈ w andw ∈ x)} (axiom of union)

6. ∀x.∃y.(y /∈ Aand y = {f(z) | z ∈ x}), for each functional formula f(z)

(axiom of replacement)

7. ∀x.∃y.(y /∈ Aand y = {z | z ∈ x and p(z)}), for each formula p(z)

(axiom of separation)

8. (∀x.(∀y ∈ x.p(y)) implies p(x)) implies ∀x.p(x) (induction principle)

9. ∃x.(∅ ∈ x and (∀y.y ∈ x implies y ∪ {y} ∈ x)) (axiom of infinity)
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10. A is not finite.

11. ∀x. ∃ S ⊂ A.S is finite and S supports x . (finite support axiom)

It follows that ν(A) is a model of ZFA set theory (whose axioms are precisely those in
Definition 4, excepting axiom 11), and FM(A) is a model of FM set theory.

As mentioned in the opening paragraph of Section 2, FM axiomatic set theory is inspired
by the basic Fraenkel model of ZFA. On the other hand, FM set theory, ZFA set theory and
ZF set theory are independent axiomatic set theories. All of these theories are described
by axioms, and all of them have distinct models. For example, FM(A) is a model of FM
set theory, while detailed lists of Cohen models of ZF and Fraenkel-Mostowski permutation
models of ZFA can be found in [12] (see also [13] for detailed descriptions and proofs of
results on certain ZF and ZFA models).

3 Logical Notions in the FM Cumulative Universe

We start with a lemma allowing us to say that in the FM universe the permutations of the
sets of atoms are necessarily finite permutations.

Lemma 1. Let f : A→ A be a finitely supported permutation of A. Then {a ∈ A | f(a) 6= a}
is finite, and supp(f) = {a ∈ A | f(a) 6= a}.

Proof. First we prove that for each a ∈ A, if a /∈ supp(f) then f(a) = a. Let a /∈ supp(f).
Assume that f(a) 6= a. Let us consider two atoms b, c /∈ supp(f) such that a, b, c, are all
different (such atoms exist because supp(f) is finite, while A is infinite). Since supp(f)
supports f and (a b) ∈ Fix(supp(f)), we have (a b) ? f = f , where ? is the SA-action on
AA presented in Proposition 2. Analogously, (a c) ? f = f . According to Proposition 3,
we have f(b) = f((a b)(a)) = (a b)(f(a)). However, f(a) 6= a. Since f is an injection, it
follows that f(a) = b (otherwise, we would have f(b) = f(a) with b 6= a). However, from
f((a c)(a)) = (a c)(f(a)), it follows that f(c) = (a c)(b) = b = f(a), which contradicts the
injectivity of f . Thus, f(a) = a. This means S = {a ∈ A | f(a) 6= a} ⊆ supp(f). Since
supp(f) is finite, it follows that S is finite.

Now we prove that the finite set S supports f . Indeed, let us consider π ∈ Fix(S), i.e.
π(a) = a whenever f(a) 6= a. We claim that f(π(x)) = π(f(x)) for all x ∈ A. Indeed,
let us fix an arbitrary element x ∈ A. If f(x) 6= x, then π(x) = x and f(π(x)) = f(x).
However, since f is injective, we also have f(f(x)) 6= f(x) and so π(f(x)) = f(x). Thus,
f(π(x)) = π(f(x)). On the other hand, if f(x) = x, then π(f(x)) = π(x). Suppose
that f(π(x)) 6= π(x). This means π(π(x)) = π(x), and so π(x) = x. Then f(π(x)) =
f(x) = x = π(x), which contradicts the assumption that f(π(x)) 6= π(x). It follows that
f(π(x)) = π(x), and so f(π(x)) = π(f(x)). According to Proposition 3, we have that S
supports f . Since supp(f) is minimal between the finite sets supporting f , it follows that
S = supp(f).

According to Lemma 1 a permutation of (the nominal set) A is finitely supported if and
only if it is a finite permutation. Since in the FM universe FM(A) any element has to be
finitely supported, we conclude that any permutation of A which is an element of FM(A)
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has to be finitely supported. Therefore, by Lemma 1, any such permutation of A is an
element of SA. Thus, we get the following corollary to Lemma 1.

Corollary 1. In the Fraenkel-Mostowski universe FM(A), the set SA of all finite permu-
tations of A is exactly the set of all permutations of A which belong to FM(A). Thus, in
FM(A), SA coincides with the set of all permutations of A in Tarski’s view (i.e. with the
set of all one-to-one transformations of A onto itself).

Note that the basic Fraenkel model N is determined by a countably infinite set A of
atoms, the group G of all permutations of A, and the finite support (normal) filter Γ. If
one considers SA (i.e. the group of all permutations of A which move only finitely many
atoms) instead of G, then the resulting permutation model N ′ determined by A, SA and Γ
is equal to N . Corollary 1 is the reason for considering SA-actions rather than G-actions
in the construction of FM(A).

The Fraenkel-Mostowski approach corresponds to Tarski’s view. In order to define the
cumulative Fraenkel-Mostowski universe FM(A), we started with a collection of basic ob-
jects (set A of atoms) and constructed a cumulative hierarchy of sets above them. According
to the recursive definition of the SA action · on FM(A), we can say that an element having
the form π · x (where π ∈ SA and x ∈ FM(A)) is a new element y ∈ FM(A) obtained
by replacing each atom a from the structure of x by π(a). Thus, an element of the form
π ·x can be associated with ‘the effect of the transformation π on the element x’ in Tarski’s
view. We conclude that the empty-supported elements in FM(A) are invariant under all
permutations of A, and so the related elements are logical notions. We can present this in
a more formal way.

Theorem 1. Nominal sets defined in the FM cumulative hierarchy are logical (in Tarski’s
sense). In particular, the nominal set SA of all finite permutations of A is logical (in
Tarski’s sense).

The FM sets, i.e. the arbitrary elements from the FM cumulative universe, are not
necessary logical in Tarski’s sense. They satisfy only a “weak” form of logicality, meaning
that they are fixed only by those permutations satisfying an additional requirement. More
precisely, an FM set x is invariant under all permutations fixing its support pointwise.
Furthermore, this is the “strongest” possible form of invariance because the support of
an element is the least set supporting it. However, given a nominal set X from the FM
cumulative universe, the set of all finitely supported subsets of X (generally denoted by
℘fs(X)) is logical, i.e. invariant under all permutations of atoms. This follows by a direct
refinement of Proposition 1 (adapted for the FM cumulative universe) which states than
for any finitely supported subset Y of X we have that π ?Y is supported by π ?supp(Y ) for
any π ∈ SA. Thus, the set of all finitely supported subsets of X is closed under the effect
of any permutation from SA. We describe this formally in the following result.

Proposition 4. Let X be a nominal set from the FM cumulative hierarchy. Then the set
℘fs(X) of all finitely supported subsets of X is logical (in Tarski’s sense).

In the framework of FM set theory, a new quantifier Nis introduced in [11]. Formally, if
P is a predicate over A, we say that Na.P (a) is true if P (a) is true for all but finitely many
elements of A. In a formal language, the extension of the quantifier Nconsists of all cofinite
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subsets of the domain A. Obviously, all the one-to-one mappings of A onto itself transform
any cofinite subset of the domain in another cofinite subset of the domain. Therefore, the
interpretation of the quantifier Nis invariant under every permutation. We describe this
formally in the following result.

Theorem 2. The quantifier Nof the FM set theory is logical (in Tarski’s sense).

4 Logical Notions in Semantics of Process Calculi

The particular class of FM sets formed by those FM sets which are furthermore logical
notions (in [1] the related equivariant FM sets are called IFM sets) can be used in defining
new semantics for various process calculi. More precisely, in [1], by using the IFM sets, we
were able to present more compact semantics (formed by transition rules presented without
assuming additional freshness/side conditions) for the π-calculus, πI-calculus and fusion
calculus. The central idea was to use the IFM set of atoms in order to represent variable
symbols, and the nominal abstraction defined in [11] to represent the binding operators in
these process calculi. The terms (processes) in each of these process calculi form an IFM
set, and the set of terms modulo α-conversion in each of these process calculi can also be
represented as an IFM set. A mixture of ∀ and Nquantifiers was used to replace the side
conditions in the transition rules of the previously mentioned process calculi.

We present an example of how a transition rule in the (monadic) fusion calculus is
rephrased in the FM framework by using Tarski logical symbols.

The rule U-PASS in the original semantics uc of the fusion calculus

P
[x/y]−−−→
uc

P ′

(z)P
[x/y]−−−→
uc

(z)P ′
, z 66= x, y ; x 6= y

becomes the following rule in the new “logical” FM semantics nuc of the fusion calculus.

∀x. Ny. Nz.∀P, P ′.
P

[x/y]−−−→
nuc

P ′

[z]P
[x/y]−−−→
nuc

[z]P ′
.

The update action in the monadic fusion calculus, generally denoted by [z/t] indicates
the replacement of all t by z in both uc and nuc. In uc, the scope operator (x)Q limits the
scope of x to Q; scopes can be used to delimit the extent of updates (that is, the update
effects with respect to x are limited to Q). In nuc, the bindings represented by the scope
operator are associated to nominal abstractions. Technical details can be found in [1] or [2].
We were able to prove that the new semantics are equivalent with (i.e. they have the same
expressive power as) the original semantics of the related process calculi. However, the
newly defined semantics of these process calculi were presented by involving only logical
notions and symbols, whereas the original (old) semantics of these process calculi were
presented by assuming additional freshness conditions for each transition rule, and so they
were not logical.
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5 Conclusion and Related Work

The plurality of geometrical systems raises the question which of these systems is the
“true” geometry. Felix Klein developed a mathematical framework in which, by studying
the properties remaining invariant under different transformations, it is possible to classify
systematically various geometries. Similarly to what happens in geometry, the plurality of
set theories raises the question which of these is the “true” one. From the point of view
of pure mathematics, every mathematical theory is acceptable; this does not mean that
each such theory is equally significant or mathematically relevant. Somehow similarly to
Klein’s approach, Tarski defined the logical notions as those invariant under all possible one-
one transformations of the universe of discourse onto itself. The question is what are the
set theoretical notions appropriate to the Tarski logical notions. The answer is important
because the language of set theory is able to express the whole mathematics. In some sense,
the question is whether certain foundational mathematical notions are logical.

The aim of this paper was to establish a connection between the theory of nominal
sets and the concept of logical notion presented by Tarski. We know that nominal sets
can be defined both in ZF and FM set theories, and they have similar properties in these
two frameworks. More exactly, the ZF nominal sets can similarly be represented in the FM
framework, and the ZF properties of nominal sets can be naturally translated in FM (see [1]).
Here we proved that those nominal sets defined in the FM set theory have a special property.
More precisely, we proved that any nominal set defined in the FM cumulative hierarchy (i.e.
any equivariant FM set) is a logical notion according to Tarski’s view. Moreover, the new
defined quantifier N(associated to the FM set theory) is logical. This means that the
criterion of Tarski’s logical notions corresponds properly to the new operation of finding
fresh names in syntax. Informally, we can think of the elements of a nominal set as having
a finite set of ‘free names’ (which are related to the notions of ‘support’). The action of
a permutation on such an element actually represents the renaming of the ‘bound names’.
Thus, the notion of renaming (often used in computer science) is related to the concept of
logical notion (in Tarski’s sense) when it is managed by involving the FM set theory.

Related to the results presented in this paper, we developed a new set theory which
is consistent with Tarski’s idea regarding logicality and which deals with a more relaxed
notion of finiteness [1]. We called it the ‘Finitely Supported Mathematics’ (FSM for short).
Informally, in FSM we can model infinite structures by using a finite number of observations.
Moreover, we (re)describe some parts of algebra by replacing ‘(infinite) sets’ with the so
called ‘invariant sets’, where the invariant sets are related to the concept of logical notions
in Tarski’s sense. This approach allows us to work with infinite structures by only using
their finite supports. More exactly, in FSM we admit the existence of infinite structures,
but for any infinite structure only of a finite number of its elements (i.e. its support) is
“really important” in order to characterize the whole structure, while the other elements
are somehow “similar”.
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