
Bull. Math. Soc. Sci. Math. Roumanie
Tome 60 (108) No. 2, 2017, 207–217

A rigorous derivation of certain equations arising in the lifting wing theory
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Abstract

Multhopp’s lifting surface equation is obtained after passing to the limit in the
z-component of the fluid velocity. The difficulty occurs because the involved integrals
become singular. Some authors either ignore this issue or they use, without any
justification in their proofs, interchanges of limit and integration or differentiation
operations. In this paper, we prove rigorously the validity of the limit in the frame of
the distribution theory.
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1 Introduction

We consider a steady, incompressible, inviscid flow about an infinitely thin wing of finite
span. Far upstream, the fluid velocity is a constant V∞. Let L0 be a characteristic length
(maximum semichord of the wing sections, for instance), and p∞, ρ be the fluid pressure
and, respectively,the mass density far upstream. We work with dimensionless quantities.
Let (x1, y1, z1) be the dimensional Cartesian coordinates and i, j, k the unit vectors parallel
to the axis Ox1, Oy1 and Oz1, respectively. The direction of Ox1 is taken parallel to the
direction of the undisturbed flow. If v and p are the dimensionless perturbation velocity and,
respectively, dimensionless perturbation pressure, then the dimensional quantities, marked
with subscript ”1”, are related to the dimensionless quantities through the relations:

(x1, y1, z1) = L0(x, y, z), p1 = p∞ + ρV 2
∞p, v1 = V∞(i + v). (1.1)

We deal with the following hypothesis:

Assumption 1: Wing geometry (Figure 1)
The wing surface W is slightly deviated from a surface S lying on a cylindrical surface Σ,
with the directrix parallel to the undisturbed flow and with the generatrix C beeing a simple
curve of class C2 situated in a plane perpendicular to Ox. The parametric equations of the
generatrix C and of the surfaces S and W are:

C : y = ys (η) , z = zs (η) , −θ ≤ η ≤ θ, (1.2)

S :


x = ξ,

y = ys (η) , (ξ, η) ∈ D,
z = zs (η) ,

W :


x = ξ,

y = ys (η) + yε (ξ, η) , (ξ, η) ∈ D,
z = zs (η) + zε (ξ, η) ,

(1.3)
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Figure 1: Wing geometry

where ε� 1 is a parameter that models the magnitude of the deviation of the wing surface
W from the cylindrical surface Σ.

We assume that yε and zε are smooth functions such that |yε|, |zε|,
∣∣∣∣∂yε∂ξ

∣∣∣∣ , ∣∣∣∣∂yε∂η
∣∣∣∣ ,∣∣∣∣∂zε∂ξ

∣∣∣∣ and

∣∣∣∣∂zε∂η
∣∣∣∣ are of the order of O(ε) on D.

If the surface Σ is contained in the xy-plane (i.e. zs = 0), we are in the classical case of
planar wing. Otherwise, W is a nonplanar wing.

The components of the unit normal to the wing surface W are:

nWx =

∂yε
∂ξ z

′

s(η)− ∂zε
∂ξ y

′
s

±
√
y′2s (η) + z′2s (η)

+O(ε2),

nWy =
−z′s (η)

±
√
y′2s (η) + z′2s (η)

+O(ε),

nWz =
y′s (η)

±
√
y′2s (η) + z′2s (η)

+O(ε).

(1.4)

Assumption 2: Small perturbations hypothesis
We assume that, throughout the fluid, |p| � 1 and |v| � 1. More precisly, we suppose that
the perturbations p and v are of the order of O(ε), and that they vanish far downstream,
i.e.

lim v = 0, lim p = 0, as ‖(x, y, z)‖ → ∞. (1.5)
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Assumption 3: Lifting wing
There is a pressure jump over S, so if we denote p+ and p− the perturbation pressure on
the outer side and, respectively, on the inner side of the surface S, we have

[[p]] = p+ − p− = f, on S. (1.6)

Assumption 4: Linearized equations
The linearized equations, around the undisturbed flow, governing the perturbed motion
(see [3, 7]), are divv = 0,

∂v

∂x
+ gradp = 0.

(1.7)

The slip condition v1 · n1 = 0 on the wing is written in dimensionless variables

(1 + u)nWx + vnWy + wnWz = 0 on W. (1.8)

Taking into account relations (1.4) and neglecting the products of the perturbations, we
obtain the linearized slip condition:

y
′

sw − z
′

sv =
∂zε
∂ξ

y
′

s −
∂yε
∂ξ

z
′

s on S. (1.9)

The direct problem of aerodynamics consists in determining the perturbation {v, p}
and the action of the fluid against the wing. In the planar case, the problem was studied
by Multhopp [9]. In his theory, the wing is replaced by a sheet of doublets with their axes
parallel to z-axis. Ashley and Landahl ([1], Chapter 11) extended Multhopp’s theory to the
nonplanar wing.
Dragoş [3] and Homentcovschi [7] utilized the fundamental solutions of the system of lin-
earized equations (1.7) and (1.6). In all these approaches, after imposing the slip condition
(1.9), a hypersingular integral equation regarding the jump pressure f is obtained.
The rest of the paper is organized as follows: in the next section we extend the method of
fundamental solutions to the case of the nonplanar wing in order to express the perturba-
tion in terms of the jump pressure f and in the third section, for the planar wing, we derive
Multhopp’s lifting surface equation, in the frame of theory of distributions.

2 Perturbation velocity and pressure fields

In distributional sense, the equations (1.7) subject to (1.6), can be written (see [4], [7]):divv = 0,
∂v

∂x
+ gradp = fδSn,

(2.1)

where n = (nx, ny, nz) is the outward unit normal to the surface S and fδS represents the
simple layer distribution with density f . Here, nx=0.
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The system of equations (2.1) was solved by Dragoş ([4], Chapter 2), by means of the
Fourier transform, for some distribution f in the right hand side of the equation (2.1)2. For
our particular case, we obtain the perturbation pressure in fluid

p =
∂

∂n
(fδS) ∗ E = − 1

4π

∫∫
S

f(x1, y1, z1)
∂

∂n1

(
1

|r− r1|

)
dσ1 (2.2)

and the perturbation velocity of the fluid

v = H(x) ∗ fδSn + gradϕ, (2.3)

where E = − 1
4πr is the fundamental solution of Laplace operator, H is the Heaviside step

function and

ϕ = −
(
fδSny ∗

∂

∂y
+ fδSnz ∗

∂

∂z

)∫ x

−∞
Edx (2.4)

is the perturbation velocity potential.
Since

∂

∂y

∫ x

−∞
Edx =

1

4π

y

y2 + z2

(
1 +

x

r

)
and

∂

∂z

∫ x

−∞
Edx =

1

4π

z

y2 + z2

(
1 +

x

r

)
, (2.5)

we derive

ϕ (x, y, z) =
−1

4π

∫∫
S

f (x1, y1, z1)
(r− r1) · n1

(y − y1)
2

+ (z − z1)
2

(
1 +

x− x1
|r− r1|

)
dσ1. (2.6)

The formula (2.6) is similar to the formula (11-5) from [1].

Remark 1. i) From the equation (2.2), we see that the pressure field is represented as a
continuous superposition of doublets all over S, having their axes oriented in the direction
of the local normal vector.
ii) Since supp(f ∗ g) ⊂ suppf+suppg, from the equation (2.3) we deduce that the flow is
everywhere potential, except of a subset Σ′ ⊂ Σ (the wake behind the wing) starting from
the trailing edge and extending far downstream.
iii) The aforementioned facts were postulated by Multhopp [9] for planar wing, and by Ashley
and Landahl ([1], Chapter 11), for nonplanar wing. As in the planar case (see [3]), using the
method of fundamental solution, they are derived only from the equations of fluid motion.

3 Derivation of the lifting surface equation in the case
of the planar wing

For the planar wing, we denote with D the orthogonal projection onto the xy-plane of the
wing surface W , called wing planform. Let

W : z = h(x, y), (x, y) ∈ D, (3.1)

be the cartesian equation of the wing surface W .
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In the relations (2.2),(2.6) we set

r = xi + yj + zk, r1 = ξi + ηj, (3.2)

and we denote

x0 = x− ξ, y0 = y − η, R1 = |r − r1| =
√
x20 + y20 + z2. (3.3)

Particularly, from (2.3) and (2.6) we obtain w, the z-component of the perturbation
velocity of the fluid,

w(x, y, z) =− 1

4π

∫∫
D

f(ξ, η)
y20 − z2

(y20 + z2)2

(
1 +

x0
R1

)
dξdη+

+
z2

4π

∫∫
D

f(ξ, η)x0
(y20 + z2)R3

1

dξdη.

(3.4)

The formula (3.4) is similar to the formula (5.1.11) from [3].
The slip condition (1.9) becomes

w(x, y, 0) =
∂h

∂x
(x, y), (∀)(x, y) ∈ D. (3.5)

If we set z = 0 in (3.4), the integrals become singular. Having in mind the definition of the
finite part in the Hadamard sense of the integral (see Fox [5]), we introduce the following
singular distribution:

Definition 1. For any test function ϕ ∈ D
(
R2
)
, supp ϕ ⊂ [−A,A]

2
, we define〈

FP 1

y2

(
1 +

x√
x2 + y2

)
, ϕ

〉
=

∫∫ ∗
D

ϕ (x, y)

y2

(
1 +

x√
x2 + y2

)
dxdy =

= lim
ε→0+

[∫∫
Dε

ϕ (x, y)

y2

(
1 +

x√
x2 + y2

)
dxdy − 2

ε

∫ A

−A
ϕ(x, 0)(1 + sgnx)dx

] (3.6)

where Dε = [−A,A]× {[−A,A] \ [−ε, ε]} .

Lemma 1. For any test function ϕ ∈ D
(
R2
)
, supp ϕ ⊂ [−A,A]

2
, the following formula

holds true: 〈
FP 1

y2

(
1 +

x√
x2 + y2

)
, ϕ

〉
=

=

A∫
−A

A∫
−A

ϕ(x, y)− ϕ(x, 0)− y ∂ϕ
∂y

(x, 0)

y2

(
1 +

x√
x2 + y2

)
dxdy−

− 2

A

A∫
−A

ϕ(x, 0)− ϕ(0, 0)

x

(
x+

√
A2 + x2

)
dx− 4ϕ(0, 0).

(3.7)
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Proof: We extract the singular term from equation (3.6). For any test function ϕ ∈ D
(
R2
)
,

supp ϕ ⊂ [−A,A]
2
, we have∫∫

Dε

ϕ (x, y)

y2

(
1 +

x√
x2 + y2

)
dxdy − 2

ε

∫ A

−A
ϕ(x, 0)(1 + sgnx)dx =

=

∫∫
Dε

ϕ (x, y)− ϕ(x, 0)− y ∂ϕ∂y (x, 0)

y2

(
1 +

x√
x2 + y2

)
dxdy+

+

∫∫
Dε

y ∂ϕ∂y (x, 0)

y2

(
1 +

x√
x2 + y2

)
dxdy+

+

∫∫
Dε

ϕ(x, 0)

y2

(
1 +

x√
x2 + y2

)
dxdy − 2

ε

∫ A

−A
ϕ(x, 0)(1 + sgnx)dx.

(3.8)

The first integral from the right hand side of the equation (3.8) is regular. Since the domain
Dε is symmetric with respect to the x-axis and the integrand is an odd function with respect
to y, we deduce that∫∫

Dε

y ∂ϕ∂y (x, 0)

y2

(
1 +

x√
x2 + y2

)
dxdy = 0.

The last two integrals from (3.8) can be written as∫∫
Dε

ϕ(x, 0)

y2

(
1 +

x√
x2 + y2

)
dxdy − 2

ε

∫ A

−A
ϕ(x, 0)(1 + sgnx)dx =

=

∫ A

−A
ϕ(x, 0)

[
−2ε(x+

√
A2 + x2) + 2A(x+

√
ε2 + x2)

Aεx
− 2(1 + sgnx)

ε

]
dx =

=

∫ A

−A

ϕ(x, 0)− ϕ(0, 0)

x

[
−2ε(x+

√
A2 + x2) + 2A(x+

√
ε2 + x2)

Aε
− 2x(1 + sgnx)

ε

]
dx

− 4ϕ(0, 0).

Since

−2ε(x+
√
A2 + x2) + 2A(x+

√
ε2 + x2)

Aε
− 2x(1 + sgnx)

ε
= − 2

A

(
x+

√
A2 + x2

)
+

+
2ε

|x|+
√
x2 + ε2

and

∣∣∣∣ 2ε

|x|+
√
x2 + ε2

∣∣∣∣ < 2, for ε > 0, A > 0, x ∈ [−A,A],

we complete the proof after applying Lebesgue’s dominated convergence theorem.

Lemma 2. In the space of distributions D′(R2), the following limits are true:

a) lim
z→0

y2 − z2

(y2 + z2)2

(
1 +

x√
x2 + y2 + z2

)
= FP 1

y2

(
1 +

x√
x2 + y2

)
;

b) lim
z→0

xz2

(y2 + z2)(x2 + y2 + z2)3/2
= 0.

(3.9)
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Proof: a) Let ϕ ∈ D
(
R2
)
, supp ϕ ⊂ [−A,A]

2
, be a test function.

We denote r =
√
x2 + y2 + z2. Then,

〈
y2 − z2

(y2 + z2)2

(
1 +

x

r

)
, ϕ

〉
=

A∫
−A

A∫
−A

ϕ(x, y)
y2 − z2

(y2 + z2)2

(
1 +

x

r

)
dxdy =

=

A∫
−A

A∫
−A

ϕ(x, y)− ϕ(x, 0)− y ∂ϕ
∂y

(x, 0)

y2
y2(y2 − z2)

(y2 + z2)2

(
1 +

x

r

)
dxdy+

+

A∫
−A

A∫
−A

ϕ(x, 0)
(y2 − z2)

(y2 + z2)2

(
1 +

x

r

)
dxdy+

+

A∫
−A

A∫
−A

∂ϕ

∂y
(x, 0)

y(y2 − z2)

(y2 + z2)2

(
1 +

x

r

)
dxdy.

(3.10)

When z → 0, the limit of the first integral from (3.10) is

A∫
−A

A∫
−A

ϕ(x, y)− ϕ(x, 0)− y ∂ϕ
∂y

(x, 0)

y2

(
1 +

x√
x2 + y2

)
dxdy.

Due to symmetry reasons, the last integral from (3.10) is zero. If we denote

Ψ(x, z) =

∫ A

−A

y2 − z2

(y2 + z2)2

(
1 +

x

r

)
dy =

= −2A(x+
√
A2 + x2 + z2)

x(A2 + z2)
+

2z

x2
arctg

[
Ax

z
√
A2 + x2 + z2

]
,

the second integral from (3.10) can be written as

A∫
−A

ϕ(x, 0)

 A∫
−A

y2 − z2)

(y2 + z2)2

(
1 +

x

r

)
dy

 dx =

∫ A

−A
ϕ(x, 0)Ψ(x, z)dx =

=

∫ A

−A

ϕ(x, 0)− ϕ(0, 0)

x
xΨ(x, z)dx+ ϕ(0, 0)

∫ A

−A
Ψ(x, z)dx.

Since

ϕ(0, 0)

∫ A

−A
Ψ(x, z)dx = −4A2ϕ(0, 0)

A2 + z2
z→0−−−→ −4φ(0, 0),∣∣∣∣ zxarctg

Ax

z
√
A2 + x2 + z2

∣∣∣∣ ≤ A√
A2 + x2 + z2

, for ε > 0, A > 0, x ∈ [−A,A]
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and

lim
z→0

z

x
arctg

Ax

z
√
A2 + x2 + z2

= 0 a.e.,

it follows that

lim
z→0

A∫
−A

A∫
−A

ϕ(x, 0)
y2 − z2)

(y2 + z2)2

(
1 +

x

r

)
dxdy =

= − 2

A

∫ A

−A

ϕ(x, 0)− ϕ(0, 0)

x
(x+

√
A2 + x2)dx− 4ϕ(0, 0).

Based on Lemma 1, the first part of Lemma 2 is proven.

b) Let ϕ be a test function, suppϕ ⊂ [−A,A]2, and let a > 0 be a small enough number
such that the disk of radius a centered at the origin, denoted Da, is contained in the square
[−A,A]2. If we set

r =
√
x2 + y2 + z2, ρ =

√
x2 + y2 and ψ(x, y) =

ϕ(x, y)− ϕ(0, 0)

ρ
,

then 〈
xz2

(y2 + z2)r3
, ϕ

〉
=

A∫
−A

A∫
−A

ϕ(x, y)
z2

y2 + z2
x

r3
dxdy =

=

(∫∫
[−A,A]2\Da

+

∫∫
Da

)
ϕ(x, y)

z2

y2 + z2
x

r3
dxdy.

When z → 0, the limit of the first integral is zero. Furthermore,∫∫
Da

ϕ(x, y)
z2

y2 + z2
x

r3
dxdy =

∫∫
Da

ψ(x, y)
z2

y2 + z2
x

r

ρ2

r2
1

ρ
dxdy+

+ ϕ(0, 0)

∫∫
Da

z2

y2 + z2
x

r

1

r2
dxdy.

Due to symmetry reasons, the second integral is zero. Since ψ is bounded, the proof ends
after we apply again the Lebesgue’s theorem in the first integral.

The main result of this paper is stated in the following theorem:

Theorem 1. If f is a locally integrable function with compact support, then

lim
z→0

w(x, y, z) = − 1

4π

∗∫∫
D

f(ξ, η)

(y − η)2

[
1 +

x− ξ√
(x− ξ)2 + (y − η)2

]
dξdη, (3.11)

in distributional sense.
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Proof: Since the regular distribution f has compact support and

w(x, y, z) = f ∗ y2 − z2

(y2 + z2)2

(
1 +

x√
x2 + y2 + z2

)
+ f ∗ xz2

(y2 + z2)(x2 + y2 + z2)3/2
,

taking into account Lemma 2, the proof is completed.

Hence, from the slip condition (3.5) and Theorem 1, we obtain the famous Multhopp’s
lifting surface equation [9]:

− 1

4π

∫∫ ∗
D

f(ξ, η)

(y − η)2

(
1 +

x0
R

)
dξdη =

∂h

∂x
(x, y), (x, y) ∈ D̊. (3.12)

This is an integral equation with hypersingular kernel and the singular term has to be
evaluated as a Hadamard finite part integral.

In the following, we shall prove another form of the Multhopp’s equation, often utilized,
whose justification is formal in many papers, being based only on the identity

∂

∂y

[
1

y

(
1 +

√
x2 + y2

x

)]
= − 1

y2

(
1 +

x√
x2 + y2

)
. (3.13)

That form of the equation contains weaker singularities, of Cauchy type.

Definition 2. For any test function ϕ ∈ D
(
R2
)
, supp ϕ ⊂ [−A,A]

2
, we define〈

PV

[
1

y

(
1 +

√
x2 + y2

x

)]
, ϕ

〉
= lim
ε→0+

∫∫
D1ε

ϕ (x, y)

y

(
1 +

√
x2 + y2

x

)
dxdy, (3.14)

where D1ε = ([−A,−ε] ∪ [ε,A])× ([−A,−ε] ∪ [ε,A]).

Lemma 3.

∂

∂y
PV

[
1

y

(
1 +

√
x2 + y2

x

)]
= −FP

[
1

y2

(
1 +

x√
x2 + y2

)]
, in D′(R2) (3.15)

Proof: Let ϕ be a test function, suppϕ ⊂ [−A,A]2. Then, one has:

−

〈
∂

∂y
PV

[
1

y

(
1 +

√
x2 + y2

x

)]
, ϕ

〉
=

〈
PV

[
1

y

(
1 +

√
x2 + y2

x

)]
,
∂ϕ

∂y

〉
=

= lim
ε→0+

∫∫
D1ε

∂ϕ

∂y

[
1

y

(
1 +

√
x2 + y2

x

)]
dxdy.
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If we denote Aε = [−A,−ε] ∪ [ε,A] and we take into account the identity (3.13), after an
integration by parts, we can write∫

Aε

∂ϕ

∂y

[
1

y

(
1 +

√
x2 + y2

x

)]
dy =

∫
Aε

ϕ(x, y)

y2

(
1 +

x√
x2 + y2

)
dy−

−ϕ(x, ε) + ϕ(x,−ε)
ε

(
1 +

√
x2 + ε2

x

)
=

= −ϕ(x, ε) + ϕ(x,−ε)− 2ϕ(x, 0)

ε

(
1 +

√
x2 + ε2

x

)
+

+

∫
Aε

ϕ(x, y)

y2

(
1 +

x√
x2 + y2

)
dy − 2ϕ(x, 0)

ε
(1 + signx)−

−2
ϕ(x, 0)− ϕ(0, 0)

x

√
x2 + ε2 − |x|

ε
+ 2

ϕ(0, 0)

x

√
x2 + ε2 − |x|

ε
.

(3.16)

Since ∣∣∣∣∣
√
x2 + ε2 − |x|

ε

∣∣∣∣∣ =
ε

|x|+
√
x2 + ε2

≤ 1,

then

lim
ε→0

∫
Aε

ϕ(x, 0)− ϕ(0, 0)

x

√
x2 + ε2 − |x|

ε
dx = 0. (3.17)

If x ∈ Aε, then

∣∣∣∣∣
√
x2 + ε2

x

∣∣∣∣∣ ≤ √2. Hence, via Lebesgue’s theorem,

lim
ε→0

∫
Aε

ϕ(x, ε) + ϕ(x,−ε)− 2ϕ(x, 0)

ε

(
1 +

√
x2 + ε2

x

)
dx = 0. (3.18)

Integrating equation (3.16) with respect to x, taking into account the limits (3.17),(3.18)
and the fact that ∫

Aε

2
ϕ(0, 0)

x

√
x2 + ε2 − |x|

ε
dx = 0,

lim
ε→0+

∫ ε

−ε

[∫
Aε

ϕ (x, y)

y2

(
1 +

x√
x2 + y2

)
dy − 2

ε
ϕ(x, 0)(1 + sgnx)

]
dx = 0,

by means of Definition 1, the proof is completed.

Hence, we can derive immediately the second main result of this paper.

Theorem 2. Another form of the lifting surface equation is

1

4π

∂

∂y

∫∫ ∗
D

f(ξ, η)

y − η

(
1 +

R

x− ξ

)
dξdη =

∂h

∂x
(x, y), (x, y) ∈ D̊. (3.19)
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