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Abstract

We propose a new pivot selection technique for symmetric indefinite factorization
of sparse matrices. Such factorization should maintain both sparsity and numerical
stability of the factors, both of which depend solely on the choices of the pivots. Our
method is based on the minimum degree algorithm and also considers the stability of
the factors at the same time. Our experiments show that our method produces factors
that are sparser than the factors computed by MA57 [1] and are stable.
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1 Introduction

There are two general approaches to solving linear systems: direct and iterative methods.
Iterative methods start with an initial guess and successively generate better approximate
solutions at each iteration. The running time of an iterative method depends directly on
the required accuracy of the solution. Direct methods, on the other hand, attempt to find
the solution by a finite number of operations and usually involve factoring the matrix.

Our work here is on direct methods for solving linear systems where the matrix is
symmetric indefinite and sparse, which has many applications in linear and nonlinear opti-
mization and finite element computation, for example. Symmetric indefinite factorization
(SIF) is not unique as the resulting factors depend on the choices of the pivots during the
factorization. Pivots should be chosen such that the resulting factors are stable and do not
have many fill-ins—the entries that are zeros in the original matrix but are nonzeros in the
factors.

There are many heuristic techniques for selecting pivots to minimize the number of fill-
ins for the related problem of Cholesky factorization, which is the most suitable factorization
for symmetric positive definite matrices, in literature. We briefly discuss a few such well-
known techniques here since some of their ideas are also applicable to SIF. These ordering
algorithms can be classified into three classes: local, global, and hybrid approaches. Local
approach such as the minimum degree and the minimum fill algorithms [2, 3, 4, 5, 6] selects
the pivot that is expected to minimize the number of fill-ins at each factorization step in
a greedy fashion. Global approach such as Cuthill-McKee and nested dissection methods
[7, 8, 9] selects pivots by considering the overall structure of the matrix. Hybrid approach,
on the other hand, combines the ideas from both local and global approaches.
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The well-known minimum degree algorithm [2] chooses the column that has the min-
imum off-diagonal nonzero elements in the remaining matrix as the pivot for the current
step. Different improvements of the minimum degree algorithm have been proposed [5]
such as multiple minimum degree [10] and approximate minimum degree algorithms [11]
and become the practical standard in the implementations.

Another famous pivot selection algorithm is nested dissection [8]. By defining a graph
whose vertices represent each column of the matrix and whose edges represent nonzero
entries in the matrix, nested dissection recursively find a separator—a set of vertices that
partitions the graph into two disconnected subgraphs—and ordering the pivots recursively
with the two subgraphs first followed by the separator vertices. Cuthill-McKee [7] propose
another pivot selection algorithm that aims to reduce the bandwidth of the matrix based
on breadth first search of the structure graph.

The main difference between Cholesky factorization and SIF is in the size of pivots.
For SIF, each pivot can be either a scalar or a 2-by-2 matrix while pivots in Cholesky
factorization are all scalar. Moreover, unlike Cholesky factorization, the choice of pivots in
SIF also affects the stability of the resulting factors [12].

There are many pivot selection algorithms proposed specifically for SIF such as Bunch-
Parlett [13], Bunch-Kaufman [14], and bounded Bunch Kaufman (BBK) [15] algorithms.
Bunch-Parlett method searches the whole remaining submatrix at each stage for the largest-
magnitude diagonal and the largest-magnitude off-diagonal. It chooses the largest-magnitude
diagonal as the 1-by-1 pivot if the resulting growth rate is acceptable. Otherwise, it selects
the largest-magnitude off-diagonal and its relative diagonal elements as the 2-by-2 pivot
block. This method requires O(n3) comparisons and yields a matrix L whose maximum
element is bounded by 2.781. Bunch-Kaufman pivoting strategy searches for the largest-
magnitude off-diagonal elements of at most two columns for each iteration. It requires
O(n2) comparisons, but the elements in L are unbounded. BBK combines the two above
strategies. By monitoring the size of the elements in L, BBK uses the Bunch-Kaufman
strategy when it yields modest element growth. Otherwise, it repeatedly searches for an
acceptable pivot. In average cases, the total cost of BBK is the same as Bunch-Kaufman,
but in the worst cases its cost can be the same as that of the Bunch-Parlett strategy.

Additionally, there are other types of techniques for solving symmetric indefinite linear
systems. Paige and Saunders [16] propose two algorithms, SYMMLQ and MINRES, for
solving such systems. The algorithms apply orthogonal factorization together with the
conjugate gradient method to solve the system. Duff et al. [17] propose a pivotal strategy
for decomposing sparse symmetric indefinite matrices that limits the magnitude of the
element in the factors for stability. Duff and Reid [18] propose a multifrontal method
to solve indefinite sparse symmetric linear systems based on minimum-degree ordering.
The multifrontal approach is widely used in many sparse direct solvers such as MA57 and
MUMPS [1, 19].

We propose a new pivot selection algorithm for sparse SIF. Our algorithm applies the
idea of minimum-degree ordering to consider both 1-by-1 and 2-by-2 pivots while also
considers the stability of the resulting factors. Our experiments show that our algorithm
produces stable factors that are sparser than the factors produced by [1].

For the rest of the article, we describe symmetric indefinite factorization in Section
2. Section 3 explains the minimum-degree ordering algorithm. Section 4 describes our
algorithm. Section 5 shows our experiment and the results. Finally, we conclude the article
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in Section 6.

2 Symmetric Indefinite Factorization

Solving a linear system
Ax = b, (2.1)

where A ∈ Rn×n is symmetric indefinite, is generally done by first obtaining the symmetric
indefinite factorization

PTAP = LBLT , (2.2)

where P is a permutation matrix, L is a unit lower triangular matrix, and B is a block
diagonal matrix

B =


B(1) 0 · · · 0

0 B(2) · · · 0
...

...
. . .

...
0 0 · · · B(K)

 ,
where each block B(k) is either a 1-by-1 or 2-by-2 matrix and is nonsingular. Matrix P
represents the pivoting—the exchanging of rows and columns of A—during the factoriza-
tion in order to maintain both sparsity and stability of the factor. After obtaining the
factorization, back and forward substitutions are used to compute the solution of (2.1) by
the following steps:

(i) Solve z : Lz = PT b.

(ii) Solve ẑ : Bẑ = z.

(iii) Solve z̄ : LT z̄ = ẑ.

(iv) Set : x = P z̄.

Recall that Steps (ii) and (iv) are trivial (due to the structure of P and B) and therefore
the computational time for solving the linear system depends solely on the factorization and
back and forward substitutions in Steps (i) and (iii), which in turn depend on the sparsity
of L.

To perform symmetric indefinite factorization, let A(k) be the (smaller) matrix that
remains to be factorized in the kth iteration. The algorithm starts with A(1) = A. For each
iteration, we first identify a submatrix B(k) from elements of A(k) that is suitable to be used

as the pivot block. The submatrix B(k) is either a single diagonal element of A(k)
([
a
(k)
ll

])
or a 2-by-2 block with two diagonal elements of A(k)

([
a
(k)
ll a

(k)
lr

a
(k)
rl a

(k)
rr

])
. Note that there are

many methods to select the pivot (We explain pivot selection algorithms and our proposed
pivot selection algorithm in the next section). Next, we find the permutation matrix P (k)

satisfying

(P (k))TA(k)P (k) =

[
B(k) (C(k))T

C(k) Z(k)

]
. (2.3)
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That is, P (k) is the permutation matrix corresponding to the exchanges of rows and columns
that move the chosen pivot to the top-left corner. The right-hand side of (2.3) can be
factorized as

(P (k))TA(k)P (k) =

[
I 0

C(k)(B(k))−1 I

]
·
[
B(k) 0

0 Z(k) − C(k)(B(k))−1(C(k))T

]
·[

I (B(k))−1(C(k))T

0 I

]
. (2.4)

Let L(k) = C(k)(B(k))−1 and A(k+1) = Z(k) − C(k)(B(k))−1(C(k))T . Equation (2.4) can be
rewritten as

(P (k))TA(k)P (k) =

[
I 0
L(k) I

]
·
[
B(k) 0

0 A(k+1)

]
·
[
I (L(k))T

0 I

]
. (2.5)

The same process can be repeated recursively on the matrix A(k+1). Note that the dimension
of A(k+1) is less than the dimension of A(k) by either one or two depending on the dimension
of B(k).

3 Pivot selection with Minimum Degree

Finding the optimal ordering that minimizes fill-in is NP-hard [6] therefore a heuristic is
often used for pivot selection. Choosing pivot at each step should be inexpensive, lead
to at most modest growth in the elements of the remaining matrix, and not cause L to
be too much denser than the original matrix. One of the well-known and efficient pivot
selection techniques is the minimum degree algorithm [2, 3, 4]. The algorithm considers the
pivot based on the following graph model. Define an undirected graph G = (V,E), where
V = {1, ..., n} and E = {{i, j} : i 6= j and aij 6= 0}. Observe that the degree of v (deg(v)),
where v ∈ V , is the number of nonzero off-diagonal elements on the vth row. The vertex v
with minimum deg(v) is chosen as the pivot.

Define the elimination graph Gv = (V \ {v}, E′), where E′ = E ∪ {{i, j} : {i, v} ∈
E and {v, j} ∈ E}\{{v, i} : i = 1, 2, ..., n}. Graph Gv is used to choose the next pivot, and
so on. That is, the minimum degree algorithm is as follows.

Algorithm 1. Minimum Degree Algorithm

Define G as described above.
while G 6= ∅ do
v = the vertex with minimum deg(v)
G = Gv

end while

Note that the minimum degree algorithm identifies the pivot at each step without any
numerical calculation. For this reason, it can be used as the ordering step before factorizing
the matrix.

Many improvements of the minimum degree algorithm and its implementation have been
proposed [5] such as decreasing the computation time for the degree update by considering
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the indistinguishable nodes [20] or minimum degree independent nodes [10], reducing the
computation cost by using an approximate minimum degree [11], and saving space by using
the quotient graph model [21]. Heggernes et al. [22] show that the time complexity of the
minimum degree algorithm is O(mn2), the time complexity of the multiple minimum degree
is also O(mn2), and the time complexity of the approximate minimum degree is O(mn),
where m is the number of edges in the elimination graph and n is the number of vertices
in the graph.

4 Our pivot selection algorithm

Unlike in Cholesky factorization, pivots in symmetric indefinite factorization can be either
a scalar or a 2-by-2 matrix therefore the minimum degree algorithm cannot be used as is
in this case.

The stability condition that our algorithm uses is proposed by Duff et al. [23] and also
used as a thresholding test for 1-by-1 and 2-by-2 pivots in MA57 [1]. We consider a 1-by-1
pivot aii to be acceptably stable if

|aii| ≥ αmax
r 6=i
|ari|. (4.1)

Similarly, a 2-by-2 pivot

[
aii aij
aji ajj

]
is considered to be acceptably stable if

∣∣∣∣∣
[
aii aij
aji ajj

]−1∣∣∣∣∣ ·
[

maxr 6=i,r 6=j |ari|
maxr 6=i,r 6=j |arj |

]
≤
[
α−1

α−1

]
. (4.2)

Conditions (4.1) and (4.2) limit the magnitudes of the entries of L to 1/α at most. The
appropriate value of α is 0 < α ≤ 0.5. The default value of α in MA57 is 0.01 [1].

Let us call the column with the fewest number of off-diagonal nonzeros the minimum
degree column. Let i be the minimum degree column of the matrix A. We accept aii as
the 1-by-1 pivot (B(k)) if aii satisfies (4.1). Otherwise, we proceed to search for a suitable

2-by-2 pivot

[
aii aij
aji ajj

]
that satisfies (4.2) as follows. Let

Zi = {z|aiz 6= 0 and z 6= i}. (4.3)

Consider all submatrices

[
aii aiz
azi azz

]
, where z ∈ Zi, as the candidates for a 2-by-2 pivot.

The degree of each candidate deg(i, z) is the number of rows l where l 6= i, z and at lease
one of ali and alz is nonzero. To compute deg(i, z), define

d(i, z, l) =

{
0, if ali = 0 and alz = 0,
1, otherwise.

(4.4)

Hence,

deg(i, z) =
∑
l 6=i,z

d(i, z, l). (4.5)
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Our algorithm then considers all of the candidates with the minimum out-degree. Specifi-

cally,

[
aii aij
aji ajj

]
is qualified if

deg(i, j) = min
z∈Zi

deg(i, z). (4.6)

If a qualified candidate also satisfies (4.2), it is chosen as a pivot. Otherwise, we remove j
from the Zi and repeat the process of selecting a 2-by-2 pivot until we either find a qualified
candidate that also satisfies (4.2) or Zi becomes empty. In the latter case, we set i to be
the next next minimum degree column and repeat the process from the beginning (from
testing whether aii is a suitable 1-by-1 pivot). The algorithm is as shown in Algorithm 2
below.

Algorithm 2. Our Pivot Selection Algorithm

// A is a n-by-n symmetric indefinite matrix
Let M = {1, 2, ..., n}
while a suitable pivot is not yet found and M is not empty do

Let i be the minimum degree column among all column indices in M
if aii is accepted then

Use aii as the 1-by-1 pivot
else

Let Zi = {z|aiz 6= 0 and z 6= i}
while a suitable pivot is not yet found and Zi is not empty do

Let j be such that

[
aii aij
aji ajj

]
has the minimum out-degree and j ∈ Zi

if

[
aii aij
aji ajj

]
satisfies (4.2) then

Use

[
aii aij
aji ajj

]
as the 2-by-2 pivot

else
Remove j from Zi

end if
end while
Remove i from M

end if
end while

Lastly, when the remaining matrix is fully dense, we continue with a conventional pivot
selection algorithm such as BBK instead.

5 Experiments and results

This section compares the efficiency of our algorithm with MA57, which is based on the
multifrontal method. The experiments are performed in Matlab 2011a on matrices of vary-
ing dimensions from 100 to 5000. For each dimension, we vary the percentage of nonzeros
in the matrices from 5 to 30 percent. We test with 20 different instances for problems with
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Table 1: Average percentage of nonzeros in the factor L produced by MA57 and our al-
gorithm for problems with 100, 300, 500, 1000, 3000, and 5000 dimensions and 30, 20, 10,
and 5 percent of nonzeros in the matrix. The percentage of nonzeros in L is computed by
dividing the number of nonzeros in L by n2 and then multiplying the result by 100.

n
Percentage of nonzeros in L

30 20 10 5
MA57 Our method MA57 Our method MA57 Our method MA57 Our method

100 46.20 45.54 40.90 39.24 22.68 18.73 11.02 6.60
300 46.07 45.39 43.03 41.89 35.76 33.15 25.17 21.23
500 47.37 46.98 45.26 44.52 39.98 38.17 17.42 12.04
1000 48.53 48.35 47.39 47.00 44.01 43.02 38.46 36.36
3000 49.46 49.37 49.00 48.84 47.56 47.21 45.11 44.19
5000 49.64 49.61 49.36 49.26 48.47 48.22 46.86 46.23

Table 2: Average residuals of the factorization produced by MA57 and our algorithm for
problems with 300, 500, 1000, and 2000 dimensions and 30, 20, 10 and 5 percent of nonzeros
in the matrix.

n
Residual (×10−10)

30 20 10 5
MA57 Our method MA57 Our method MA57 Our method MA57 Our method

100 0.00339 0.00018 0.00410 0.00022 0.00190 0.00016 0.00045 0.00006
300 0.03072 0.00077 0.02634 0.00083 0.02378 0.00083 0.01039 0.00059
500 0.08489 0.00128 0.06665 0.00161 0.04665 0.00169 0.02199 0.00076
1000 0.20679 0.00342 0.21691 0.00374 0.17399 0.00333 0.10509 0.00355
3000 1.63656 0.01312 1.80491 0.01281 1.32961 0.02150 1.13003 0.02160
5000 4.45974 0.02488 3.49949 0.02361 2.51524 0.03264 2.20916 0.03152

100, 300, and 500 dimensions and 10 different instances for problems with 1000, 3000, and
5000 dimensions. We show the percentage of nonzeros in the factor L of the two methods
in Table 1, which shows that our method produces sparser factors than MA57 in all cases.
Note that the small percentage improvement for large matrices are not insignificant as small
decrease in nonzeros does lead to significantly faster factorization time. Finally, Table 2
shows the residuals

∥∥PTAP − LBLT
∥∥ of the results of both methods. The result shows

that our method produces more accurate factors than MA57.

6 Conclusion

In this article, we propose a new pivot selection algorithm for symmetric indefinite factor-
ization. Our method is based on the minimum degree algorithm but is able to select both
1-by-1 and 2-by-2 pivots that are stable. Our experimental results show that our algorithm
produces factors that are stable and also sparser than MA57.
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