Neighborhood Union Conditions for Hamiltonicity of P₃-dominated Graphs II

XIAOLING MA⁽¹⁾ AND ELKIN VUMAR⁽²⁾

Abstract

A graph G is called P_3 -dominated (P3D) if it satisfies $J(x,y) \cup J'(x,y) \neq \emptyset$ for every pair (x,y) of vertices at distance 2, where $J(x,y) = \{u|u \in N(x) \cap N(y), N[u] \subseteq N[x] \cup N[y]\}$ and $J'(x,y) = \{u|u \in N(x) \cap N(y)| \text{ if } v \in N(u) \setminus (N[x] \cup N[y]), \text{ then } (N(u) \cup N(x) \cup N(y)) \setminus \{x,y,v\} \subseteq N(v)\}$ for $x,y \in V(G)$ at distance 2}. For a noncomplete graph G, the number NC is defined as $NC = \min\{|N(x) \cup N(y)| : x,y \in V(G) \text{ and } xy \notin E(G)\}$, for a complete graph G, set NC = |V(G)| - 1. In this paper, we prove that a 2-connected P_3 -dominated graph G of order n is hamiltonian if $G \notin \{K_{2,3}, K_{1,1,3}\}$ and $NC(G) \geq (2n-5)/3$, moreover it is best possible.

Key Words: P_3 -dominated graph, quasi claw-free graph, neighborhood union, hamiltonicity.

2010 Mathematics Subject Classification: Primary 05C45.

1 Introduction

We shall closely follow [9] for graph-theoretical terminology and notation not defined here. Let G = (V, E) be a finite graph of order n without loops and multiple edges, where V = V(G) is the vertex set and E = E(G) is the edge set. For any $u \in V(G)$, $N(u) = \{v \mid uv \in E(G)\}$ and $N[u] = N(u) \cup \{u\}$ and $d_G(u) = |N(u)|$. For subgraphs H and K of G, let G - H denote the subgraph of G which is induced by $V(G) \setminus V(H)$, and let $N_H(K)$ denote the set of vertices in H that are adjacent to some vertex in K. A set $A \subseteq V(G)$ is independent if any vertices $x, y \in A$ are nonadjacent in G. The independence number $\alpha(G)$ of G is the cardinality of a maximum independent set in G. We denote by $\sigma_k(G)$ the minimum value of the degree-sum of any k pairwise non-adjacent vertices if $k \le \alpha(G)$; if $k > \alpha(G)$, we set $\sigma_k(G) = k(n-1)$. For a graph G, we denote by $\delta(G)$ the minimum degree. If G is a noncomplete graph, then NC is defined as $NC = \min\{|N(x) \cup N(y)| : x, y \in V(G), xy \notin E(G)\}$, for a complete graph G, set NC = |V(G)| - 1. A cycle containing all the vertices of the graph is said to be a Hamilton cycle. A graph containing a Hamilton cycle is said to be hamiltonian.

A graph G is said to belong to the class \mathcal{CF} of claw-free graphs if G does not contain an induced subgraph isomorphic to a claw $(K_{1,3})$. While a large number of results have been obtained on claw-free graphs, during the last two decades several extensions of claw-free graphs have been introduced and many known results, concerning matching and hamiltonicity, on claw-free graphs have been extended to these classes. We refer to [1], [2], [4], [6]-[8], [11]-[12] and [15]-[16] for more details.

Following Ainouche [1], for each pair (x,y) of vertices at distance 2, we set $J(x,y) = \{u \mid u \in N(x) \cap N(y), N[u] \subseteq N[x] \cup N[y]\}$. A graph G is quasi-claw-free if $J(x,y) \neq \emptyset$

for each pair (x, y) of vertices at distance 2 in G. As an extention of quasi-claw-free graphs, P_3 -dominated graphs are introduced by Broersma and Vumar [5]. The class $\mathcal{P}3\mathcal{D}$ of P_3 -dominated graphs is defined below.

Let (x, y) be a pair of vertices at distance 2 in G. We consider a common neighbor u of x and y with the following property.

If
$$v \in N(u) \setminus \{x, y\}$$
 is neither adjacent to x nor to y , then it is adjacent to all vertices of $N(x) \cup N(y) \cup N(u) \setminus \{x, y, v\}$. (1.1)

For a pair (x, y) of vertices at distance 2 in G, set $J'(x, y) = \{u \in N(x) \cap N(y) \mid u \text{ satisfies } (1.1)\}$. We say that G is in the class $\mathcal{P}3\mathcal{D}$ of P_3 -dominated graphs if $J(x, y) \cup J'(x, y) \neq \emptyset$ for every pair (x, y) of vertices at distance 2 in G.

In [5], [10], [13]-[14] and [17]-[19], some known results on claw-free graphs have extended to P_3 -dominated graphs. Particularly, the 3-connected case concerning hamiltonicity of P_3 -dominated graphs is shown [17]. However, in this paper we mainly discuss 2-connected case, which is different from the above work in [17]. Meanwhile, their neighborhood union conditions for hamiltonicity of P_3 -dominated graphs are also different.

The objective of this paper is also to extend the following result on claw-free graphs, which was obtained by Bauer et al. [3], to P_3 -dominated graphs. The main results of this paper are the following Theorem 2 and Corollary 1, and the proofs are given in Section 2.

Theorem 1 (Bauer et al. [3]). Let G be 2-connected claw-free graph of order n. If $NC(G) \ge (2n-5)/3$, then G is Hamiltonian.

Theorem 2. If $G \notin \{K_{1,1,3}, K_{2,3}\}$ is a 2-connected P_3 -dominated graph of order n such that $NC(G) \geq (2n-5)/3$, then G is Hamiltonian.

Since the class of P_3 -dominated graphs contain all quasi claw-free graphs, we have:

Corollary 1. If G is a 2-connected quasi claw-free graph of order n such that $NC(G) \ge (2n-5)/3$, then G is Hamiltonian.

Some ideas and proof techniques demonstrated by Broersma [7] are adopted in the proof of Theorem 2. Also some results obtained by Bauer [3] are used in the proof of Theorem 2. They are stated as lemmas in the following section.

2 Proof of Theorem 2

Before starting the proof of Theorem 2, we present some necessary notations and preliminary lemmas

Let C be a cycle in G with an inherent clockwise orientation and H be a component of G-C. For $x,y\in V(C)$, let x^+ and x^- be the successor and predecessor of x along the orientation of C, respectively. Set $x^{++}=(x^+)^+$, $x^{--}=(x^-)^-$. If $x,y\in V(C)$, then C[x,y] denotes the consecutive vertices on C from x to y in the chosen direction of C, and $C(x,y)=C[x,y]-\{x,y\}$. Then same vertices in the reverse order are respectively denoted by $\overline{C}[y,x]$ and $\overline{C}(y,x)$. Both C[x,y] and $\overline{C}[y,x]$ are considered as paths as well as vertex sets. In this section we will use such symbols for a given cycle without giving the definition.

Lemma 1. Let $G \notin \{K_{1,1,3}, K_{2,3}\}$ be a 2-connected P_3 -dominated graph and let C be a longest cycle with a cyclic order in G, and let H be a component of G - C. Then

(a) $x^-x^+ \in E(G)$ for each $x \in N_C(H)$;

(a)
$$u \in E(G)$$
 for each $u \in N_C(H)$,
(b) $N(x^-) \cap \{y, y^-, y^{--}\} = \emptyset$, $N(x^{--}) \cap \{y, y^-, y^{--}\} = \emptyset$ for each $x, y \in N_C(H)$ with $x \neq y$.

Proof : For the proof of (a) see [5], and the proof of (b) is straightforward, hence we omit it.

Lemma 2 (Bauer et al. [3]). $\sigma_3(G) \geq 3NC(G) - n + 3$ for any graph G of order $n \geq 3$. \square

Lemma 3. Let $G \notin \{K_{2,3}, K_{1,1,3}\}$ be a 2-connected P_3 -dominated graph of order n. If $\sigma_3(G) \geq n-2$, then G is Hamiltonian.

Combining Lemmas 2 and 3, we obtain the main result Theorem 2.

Proof of Lemma 3

Assume, to the contrary, that G is not hamiltonian. Let C be a longest cycle of G and H be a component of G-C. Fix an orientation on C. By assumption C is not a Hamilton cycle of G, there exists a vertex $u \in V(H)$. Since G is 2-connected, $G \notin \{K_{2,3}, K_{1,1,3}\}$, there exist at least 2 distinct vertices w_1, w_2, \ldots, w_k of C such that $uw_i \in E(G)$ $(i=1,2,\ldots,k)$. Let $\{w_i | i=1,2,\ldots,k\}$ be chosen such that k is maximum $(k \geq 2)$. By the maximality of k, u has no neighbors in $V(C)-\{w_1,w_2,\ldots,w_k\}$. Let the order of occurrence on C of the vertices $w_i, i=1,2,\ldots,k$, be according to their indices. From the choice of C it follows that, for $1 \leq i \leq k$, $w_iw_{i+1} \notin E(C)$ (indices mod k), $uw_i^+ \notin E(G)$ and $uw_i^- \notin E(G)$. By Lemma 1 (a), we have $w_i^+w_i^- \in E(G)$ $(i=1,2,\ldots,k)$. From the choice of C it also follows that w_i^+ and w_{i+1}^- cannot coincide and $w_i^+w_{i+1}^- \notin E(C)$ (indices mod k) for $1 \leq i \leq k$. If $w_i^+w_{i+1}^- \in E(C)$, then the cycle $uw_iw_i^+ \overleftarrow{C}[w_i^-, w_{i+1}^+]w_{i+1}^-w_{i+1}u$ contradicts the choice of C. By Lemma 1 (b), we have $w_i^-w_j^-, w_i^-w_j^-, w_i^-w_j^-, w_i^-w_j^-, w_i^-w_j^-$ and $w_i^-w_j \notin E(G)$ where $i,j=1,2,\ldots,k$ and $i\neq j$.

Let s_i be a vertex of $C[w_i, w_{i+1}]$ such that

- (i) s_i^- is adjacent to w_i^{--}, w_i^- or w_i ;
- (ii) s_i is adjacent to none of w_i^{--}, w_i^{-} and w_i ;
- (iii) $|C[s_i, w_{i+1}]|$ is minimum (indices mod k).

Since w_i^+ is adjacent to w_i , and w_{i+1}^- is adjacent none of w_i^- , w_i^- and w_i , there exists at least one vertex of $C(w_i^{++}, w_{i+1}^-)$ that satisfies both (i) and (ii). Thus s_i is well-defined.

Now we continue our proof for Lemma 3 with the following claims.

Claim 1. s_i is not adjacent to w_j or w_j^+ .

If $s_i w_i \in E(G)$, we consider the following cases.

$$\begin{array}{lll} \operatorname{Case} & \operatorname{Cycle} \ C' \\ s_i^-w_i \in E(G) & uw_i \overleftarrow{C}[s_i^-, w_i^+] \overleftarrow{C}[w_i^-, w_j^+] \overleftarrow{C}[w_j^-, s_i] w_j u \\ s_i^-w_i^- \in E(G) & uC[w_i, s_i^-] \overleftarrow{C}[w_i^-, w_j^+] \overleftarrow{C}[w_j^-, s_i] w_j u \\ s_i^-w_i^{--} \in E(G) & uw_i w_i^- C[w_i^+, s_i^-] \overleftarrow{C}[w_i^{--}, w_j^+] \overleftarrow{C}[w_j^-, s_i] w_j u \end{array}$$

If $s_i w_i^+ \in E(G)$, we consider the following cases.

$$\begin{array}{lll} \operatorname{Case} & \operatorname{Cycle} C'' \\ s_i^-w_i \in E(G) & uw_i \overleftarrow{C}[s_i^-, w_i^+] \overleftarrow{C}[w_i^-, w_j^+] C[s_i, w_j] u \\ s_i^-w_i^- \in E(G) & uC[w_i, s_i^-] \overleftarrow{C}[w_i^-, w_j^+] C[s_i, w_j] u \\ s_i^-w_i^{--} \in E(G) & uw_i w_i^- C[w_i^+, s_i^-] \overleftarrow{C}[w_i^{--}, w_j^+] C[s_i, w_j] u \end{array}$$

In each of these cases, the cycle C' and C'' are longer than C, a contradiction.

Claim 2.
$$us_i \notin E(G)$$
 and $N(u) \cap N(s_i) = \emptyset$ for $i = 1, 2, ..., k$.

Claim 3. $s_i s_j \notin E(G)$.

Assume $s_i s_j \in E(G)$. If $s_i^- w_i^{--} \in E(G)$, then we discuss the following cases.

$$\begin{array}{lll} \text{Case} & \text{Cycle } C' \\ s_j^-w_j \in E(G) & uw_iw_i^-C[w_i^+,s_i^-] \overleftarrow{C}[w_i^{--},s_j]C[s_i,w_j^-]C[w_j^+,s_j^-]w_ju \\ s_j^-w_j^- \in E(G) & uw_iw_i^-C[w_i^+,s_i^-] \overleftarrow{C}[w_i^{--},s_j]C[s_i,w_j^-] \overleftarrow{C}[s_j^-,w_j]u \\ s_j^-w_j^{--} \in E(G) & uw_iw_i^-C[w_i^+,s_i^-] \overleftarrow{C}[w_i^{--},s_j]C[s_i,w_j^-] \overleftarrow{C}[s_j^-,w_j^+]w_j^-w_ju \\ \end{array}$$

Obviously, the cycle C' contradicts the choice of C in each cases. The other cases $s_i^-w_i^- \in E(G)$ or $s_i^-w_i \in E(G)$ are similar.

Claim 4. For similar reasons, $N_{G-C}(s_i) \cap N_{G-C}(s_j) = \emptyset$ for i, j = 1, 2, ..., k and $i \neq j$.

Claim 5. If $v, v^+ \in C[s_i^+, w_j^-]$, then at most one of edges $s_j v$ and $s_i v^+$ is present in G. Suppose $s_j v \in E(G)$ and $s_i v^+ \in E(G)$. If $s_i^- w_i^{--} \in E(G)$, then we have the following cases.

$$\begin{array}{lll} \text{Case} & \text{Cycle } C' \\ s_j^-w_j \in E(G) & uw_iw_i^-C[w_i^+,s_i^-] \overleftarrow{C}[w_i^{--},s_j] \overleftarrow{C}[v,s_i]C[v^+,w_j^-] \overleftarrow{C}[w_j^+,s_j^-]w_ju \\ s_j^-w_j^- \in E(G) & uw_iw_i^-C[w_i^+,s_i^-] \overleftarrow{C}[w_i^{--},s_j] \overleftarrow{C}[v,s_i]C[v^+,w_j^-] \overleftarrow{C}[s_j^-,w_j]u \\ s_j^-w_j^{--} \in E(G) & uw_iw_i^-C[w_i^+,s_i^-] \overleftarrow{C}[w_i^{--},s_j] \overleftarrow{C}[v,s_i]C[v^+,w_j^{--}] \overleftarrow{C}[s_j^-,w_j^+]w_j^-w_ju \\ \end{array}$$

The cycle C' contradicts the choice of C in each cases. The other cases $s_i^-w_i^- \in E(G)$ or $s_i^-w_i \in E(G)$ are similar.

Claim 6. If $v, v^+ \in C[w_i^+, s_i^-]$ and $w_i s_i^- \in E(G)$, then at most one of the edges $s_i v$ and $s_i v^+$ is present in G.

If $s_i v \in E(G)$ and $s_j v^+ \in E(G)$, e.g., $s_j^- w_j^{--} \in E(G)$, then the cycle $uw_i \overleftarrow{C}[s_i^-, v^+]C[s_j, w_i^-]$ $C[w_i^+, v]C[s_i, w_j^{--}] \overleftarrow{C}[s_j^-, w_j^+]w_j^- w_j u$ is longer than C, a contradiction. The other cases are similar.

Claim 7. If $v, v^+ \in C[w_i^+, s_i^-]$ and $w_i s_i^- \notin E(G)$, then at most one of the edges $s_j v$ and $s_i v^+$ is present in G.

The proof of this Claim is similar to that of Claim 5. So we omit it.

Claim 8. If $w_i s_i^- \notin E(G)$, then at most one of the edges $s_i^- s_j$ and $w_i^+ s_i$ is present in G. The proof of this Claim is similar to that of Claim 6. So we omit it.

If S is a subset of V(G), then $d_S(s_i) = |N(s_i) \cap S|$. We consider the sets $I_1 = C[w_1^+, s_1^-]$ and $I_2 = C[s_1^+, w_2^-]$ and let $A_1 = \{v \in I_1 | vs_1 \in E(G)\}$, $B_1 = \{v \in I_2 | vs_1 \in E(G)\}$ and $B_2 = \{v \in I_2 | v^-s_2 \in E(G)\}$. If $w_1s_1^- \in E(G)$, then let $A_2 = \{v \in I_1 | v^+s_2 \in E(G)\}$; if $w_1s_1^- \notin E(G)$ let $A_2 = \{v \in I_1 | v^-s_2 \in E(G)\}$. $B_1 \cap B_2 = \emptyset$ by Claim 5, hence we have $d_{I_2}(s_1) + d_{I_2}(s_2) = |B_1| + |B_2| = |B_1 \cup B_2| \le |I_2|$.

By the similar arguments, if $w_1s_1^- \in E(G)$, $A_1 \cap A_2 = \emptyset$ by Claims 6, then $d_{I_1}(s_1) + d_{I_1}(s_2) \leq |I_1|$. For $w_1s_1^- \notin E(G)$, by Claim 7, we get $A_1 \cap A_2 = \emptyset$. Then we consider two possibilities:

- (a) $s_1^- s_2 \notin E(G)$. Then $d_{I_1}(s_1) + d_{I_1}(s_2) = |A_1| + |A_2| = |A_1 \cup A_2| \le |I_1|$;
- (b) $s_1^- s_2 \in E(G)$. Then $d_{I_1}(s_1) + d_{I_1}(s_2) = |A_1| + |A_2| + 1 = |A_1 \cup A_2| + 1$. In addition, $w_1^+ \notin A_1 \cup A_2$ by Claim 8. Hence $d_{I_1}(s_1) + d_{I_1}(s_2) \leq |I_1|$.

Similarly, we have $d_{I_3}(s_1)+d_{I_3}(s_2)\leq |I_3|$ for $I_3=C[w_2^+,s_2^-]$. Finally, we consider $I_4=C[s_2^+,w_1^-]$, and let $D_1=\{v\in I_4|\ vs_2\in E(G)\}$ and $D_2=\{v\in I_4|\ v^-s_1\in E(G)\}$. $D_1\cap D_2=\emptyset$ By Claim 5 and if $k\geq 3$, then $w_i^+\notin D_1\cup D_2$ by Claim 1, for $3\leq i\leq k$. So $d_{I_4}(s_1)+d_{I_4}(s_2)=|D_1|+|D_2|=|D_1\cup D_2|\leq |I_4|-(k-2)$. In addition, by Claims 1 and 3, $d_{V(C)}(s_1)+d_{V(C)}(s_2)\leq |I_1|+|I_2|+|I_3|+|I_4|-(k-2)=|V(C)|-k-2$. Hence, by Claims 2 and 4, $d(u)+d(s_1)+d(s_2)\leq (n-1-|V(C)|)+k+|V(C)|-k-2=n-3$ which contraries to $\sigma_3(G)\geq n-2$. Thus the Lemma is proved.

Note that Lemma 3 and Theorem 2 are best possible. This can be seen from the P_3 -dominated graph G obtained as follows: take three copies of the complete graph K_t , say, K_t^1, K_t^2 and K_t^3 ($t \ge 3$), pick 2 distinct vertices x_i, y_i from K_t^i (i = 1, 2, 3) and then form 2 triangles $x_1x_2x_3$ and $y_1y_2y_3$. This graph G is 2-connected P_3 -dominated graph, and we have $\sigma_3 = n - 3$, NC = (2n - 6)/3, but G is not hamiltonian.

Acknowledgement. This work is supported by National Natural Science Foundation of China [grant number 11361060] and Doctoral Scientific Research Fund of Xinjiang University [grant number BS150205]. The authors would like to thank the editor and the anonymous referees' valuable suggestion.

References

- [1] A. AINOUCHE, Quasi-claw-free graphs, Discrete Math. 179 (1998) 13–26.
- [2] A. AINOUCHE, O. FAVARON, H. LI, Global insertion and hamiltonicity in DCT-graphs, Discrete Math. 184 (1998) 1–13.
- [3] D. Bauer, G. Fan, H.J. Veldman, Hamiltonian properties of graphs with large neighborhood unions, *Discrete Math.* **96** (1991) 33–49.
- [4] H.J. Broersma, On some intriguing problems in hamiltonian graph theory a survey, *Discrete Math.* **251** (2002) 47–69.
- [5] H.J. Broersma, E. Vumar, On hamiltonicity of P_3 -dominated graphs, Math. Meth. Oper. Res. **69** (2009) 297–306.
- [6] H.J. BROERSMA, Z. RYJÁČEK, I. SCHIERMEYER, Toughness and hamiltoncity in almost claw-free graphs, J. Graph Theory 21 (1996) 431–439.
- [7] H.J. Broersma, Hamilton cycles in graphs and related topics, *Doctoral Thesis*, *University of Twente*, *Enschede*, 1988.
- [8] H. Li, C. Chen, A. Harkat-Benhamdine, Distance dominating cycles in quasi-claw-free graphs, *Graphs and Combin.* **15** (1999) 279–285.
- [9] J.A. BONDY, U.S.R. MURTY, *Graph Theory with Applications*, Macmillan, London (1976).
- [10] J. Guo, E. Vumar, On the Circumference of 2-Connected P₃-Dominated Graphs, Graphs and Combin. **24** (2008) 443–451.
- [11] M. Li, Longest cycles in almost claw-free graphs, *Graphs and Combin.* **16** (2000) 177–
- [12] M. Li, Hamiltonian cycles in almost claw-free graphs, *Graphs and Combin.* **17** (2001) 687–706.
- [13] M. METSIDIK, E. VUMAR, Toughness and matching extension in P_3 -dominated graphs, Graphs and Combin. **26** (2010) 425–432.
- [14] M. METROSE, E. VUMAR, Distance-dominating cycles in P₃-dominated graphs, Ars Combinatoria 105 (2012) 387–393.
- [15] R. Li, Hamiltonicity of 2-connected quasi-claw-free graphs, *Discrete Math.* **283** (2004) 145–150.
- [16] R. Li, Hamiltonicity of 3-connected quasi-claw-free graphs, Discrete Math. 265 (2003) 393–396.
- [17] X. MA, E. VUMAR, Neighborhood union conditions for hamiltonicity of P₃-dominated graphs, *Graphs and Combin.* **30** (2014) 1499–1511.

- [18] X. MA, E. VUMAR, Two sufficient conditions for P_3 -dominated hamiltonian graphs, OR Transactions 13 (2009) 59–67.
- [19] Y. CHEN, S. FAN, H-J. LAI, On 3-connected hamiltonian line graphs, Discrete Math. 312 (2012) 1877–1882.

Received: 03.03.2012 Revised: 10.05.2016 Accepted: 18.5.2016

> ⁽¹⁾College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P.R. China.

E-mail: mathmxl115@xju.edu.cn

(2) College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P.R. China.

E-mail: vumar@xju.edu.cn