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Abstract

We consider a simple graph G = (V,E) without isolated vertices and of minimum
degree δ(G). Let k be an integer number such that k ∈ {1− dδ(G)/2e , . . . , bδ(G)/2c}.
A vertex v of G is said to be k-controlled by a set M ⊂ V , if δM (v) ≥ δ(v)

2
+ k

where δM (v) represents the number of neighbors v has in M and δ(v) the degree of v.
The set M is called a k-monopoly if it k-controls every vertex v of G. The minimum
cardinality of any k-monopoly in G is the k-monopoly number of G. In this article we
study the k-monopolies of the lexicographic product of graphs. Specifically we obtain
several relationships between the k-monopoly number of this product graph and the
k-monopoly numbers and/or order of its factors. Moreover, we bound (or compute
the exact value) of the k-monopoly number of several families of lexicographic product
graphs.
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1 Introduction and preliminaries

The k-monopolies of graphs were recently introduced in [11], as a generalization of the stan-
dard monopolies already known from several articles. From the best of our knowledge, the
first description of a monopoly-type concept comes from [14], where the authors described
some structures regarding sphere packing and local majorities. Concepts like (small) coali-
tions, alliances are also closely related and they have been appearing relatively frequently in
some connected investigations. A remarkable case is [16], where several of that connections
were reviewed.

The monopolies of graphs have been related to several problems regarding overcoming
failures, in concordance with the fact that they very frequently have some common ap-
proaches in the field of majorities. For instance, some connections with consensus problems
[3], diagnosis problems [17] or voting systems [5], among other applications and references are
already described. The k-monopolies in graphs are also closely related to different parame-
ters in graphs like global alliances and signed domination (see [11]). On the other hand, it is
also known that computing the k-monopoly number of a graph is an NP-complete problem
for k ≥ 0 (see [11]). In this sense, it would be desirable to reduce the problem of computing
or bounding the k-monopoly number in some complex graph classes into other ones much
simpler classes. An interesting case of that are product graphs, where it is often possible to
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reduce the problem on the product graph to the problem on the factor graphs. Such a studies
have been initiated in the works [12] and [13], for the direct and strong product of graphs,
respectively. To continue pursuing this goal, in this work we obtain several relationships
between the k-monopoly number of the lexicographic product graphs and the k-monopoly
number of its factors.

We consider here only simple graphs G = (V,E). Given a set S ⊂ V and a vertex v ∈ V ,
we denote by δS(v) the number of neighbors v has in S. If S = V , then δV (v) is the degree
of v and we just write δ(v). The minimum degree of G is denoted by δ(G) and the maximum

degree by ∆(G). Given an integer k ∈
{

1−
⌈
δ(G)
2

⌉
, . . . ,

⌊
δ(G)
2

⌋}
and a set M ⊂ V , a vertex

v of G is said to be k-controlled by M if δM (v) ≥ δ(v)
2 + k. The set M is called a k-monopoly

if it k-controls every vertex v of G. The minimum cardinality of any k-monopoly is the
k-monopoly number and it is denoted by Mk(G). A k-monopoly of cardinality Mk(G) is
called a Mk(G)-set. In particular notice that for a graph with a leaf (vertex of degree one),
there exist only 0-monopolies and the neighbor of every leaf is in each M0-set. Monopolies
in graphs were defined first in [14] and they were generalized to k-monopolies recently in [11].
Among other studies about monopolies in graphs and some of its applications we mention
for instance [4, 9, 15, 16, 19].

If M represents the complement of the set M , then we can use the following equivalent
definition for a k-monopoly in G. A set of vertices M is a k-monopoly in G if and only
if for every vertex v of G, δM (v) ≥ δM (v) + 2k (from now we will call this expression the
k-monopoly condition) and we will say that M is a k-monopoly in G if and only if every v of
G satisfies the k-monopoly condition for M .

We use for a graph G standard notations NG(g) for the open neighborhood of a vertex g:
NG(g) = {g′ : gg′ ∈ E(G)} and NG[g] for the closed neighborhood of g: NG[g] = NG(g)∪{g}.
Let S ⊂ V (G). Neighborhoods over S form a subpartition of a graph G, if NG(u)∩NG(v) = ∅
for every different u, v ∈ S. A set S forms a maximum subpartition if S forms a subpartition
where V (G)−

⋃
v∈S NG(v) has the minimum cardinality among all possible sets S′ ⊂ V (G).

In the extreme case where
⋃
v∈S NG(v) = V (G) we call G an efficient open domination graph

and the set S an efficient open dominating set of G. Efficient open domination graphs were
first studied in [6]. The work was continued in [7], where all efficient open domination trees
have been inductively described. Also, there was shown that deciding whether a graph is an
efficient open domination graph is an NP-complete problem. Recently, in [18], the efficient
open dominating sets of Cayley graphs were considered and, a discussion with respect to
product graphs can be found in [10]. Clearly not all graphs are efficient open domination
graphs.

The lexicographic product G◦H (also sometimes denoted by G[H] and called composition)
of graphs G and H is a graph with V (G◦H) = V (G)×V (H). Two vertices (g, h) and (g′, h′)
are adjacent in G ◦H whenever gg′ ∈ E(G) or (g = g′ and hh′ ∈ E(H)). For a fix h ∈ V (H)
we call Gh = {(g, h) ∈ V (G ◦ H) : g ∈ V (G)} a G-layer in G ◦ H. An H-layer gH for a
fix g ∈ V (G) is defined symmetrically. Notice that the subgraph induced by Gh or gH is
isomorphic to G or H, respectively. The lexicographic product is clearly not commutative,
while it is associative [8].
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2 Upper bounds

We begin with the following general result in which the k-monopoly number of the second
factor of the lexicographic product graph contains at least half its order.

Theorem 1. Let G and H be graphs and let k ∈
{

1−
⌈
δ(H)
2

⌉
, . . . ,

⌊
δ(H)
2

⌋}
. If Mk(H) ≥

|V (H)|
2 , then we have

Mk(G ◦H) ≤Mk(H)|V (G)|.

Proof. Let MH be a Mk(H)-set where |MH | ≥ |V (H)|
2 . Notice that H has no isolated

vertex, since Mk(H) exists. We claim that M = V (G)×MH is a k-monopoly set of G ◦H.
For (g, h) ∈ V (G ◦H) we have

δM (g, h) = δG(g)|MH |+ δMH
(h)

≥ δG(g)
|V (H)|

2
+
δH(h)

2
+ k

=
δG◦H(g, h)

2
+ k.

Therefore the result follows. 2

The expectation, that the conditionMk(H) ≥ |V (H)|
2 from the above theorem is fulfilled,

is greater when k is “big”. Hence, this theorem is more useful for positive k. For instance, if

H is a graph with even number of vertices with an universal vertex, then Mk(H) ≥ |V (H)|
2

for k ≥ 0.

If Mk(H) > |V (H)|
2 , then we can add (at least one) isolated vertex to H to obtain graph

H+ and the upper bound from Theorem 1 still holds for G ◦H+.

Next we continue with a general result for non negative values of k.

Theorem 2. Let G and H be graphs and let ` = min{δ(G), δ(H)}. For every k ∈ {0, . . . ,
⌊
`
2

⌋
},

M2k2(G ◦H) ≤Mk(G)|V (H)|.

Proof. Let MG be aMk(G)-set. We will show that M = (MG×V (H)) is a 2k2-monopoly
set of G ◦H. Let (g, h) ∈ V (G ◦H). We consider the following cases.

Case 1: g ∈MG. Hence,

δM (g, h) = δMG
(g)|V (H)|+ δH(h)

≥ δMG
(g)|V (H)|+ 2k|V (H)|+ δH(h)

= δM (g, h) + 2k|V (H)|+ δH(h)

≥ δM (g, h) + 2kδH(h) + δH(h)

≥ δM (g, h) + 4k2 + 2k.
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Case 2: g /∈MG. Hence,

δM (g, h) = δMG
(g)|V (H)|

≥ δMG
(g)|V (H)|+ 2k|V (H)|

= δMG
(g)|V (H)|+ δH(h) + 2k|V (H)| − δH(h)

= δM (g, h) + 2k|V (H)| − δH(h)

≥ δM (g, h) + 2k(δH(h) + 1)− δH(h)

≥ δM (g, h) + δH(h)(2k − 1) + 2k

≥ δM (g, h) + 2k(2k − 1) + 2k

= δM (g, h) + 4k2.

Thus, we have that M is a 2k2-monopoly in G ◦H, which completes the proof. 2

3 Lower bounds

The following observation and its corollary presented in [12] are useful to deduce a lower
bound for Mk(G ◦H).

Remark 1. [12] Let G be a graph. If S ⊂ V (G) forms a subpartition of G, then

Mk(G) ≥ k|S|+
∑
v∈S

⌈
δ(v)

2

⌉
.

Corollary 1. [12] Let G be a graph. If S ⊂ V (G) forms a subpartition of G, then

Mk(G) ≥ |S|(k + dδ(G)/2e).

In [10] all efficient open domination graphs among lexicographic products have been
characterized. It was shown that G ◦H is an efficient open domination graph if and only if
one of the following conditions is fulfilled:

(i) G is a graph without edges and H an efficient open domination graph, or

(ii) G is an efficient open domination graph and H contains an isolated vertex.

Notice that (ii) can be generalized to every graph for maximum subpartitions. The
following proposition describes this case.

Proposition 1. Let G and H be graphs, where H contains an isolated vertex h and G is
without them. If SG forms a subpartition of G, then S = SG × {h} forms a subpartition of
G ◦H.

Proof. Since h has no neighbor in H and NG(g) ∩NG(g′) = ∅ for every different vertices
g, g′ ∈ SG, it follows that NG◦H(g, h)∩NG◦H(g′, h) = ∅. So SG×{h} form a subpartition of
G ◦H. 2

The following theorem follows directly from Observation 1, Proposition 1 and the fact
that δG◦H(g, h) = δG(g)|V (H)|+ δH(h). (Notice that h is an isolated vertex of H and hence
δH(h) = 0.)
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Theorem 3. Let G and H be graphs, H with an isolated vertex h and G without them
and let ` = δ(G)|V (H)| + δ(H). If SG forms a subpartition of G, then for every k ∈
{1−

⌈
`
2

⌉
, . . . ,

⌊
`
2

⌋
},

Mk(G ◦H) ≥ k|SG|+
∑

(g,h)∈SG×{h}

⌈
δ(g)|V (H)|

2

⌉
.

Finally we consider the case where H has no isolated vertices. To do so we need to
introduce some notation. Given a graph G and a set S ⊂ V (G), we say that the closed
neighborhoods of the vertices of S form a closed subpartition for G if it is satisfied NG[u] ∩
NG[v] = ∅ for every two different vertices u, v ∈ S. A closed subpartition for G, formed by
a set S, is a maximum closed subpartition, if V (G)−

⋃
v∈S NG[v] has the minimum possible

cardinality among all closed subpartitions for G formed by sets S′ ⊂ V (G). It is already
known that, if S forms a maximum closed subpartition which is also a partition of V (G),
then the set S is called a perfect code [2] or an efficient dominating set [1] in G. The result,
regarding the maximum closed subpartitions of graphs, yields an interesting consequence for
our purposes.

Proposition 2. Let G and H be graphs, both without isolated vertices. If SG forms a closed
subpartition of G and h is a vertex of maximum degree in H, then S = SG × {h} forms a
subpartition of G ◦H.

Proof. The result follows similarly as in Proposition 1. Since Gh is isomorphic to G and
SG forms a maximum closed subpartition of G, we have that NG◦H(g, h) ∩NG◦H(g′, h) = ∅
for every different vertices g and g′ from SG. Hence, we obtain that SG × {h} forms a
subpartition of G ◦H. 2

Again, the following theorem is obtained directly from the Observation 1, Proposition 2
and the fact that δG◦H(g, h) = δG(g)|V (H)|+ δH(h). (Notice that we can choose the vertex
of maximum degree ∆(H) in H.)

Theorem 4. Let G and H be graphs, both without isolated vertices and let ` = δ(G)|V (H)|+
δ(H). If SG forms a closed subpartition of G and h is a vertex of maximum degree in H,
then for k ∈ {1−

⌈
`
2

⌉
, . . . ,

⌊
`
2

⌋
} we have

Mk(G ◦H) ≥ k|SG|+
∑

(g,h)∈SG×{h}

⌈
δG(g)|V (H)|+ ∆(H)

2

⌉
.

Notice that Theorems 3 and 4 behave better in the case the (closed) subpartitions con-
sidered in G will be maximum.

The next result, presented in [12], is also useful to deduce a bound for the k-monopoly
number of lexicographic product graphs.

Proposition 3. [12] If G is a graph of order n, then for any k ∈
{

1−
⌈
δ(G)
2

⌉
, . . . ,

⌊
δ(G)
2

⌋}
,

Mk(G) ≥
⌈

n

∆(G)

(⌈
δ(G)

2

⌉
+ k

)⌉
.
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Corollary 2. Let G and H be two graphs without isolated vertices of order n and m, respec-

tively. For any k ∈
{

1−
⌈
mδ(G)+δ(H)

2

⌉
, . . . ,

⌊
mδ(G)+δ(H)

2

⌋}
we have

Mk(G ◦H) ≥
⌈

nm

m∆(G) + ∆(H)

(⌈
mδ(G) + δ(H)

2

⌉
+ k

)⌉
.

4 Bounds and exact values for some specific families of
lexicographic product graphs

The following result from [11] will be useful in this section.

Lemma 1. [11] For every integer r ≥ 3,

M0(Cr) =M0(Pr) =


r
2 , if r ≡ 0 (mod 4),

r+2
2 , if r ≡ 2 (mod 4),

r+1
2 , if r ≡ x (mod 4), x ∈ {1, 3}.

It is clear from the previous section that lower bounds for Mk(G ◦H) depends on (non)
existence of an isolated vertex in H. This is the reason that we start with an empty graph
En as second factor. By En we mean a graph on n vertices without any edges.

Proposition 4. Let r, t ≥ 3 be integers.

(i) If r ≡ 0 (mod 4), then M0(Cr ◦ Et) = rt
2 .

(ii) If r ≡ x (mod 4), x ∈ {1, 3}, then rt
2 −

t
2 ≤M0(Cr ◦ Et) ≤ rt

2 + t
2 .

(iii) If r ≡ 2 (mod 4), then rt
2 − t ≤M0(Cr ◦ Et) ≤ rt

2 + t.

Proof. The upper bounds follow directly from Theorem 2 and Lemma 1. For the lower
bounds we use Theorem 3. For this we need the cardinality of a maximum subpartition S of
Cr. It is easy to see that

|S| =


r
2 , if r ≡ 0 (mod 4),

r−2
2 , if r ≡ 2 (mod 4),

r−1
2 , if r ≡ x (mod 4), x ∈ {1, 3}

and the result follows. Notice that the lower and upper bound obtained as above mentioned
equal the same value for the case of (i). 2

Proposition 5. Let r, t ≥ 3 be integers.

(i) If r ≡ 0 (mod 4), then M0(Pr ◦ Et) = rt
2 .
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(ii) If r ≡ 1 (mod 4), then rt
2 −

3t
2 + 2

⌈
t
2

⌉
≤M0(Pr ◦ Et) ≤ rt

2 + t
2 .

(iii) If r ≡ 2 (mod 4), then rt
2 − t+ 2

⌈
t
2

⌉
≤M0(Pr ◦ Et) ≤ rt

2 + t.

(iv) If r ≡ 3 (mod 4), then rt
2 −

t
2 +

⌈
t
2

⌉
≤M0(Pr ◦ Et) ≤ rt

2 + t
2 .

Proof. Again the upper bounds follow directly from Theorem 2 and Lemma 1. For the
lower bounds we need the cardinality and the structure of a maximum subpartition S of Cr.
Notice that there exists S which contains

• no vertices of degree 1 and r
2 vertices of degree 2 if r ≡ 0 (mod 4);

• two vertices of degree 1 and r−3
2 vertices of degree 2 if r ≡ 1 (mod 4);

• two vertices of degree 1 and r−2
2 vertices of degree 2 if r ≡ 2 (mod 4);

• one vertex of degree 1 and r−1
2 vertices of degree 2 if r ≡ 3 (mod 4).

From this the lower bounds follow directly from Theorem 3. 2

Next results are given for the lexicographic products of cycles and/or paths.

Proposition 6. Let r, t ≥ 3 be integers.

(i) If t ≡ 0 (mod 4), then M0(Cr ◦ Ct) = rt
2 .

(ii) If t ≡ 1 (mod 4), then
⌈
rt
2

⌉
≤M0(Cr ◦ Ct) ≤ rt

2 −
r
2 +M0(Cr). Moreover,

(a) if r ≡ 0 (mod 4), then M0(Cr ◦ Ct) = rt
2 ,

(b) if r is odd, then M0(Cr ◦ Ct) = rt+1
2 ,

(c) if r ≡ 2 (mod 4), then rt
2 ≤M0(Cr ◦ Ct) ≤ rt

2 + 1.

(iii) If t ≡ 2 (mod 4), then
⌈
rt
2

⌉
≤M0(Cr ◦ Ct) ≤ rt

2 +
⌊
r
2

⌋
.

(iv) If t ≡ 3 (mod 4), then
⌈
rt
2

⌉
≤M0(Cr ◦ Ct) ≤ r(t+1)

2 .

Proof. First notice that, since Cr ◦Ct is a (2t+2)-regular graph, from Corollary 2 it follows
that M0(Cr ◦ Ct) ≥

⌈
rt
2

⌉
and all the lower bounds follow. Now, let V1 = {u0, u1, ..., ur−1}

and V2 = {v0, v1, ..., vt−1} be the vertex sets of Cr and Ct, respectively (operations with the
subscripts of ui and vj will be done modulo r and t, respectively). We consider the following
cases.

Case 1: t ≡ 0 (mod 4). From Lemma 1 we have that M0(Ct) = t
2 . Hence, by Theorem

1, we obtain that M0(Cr ◦ Ct) ≤ rM0(Ct) = rt
2 and (i) follows.

Case 2: t ≡ 1 (mod 4). By Lemma 1 we have that M0(Ct) = t+1
2 . Thus, there exists

a M0(Ct)-set A such that v0, v1, v2 ∈ A and let X be a M0(Cr)-set. We claim that the
set M = (V1 × A)− (X × {v0}) (recall that X is the complement of X) is a 0-monopoly in
Cr ◦ Ct. To see this, notice that if ui ∈ X, then the corresponding uiCt-layer contains t+1

2
vertices of M and, if ui /∈ X, then the uiCt-layer contains t+1

2 −1 vertices of M . Also, notice
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that every vertex of (ui, vj) ∈ M has at least one neighbor in M ∩ uiCt and at least one
neighbor in M ∩ Cr vj . Hence, for every vertex (ui, vj) we have that

δM (ui, vj) = δM∩ ui−1Ct
(ui, vj) + δM∩ uiCt(ui, vj) + δM∩ ui+1Ct

(ui, vj)

≥ t+ 1

2
+ 1 +

t+ 1

2
− 1

= t+ 1

=
δ(ui, vj)

2
.

As a consequence, we obtain that every vertex of Cr ◦Ct satisfies the 0-monopoly condition.

Thus, the upper bound of (ii) is obtained from the fact that |M | = r(t+1)
2 − r +M0(Cr) =

rt
2 −

r
2 +M0(Cr).

Now, by making some simple calculations, from the bounds of (ii) and Lemma 1, the
items (a), (b) and (c) are obtained.

Case 3: t ≡ 2 (mod 4). We proceed similarly as in the Case 2. By Lemma 1 we have that
M0(Ct) = t+2

2 . Hence, we consider a M0(Ct)-set B such that v0, v1, v2 ∈ B. Let Y ⊂ V1
such that Y = {u0, u2, u4, ..., u2dr/2e−2}. We show that M ′ = (V1 × B) − (Y × {v0}) is a
0-monopoly in Cr ◦ Ct. Notice that, if ui ∈ Y , then the corresponding uiCt-layer contains
t+2
2 − 1 vertices of M ′ and, if ui /∈ Y , then the uiCt-layer contains t+2

2 vertices of M ′. Also,
notice that every vertex of (ui, vj) ∈M ′ has at least one neighbor in M ′ ∩ uiCt. Hence, for
every vertex (ui, vj) we have that

δM ′(ui, vj) = δM ′∩ ui−1Ct
(ui, vj) + δM ′∩ uiCt

(ui, vj) + δM ′∩ ui+1Ct
(ui, vj)

≥ t+ 2

2
− 1 + 1 +

t+ 2

2
− 1

= t+ 1

=
δ(ui, vj)

2
.

Thus, every vertex of Cr ◦Ct satisfies the 0-monopoly condition. Since |M ′| = r(t+2)
2 −

⌈
r
2

⌉
=

rt
2 +

⌊
r
2

⌋
, the upper bound of (iii) is proved.

Case 4: t ≡ 3 (mod 4). The upper bound of (iv) follows directly from Theorem 1 and
Lemma 1. 2

Proposition 7. Let r, t ≥ 3 be integers. If H is either a path Pt or a cycle Ct, then

M0(Pr ◦H) ≥


r
3 (t+ 1), if r ≡ 0 (mod 3),(⌈
r
3

⌉
− 2
)

(t+ 1) + t+ 2, if r ≡ 1 (mod 3),(⌈
r
3

⌉
− 1
)

(t+ 1) + t+2
2 , if r ≡ 2 (mod 3),
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and

M0(Pr ◦H) ≤



rt
2 , if r ≡ 0 (mod 4),

r(t+2)
2 , if r ≡ 2 (mod 4),

r(t+1)
2 , if r ≡ x (mod 4), x ∈ {1, 3}.

Proof. Notice that the graph Pr has always a maximum closed subpartition formed by a
set S of cardinality

⌈
r
3

⌉
which has the following shape.

• If r ≡ 0 (mod 3), then every vertex of S has degree two.

• If r ≡ 1 (mod 3), then there are two vertices in S having degree one and the other
vertices of S have degree two.

• If r ≡ 2 (mod 3), then there is only one vertex in S having degree one and the other
vertices of S have degree two.

Hence, by using Theorem 4 we have the lower bounds. Finally, the upper bounds follow from
Theorem 1 and Lemma 1. 2

The above result can be compared with Proposition 5 and we can observe that the gap
between upper and lower bound is bigger. The reason of this is related to Theorems 3 and
4 for the lower bounds.

Proposition 8. Let r, t ≥ 3 be integers.

(i) If t ≡ 0 (mod 4), then M0(Cr ◦ Pt) = rt
2 .

(ii) If t ≡ x (mod 4), x ∈ {1, 3}, then
⌈
rt
2

⌉
≤M0(Cr ◦ Pt) ≤ r(t+1)

2 .

(iii) If t ≡ 2 (mod 4), then rt
2 ≤M0(Cr ◦ Pt) ≤ r(t+2)

2 .

Proof. Notice that the minimum degree of Pt is one. Since 2t+1 is always an odd number,
Corollary 2 leads to the following

M0(Cr ◦ Pt) ≥
⌈

rt

2t+ 2

⌈
2t+ 1

2

⌉⌉
=

⌈
rt

2t+ 2

2t+ 2

2

⌉
=

⌈
rt

2

⌉
.

The bounds follow from Theorem 1 and Lemma 1. 2

The following results were obtained in [13] for the strong product of graphs. We recall
that the strong product G �H of graphs G and H is a graph with vertex set V (G �H) =
V (G)× V (H). Two vertices (g, h) and (g′, h′) are adjacent in G�H whenever (gg′ ∈ E(G)
and h = h′) or (g = g′ and hh′ ∈ E(H)) or (gg′ ∈ E(G) and hh′ ∈ E(H)). Since Cm�Kn

∼=
Cm◦Kn and Pm�Kn

∼= Pm◦Kn, the next two results are direct consequences of Proposition
3.5 and Proposition 3.6, respectively, from [13].
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Proposition 9. For integers r, t ≥ 3 we have

rt

2
+
r

6
≤M0(Cr ◦Kt) ≤ r

⌈
t+ 1

2

⌉
−
⌊r

3

⌋
.

Moreover, if r ≡ 0(mod 3) and t is odd, then M0(Cr ◦Kt) = rt
2 + r

6 .

Proposition 10. For integers r, t ≥ 3 we have

tr

2
+
r

6
− t

3
≤M0(Pr ◦Kt) ≤



⌊
r
3

⌋
·
⌈
3t+1
2

⌉
, if r ≡ 0 (mod 3),⌊

r
3

⌋
·
⌈
3t+1
2

⌉
+ 1, if r ≡ 1 (mod 3),⌊

r
3

⌋
·
⌈
3t+1
2

⌉
+ t, if r ≡ 2 (mod 3).

Nevertheless, since the lexicographic product is not commutative, we can exchange the
factors to obtain Kr ◦ Ct and Kr ◦ Pt, which we do at next.

Proposition 11. Let r, t ≥ 3 be integers.

(i) If t ≡ 0 (mod 4), then M0(Kr ◦ Ct) = rt
2 .

(ii) If t ≡ x (mod 4), x ∈ {1, 3}, then
⌈
rt
2

⌉
≤M0(Kr ◦ Ct) ≤ r(t+1)

2 .

(iii) If t ≡ 2 (mod 4), then rt
2 ≤M0(Kr ◦ Ct) ≤ r(t+2)

2 .

Proof. We can use Theorem 1 and the values ofM0(Ct) given in Lemma 1 to obtain upper
bounds.

On the other hand, by using the Corollary 2 it follows that

M0(Kr ◦ Ct) ≥
⌈

rt

t(r − 1) + 2

⌈
t(r − 1) + 2

2

⌉⌉
≥
⌈

rt

t(r − 1) + 2

t(r − 1) + 2

2

⌉
=

⌈
rt

2

⌉
.

Therefore, the lower bounds are obtained and the proof is complete. 2

A similar approach can be used for the case of the graph Kr ◦ Pt. Notice that the
expression t(r−1)+1 is an even number if and only if t is odd and r is even. So, for t even or
(t odd and r odd), since the minimum degree of Pt is one, Corollary 2 leads to the following:

M0(Kr ◦ Pt) ≥
⌈

rt

t(r − 1) + 2

⌈
t(r − 1) + 1

2

⌉⌉
=

⌈
rt

t(r − 1) + 2

t(r − 1) + 2

2

⌉
=

⌈
rt

2

⌉
.

According to that, we have the next result.

Proposition 12. Let r, t ≥ 3 be integers.

(i) If t ≡ 0 (mod 4), then M0(Kr ◦ Pt) = rt
2 .

(ii) If t ≡ x (mod 4), x ∈ {1, 3} and r is odd, then
⌈
rt
2

⌉
≤M0(Kr ◦ Pt) ≤ r(t+1)

2 .

(iii) If t ≡ 2 (mod 4), then rt
2 ≤M0(Kr ◦ Pt) ≤ r(t+2)

2 .
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(iv) If t ≡ x (mod 4), x ∈ {1, 3} and r is even, then
⌈

rt
t(r−1)+2

⌈
t(r−1)+1

2

⌉⌉
≤M0(Kr◦Pt) ≤

r(t+1)
2 .
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