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Abstract

We study the Cohen-Macaulay property of triangular graphs Tn. We show that
T2, T3 and T5 are Cohen-Macaulay graphs, and that T4, T6, T8 and Tn are not Cohen-
Macaulay graphs, for n ≥ 10. Finally, we prove that over fields of characteristic zero
T7 and T9 are Cohen-Macaulay.
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1 Introduction

LetR = K[x1, . . . , xN ] be the polynomial ring overK, whereK is any field. LetG be a simple
graph with vertex set V (G) = {v1, . . . , vN} and edge set E(G). We identify the vertex vi
with the variable xi. The edge ideal I(G) of G is the ideal 〈xixj : {vi, vj} ∈ E(G)〉. The
graphG is called Cohen-Macaulay overK if R/I(G) is a Cohen-Macaulay ring. According to
[11], it is unlikely to have a general classification of Cohen-Macaulay graphs. This situation
has led to an extensive study of the Cohen-Macaulay property of particular families of
graphs (see, for instance, [5, 7, 9, 10, 11, 15, 17]).

In this note we study the Cohen-Macaulayness of triangular graphs. The triangular
graph Tn is the simple graph whose vertices are the 2-subsets of an n-set, n ≥ 2, and two
vertices are adjacent if and only if their intersection is nonempty. It is known that Tn is
isomorphic to the Johnson graph J(n, 2), which is in turn the 2-token graph of the complete
graph Kn (see, for instance, [2, 6, 12]). In addition, the complement of Tn is isomorphic to
the Kneser graph K(n, 2) and the complement of T5 is isomorphic to the Petersen graph.

Our main theorem (Theorem 3) states that T2, T3 and T5 are Cohen-Macaulay, and that
T4, T6, T8 and Tn are not Cohen-Macaulay graphs, for n ≥ 10. In addition, it is proved
that over fields of characteristic zero T7 and T9 are Cohen-Macaulay.

This note is organized as follows. We start by recalling the basic definitions and results
regarding Cohen-Macaulay graphs that we need. Next, in Section 3, we first prove that
Tn is unmixed for every n ∈ N. Later, we give a characterization for the Cohen-Macaulay
property of Tn that follows from Reisner criterion (Proposition 2). In Section 4, we first
prove that T3 and T5 are Cohen-Macaulay. Next, using a computer algebra system, we
compute explicit regular sequences to show that T7 and T9 are Cohen-Macaulay over fields
of characteristic zero. Finally, in Section 5, we show that T4, T6, T8 and Tn are not Cohen-
Macaulay graphs, for n ≥ 10.
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When investigating about the Cohen-Macaulayness of Tn, we computed several regular
sequences using symmetric polynomials and we noticed that there was a certain pattern
on how these sequences behave as n increases. We later realized that those patterns also
appeared for the edge subring of any simple graph. We conclude this note with an appendix
in which we present an explicit regular sequence of a particularly nice shape for Cohen-
Macaulay graphs. To that end, we first prove the existence of an explicit homogeneous
system of parameters using elementary symmetric polynomials.

2 Cohen-Macaulay graphs and Cohen-Macaulay sim-

plicial complexes

Let R = K[x1, . . . , xN ] be the polynomial ring over the field K. Let m = 〈x1, . . . , xN 〉 and
let I be a graded ideal of R. The depth of R/I is defined as the largest integer r such that
there is a homogeneous sequence {h1, . . . , hr} ⊂ m, such that h1 is not a zero divisor of
R/I and hi is not a zero divisor of R/〈I, h1, . . . , hi−1〉, for every i ≥ 2.

Definition 1. We say that R/I is a Cohen-Macaulay ring (CM ring for short) if
depth(R/I) = dim(R/I), where dim(R/I) denotes the Krull dimension of R/I.

Let G be a simple graph with vertex set V (G) = {v1, . . . , vN} and edge set E(G). We
identify each vertex vi with the variable xi in R. The edge ideal I(G) of G is the ideal
〈xixj : {vi, vj} ∈ E(G)〉. The ring R/I(G) is called the edge subring of G. We say that G
is a Cohen-Macaulay graph over K if R/I(G) is CM. We say that G is a Cohen-Macaulay
graph if G is CM over any field.

A set U of vertices in a graph G is an independent set of vertices if no two vertices in U
are adjacent; a maximal independent set is an independent set which is not a proper subset
of any independent set in G. The independence number of G is the number of vertices in a
largest independent set in G. It is well known that the Krull dimension of R/I(G) is equal
to the independence number of G (see [8, 16]).

Let ∆ be a simplicial complex on the vertex set V = {v1, . . . , vN}, i.e., ∆ is a family of
subsets of V closed under taking subsets and such that {vi} ∈ ∆, for every i. The elements
of ∆ are called faces of ∆. The dimension of a face F ∈ ∆ is |F | − 1. The dimension of ∆
is the largest dimension of its faces. As before, we identify vi with xi. The Stanley-Reisner
ideal I∆ of ∆ is the ideal generated by all monomials xi1 · · ·xir such that {vi1 , . . . , vir} /∈ ∆.
We say that ∆ is a Cohen-Macaulay simplicial complex over K if R/I∆ is a CM ring. We
say that ∆ is a Cohen-Macaulay simplicial complex if ∆ is CM over any field.

Remark 1. Let G be a simple graph.

1. Let ∆G be the simplicial complex formed by the independent sets of G (this is a sim-
plicial complex since every subset of an independent set is also independent). Hence
I(G) = I∆G

. Therefore, G is a CM graph if and only if ∆G is a CM simplicial
complex.

2. A clique of a graph G is a subset S ⊆ V (G) such that the graph induced by S is a
complete graph. Let ∆(G) be the simplicial complex formed by all cliques of G and let
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G be the complement graph of G. Notice that ∆(G) = ∆G: every clique of G is an
independent set of G and vice versa.

Definition 2. Let ∆ be a simplicial complex and F ∈ ∆. The link of F in ∆, denoted
lk∆(F ), is the simplicial complex {H ∈ ∆: H ∩ F = ∅ and H ∪ F ∈ ∆}. We will often
denote the link of F in ∆ just as lk(F ) if there is no risk of confusion.

The CM property of a graph can be determined by the following homological criterion
(see [13]).

Theorem 1. (Reisner’s criterion) Let ∆ be a simplicial complex. The following conditions
are equivalent:

(a) ∆ is Cohen-Macaulay over K.

(b) H̃i(lk(F );K) = 0, with F ∈ ∆ and i < dim lk(F ).

Corollary 1. If ∆ is a 1-dimensional simplicial complex, then ∆ is CM if and only if ∆
is connected.

We will also need a result relating the CM property of a simplicial complex to some
property of the h−vector of the simplicial complex.

Definition 3. Let ∆ be a simplicial complex of dimension d.

i. The f−vector of ∆ is defined as f(∆) = (f−1, f0, . . . , fd), where f−1 = 1 and fi
denotes the number of faces of dimension i of ∆, for i ≥ 0.

ii. The h−vector of ∆ is defined as h(∆) = (h0, . . . , hd+1), where

hk =

k∑

i=0

(−1)k−i

(
d+ 1− i

k − i

)
fi−1,

and 0 ≤ k ≤ d+ 1.

Theorem 2. [14, Chapter II, Corollary 3.2] Let ∆ be a simplicial complex of dimension
d. If ∆ is CM, then hi(∆) ≥ 0, for 0 ≤ i ≤ d+ 1.

3 A characterizacion for the CM property of Tn

The triangular graph Tn is the simple graph having as vertices the 2-subsets of a n-set,
n ≥ 2, and two vertices are adjacent if and only if their intersection is nonempty. The
triangular graph T4 is shown in Figure 1.

We denote by (ij) the vertices of Tn, where 1 ≤ i < j ≤ n, and by ∆(n) the simplicial
complex of independent sets of Tn. If n < 2 we define ∆(n) = ∅.

A graph G is unmixed if any two maximal independent sets of G have the same cardi-
nality. Since every CM graph is unmixed, the following proposition is relevant.

Proposition 1. Every triangular graph Tn is unmixed.
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Figure 1: T4. Figure 2: T4.

Proof: It is well known that the independence number of Tn is ⌊n/2⌋. We prove, by
contradiction, that any maximal independent set in Tn has ⌊n/2⌋ vertices. Let A be any
maximal independent set of Tn and suppose that |A| < ⌊n/2⌋. Notice that there are n−2|A|
elements in {1, . . . , n} \ ∪A, with n− 2|A| > 1. Therefore, we can take a 2-set, say z, from
{1, . . . , n} \ ∪A to construct the independent set A′ = A ∪ {z}, which is a contradiction.

We need the following lemma to give a characterization for the Cohen-Macaulay property
of the triangular graph Tn.

Lemma 1. Let F ∈ ∆(n) be any face such that |F | = m, where n ≥ 2 and m ≥ 0. Then
we have the following identification of simplicial complexes:

lk∆(n)(F ) ∼= ∆(n− 2m).

Proof: If F = ∅ the statement holds by definition of lk∆(n)(F ). If m = ⌊n/2⌋, then n = 2m
or n = 2m+ 1 which implies that lk∆(n)(F ) = ∅ = ∆(n− 2m) in both cases. Suppose 1 ≤
m < ⌊n/2⌋. Assume F = {(i1j1), . . . , (imjm)}. Let A = {1, . . . , n}\{i1, . . . , im, j1, . . . , jm}.
Since F is an independent set of Tn we have that |A| = n− 2m ≥ 2. Notice that lk∆(n)(F )
consists of every independent set of Tn formed by elements (ij) such that i, j ∈ A, and
i 6= j. Now observe that the set of independent sets formed with couples (ij) with i, j ∈ A,
i 6= j can be identified with ∆(n− 2m).

Proposition 2. Let n ≥ 2. Assume n is odd (resp. even). The simplicial complex ∆(n) is

CM if and only if H̃i(∆(l);K) = 0 for every l ≤ n, with l odd (resp. even), and for every
i < dim(∆(l)).

Proof: Assume that n is odd. Suppose that ∆(n) is CM. Choose any odd number l
such that 3 ≤ l ≤ n. By Lemma 1, ∆(l) ∼= lk∆(n)(F ) for any face F ∈ ∆(n) such that
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|F | = (n− l)/2. Thus, H̃i(∆(l);K) = H̃i(lk∆(n)(F );K) = 0, for every i < dim lk∆(n)(F ) =
dim(∆(l)), according to Reisner’s criterion (Theorem 1).

To prove the other implication, let F ∈ ∆(n) be such that |F | = m, with m ≥ 0. By
Lemma 1, lk∆(n)(F ) ∼= ∆(n− 2m). Since n is odd, n− 2m is also odd and n− 2m ≤ n. By

the hypothesis, H̃i(lk∆(n)(F );K) = H̃i(∆(n−2m);K) = 0, for every i < dim(∆(n−2m)) =
dim lk∆(n)(F ). By Reisner’s criterion, ∆(n) is CM. The proof is completely analogous for
n even.

Corollary 2. Suppose that there exists an odd (resp. even) integer n0 such that Tn0
is not

CM. Then Tn is not CM for every odd (resp. even) n ≥ n0.

4 The Cohen-Macaulay property of T3, T5, T7 and T9

Proposition 3. T3 and T5 are CM graphs.

Proof: Since T3 is a complete graph, by Example 1 below, T3 is CM. Now consider the
following path in ∆(5):

(12), (34), (25), (14), (35), (24), (13), (45), (23), (15).

This path passes through all vertices in ∆(5), hence it is connected. Since the independence
number of T5 is 2, the simplicial complex ∆(5) is 1-dimensional. By Corollary 1 we conclude
that ∆(5) is CM, that is, T5 is CM.

To verify that T7 and T9 are CM we used the computer algebra system SINGULAR 4-0-2
[3]. One minor difficulty here is to effectively compute the edge ideal of Tn. To that end
we use the following remark.

Remark 2. The graph Tn can be obtained from Tn−1 and the complete graph Kn−1 on the
vertices (1 n), (2 n), . . . , (n − 1 n) by joining the vertex (i j) ∈ V (Tn−1) with the vertices
(i n) and (j n) of Kn−1. Then we can compute recursively the edge ideal I(Tn): if the
edge ideal I(Tn−1) has been computed, we only need to add the monomials corresponding to
(i j) ∼ (i n), (i j) ∼ (j n), and all the monomials coming from Kn−1.

Using the previous procedure we computed I(T7) ⊂ R1 = Q[z1, z2, . . . , z21] and I(T9) ⊂
R2 = Q[z1, z2, . . . , z36]. Using the library primdec.lib [4], we compute primary decompo-
sition of ideals and we found that the sequence

{ 21∑

i=1

zi,

21∑

i=1

z2i ,

21∑

i=1

z3i

}
,

is a regular sequence of R1/I(T7). Similarly, the sequence

{ 36∑

i=1

zi,

36∑

i=1

z2i ,

36∑

i=1

z3i ,

36∑

i=1

z4i

}
,
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is a regular sequence of R2/I(T9) (see the appendix for a discussion on homogeneous system
of parameters for edge ideals using symmetric polynomials). Since the independence number
of T7 and T9 are 3 and 4, respectively, we conclude that

Proposition 4. T7 and T9 are CM graphs over any field of characteristic zero.

5 Non-Cohen-Macaulayness of T4, T6, T8 and Tn

for n ≥ 10

In this section we show that Tn is not CM for n even, n ≥ 4. We also show that Tn is not
CM for n odd, n ≥ 11.

Proposition 5. The triangular graph Tn is not CM if n is even, except for n = 2.

Proof: If n = 2, Tn is a single vertex and so it is CM. Let n = 4. The simplicial complex
∆(4) is 1-dimensional and non-connected, actually ∆(4) = T4 (see Figure 2). By Corollary
1, ∆(4) is not CM. Now, Corollary 2 implies that Tn is not CM for every n ≥ 4 with n
even.

Now we turn our attention to Tn for n ≥ 11, n odd.

Lemma 2. [1, Theorem 6.9.1] The number of faces of dimension i of ∆(n) is given by the
following formula:

fi =
1

2i+1
·

n!

(i + 1)!(n− 2(i+ 1))!
.

Proposition 6. Tn is not CM for every n ≥ 11, n odd.

Proof: Using the formula of lemma 2, we find that

f(∆(11)) = (1, 55, 990, 6930, 17325, 10395)

h(∆(11)) = (1, 50, 780, 4280, 6220,−936)

Since there is a negative entry in h(∆(11)), Theorem 2 implies that T11 is not CM. Corollary
2 implies that Tn is not CM for every odd n, n ≥ 11.

Putting together the results of the previous sections we obtain the following classification
of Tn in terms of the CM property:

Theorem 3. For triangular graphs Tn, the following holds:

(i) T2, T3 and T5 are CM graphs.

(ii) T7 and T9 are CM graphs over any field of characteristic zero.

(iii) T4, T6, T8 and Tn, for n ≥ 10, are not CM graphs.
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Proof: The theorem follows from propositions 3, 4, 5, and 6.

Remark 3. Using SINGULAR 4-0-2, we verified that T7 is CM over some fields of positive
characteristic, such as F2, F3 and F5. In every case, we found explicit regular sequences
using symmetric polynomials (see appendix). This fact suggests that T7 and T9 might be
CM over any field, giving a complete classification of Tn in terms of the CM property.

A An explicit regular sequence for CM graphs

It is well known that for any graded ideal I ⊂ K[x1, . . . , xN ], there exists a homogeneous
system of parameters (h.s.o.p. for short) for K[x1, . . . , xN ]/I (see, for instance, [16, Proposi-
tion 2.2.10]). In this appendix we revisit this result for edge ideals by showing the existence
of an explicit h.s.o.p. of a particularly nice shape.

This study was motivated by the following fact. When investigating about the Cohen-
Macaulayness of Tn, experimental computation showed that for small odd values of n, the
sequence { ∑

{xi}∈A1

xi,
∑

{xi1
,xi2

}∈A2

xi1xi2 , . . . ,
∑

{xi1
,...,xid

}∈Ad

xi1 · · ·xid

}

is a regular sequence of the edge subring of Tn, where Aj is the set of independent sets of
size j in Tn and d is the Krull dimension of the edge subring. Inspired by this fact, we show
that for every simple graph there is a h.s.o.p. for its edge subring having this shape.

Let G be a simple graph on the set of vertices {x1, . . . , xN} and let I(G) ⊂ K[x1, . . . , xN ]
be its edge ideal. Let us recall the correspondence between minimal vertex covers of G, i.e.,
complements of maximal independent sets of V (G), and minimal primes of I(G).

Proposition 7. [16, Proposition 6.1.16] If p is an ideal of K[x1, . . . , xN ] generated by
C = {xi1 , . . . , xir}, then p is a minimal prime of I(G) if and only if C is a minimal vertex
cover of G.

Example 1. Let KN be the complete graph on the vertices {x1, . . . , xN}. Every minimal
vertex cover of KN has the form KN \ {xi}, for some i. By the previous correspondence,

every minimal prime of I(KN) is generated by all variables except xi. It follows that
∑N

i=1 xi

is not a zero divisor in R/I(KN), that is, 1 ≤ depth(R/I(KN )) ≤ dim(R/I(KN )) = 1.
Thus, KN is CM.

Example 2. The edge ideal of T4 (Figure 1) is given by

I(T4) = 〈x12x13, x12x14, x12x23, x12x24, x13x34, x14x34, x23x34, x24x34〉.

Let R = K[x12, x13, x14, x23, x24, x34]. Let σ1, . . . , σ6 ∈ R be the elementary symmetric
polynomials. Since the independence number of G is 2, we have that [σi] = [0] in R/I(T4),
for i ∈ {3, 4, 5, 6}. In addition,

[σ1] = [x12 + x13 + x14 + x23 + x24 + x34],

[σ2] = [x12x34 + x13x24 + x14x23].
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Using lemma 3 below, we conclude that

√
〈[σ1], [σ2]〉 =

√
〈[σ1], . . . , [σ6]〉 = 〈[x12], [x13], [x14], [x23], [x24], [x34]〉.

Since dimR/I(T4) = 2, we conclude that {[σ1], [σ2]} is a h.s.o.p. for R/I(T4).

Lemma 3. Let σ1, . . . , σm ∈ K[z1, . . . , zm] be the elementary symmetric polynomials. Then√
〈σ1, . . . , σm〉 = 〈z1, . . . , zm〉.

Proof: It is enough to consider the following telescopic sum:

zmi = zm−1
i σ1 − zm−2

i σ2 + zm−3
i σ3 − · · ·+ (−1)m+1σm.

Proposition 8. Let G be a simple graph on N vertices, S = K[x1, . . . , xN ]/I(G), and
d = dimS. Let Aj denote the set of independent sets of size j in G. Then the sequence

{ ∑

{xi}∈A1

xi,
∑

{xi1
,xi2

}∈A2

xi1xi2 , . . . ,
∑

{xi1
,...,xid

}∈Ad

xi1 · · ·xid

}

is a homogeneous system of parameters for S. In particular, if G is CM then this sequence
is a regular sequence for S.

Proof: Let Fk =
∑

{xi1
,...,xik

}∈Ak
xi1 · · ·xik , for 1 ≤ k ≤ d. Let σ1, . . . , σN ∈ K[x1, . . . , xN ]

be the elementary symmetric polynomials. Since the independence number of G is d,
we have [σk] = [0] in S for every k = d + 1, . . . , N . In addition, [σk] = [Fk] for every
k ∈ {1, . . . , d}. The proposition then follows from the previous lemma:

√
〈[F1], . . . , [Fd]〉 =

√
〈[σ1], [σ2], . . . , [σN ]〉 = 〈[x1], . . . , [xN ]〉.
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