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Abstract

For a polynomial p(z) of degree n, having all its zeros in |z| ≤ k, (k ≥ 1), we
obtain a refinement of known result [2]

max
|z|=1

|p′(z)| ≥ n

1 + kn
max
|z|=1

|p(z)|,

(by using certain coefficients of p(z)), and an inequality, similar to known result involving
sth derivative, (2 ≤ s ≤ n), instead of the first derivative of p(z) (and better than the
similar inequality, obtained by repeated applications of known result, in many cases).
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1 Introduction and statement of results

For an arbitrary polynomial f(z) let M(f, r) = max|z|=r |f(z)|. Further let p(z) =∑n
j=0 ajz

j be a polynomial of degree n. Concerning the estimate of |p′(z)| on |z| ≤ 1, we
have firstly obtained

Theorem 1. Let p(z) =
∑n
j=0 ajz

j be a polynomial of degree n, having all its zeros in
|z| ≤ k, (k ≥ 1). Then

M(p′, 1) ≥ n |a0|+ |an|kn+1

|a0|(1 + kn+1) + |an|(kn+1 + k2n)
M(p, 1).

The result is best possible with equality for the polynomial p(z) = zn + kn.

Secondly we have obtained a result, similar to Theorem 1, involving the sth derivative of
p(z), (2 ≤ s ≤ n), instead of the first derivative of p(z). More precisely we have proved

Theorem 2. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ k, (k ≥ 1) then
for 2 ≤ s ≤ n

M(p(s), 1) ≥ n(n− 1)(n− 2) . . . (n− s+ 1)[kn +
s−1∑
t=1

(st ){(1 + kn−t)(1 + kn−t−1) . . . (1 + kn−s+1)}+ (ss)]
−1M(p, 1).
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Remark 1. Theorem 1 is a refinement of Govil’s result [2]

M(p′, 1) ≥ n

1 + kn
M(p, 1). (1.1)

Remark 2. Theorem 2 is better than the result

M(p(s), 1) ≥ n(n− 1)(n− 2) . . . (n− s+ 2)(n− s+ 1)

(1 + kn)(1 + kn−1) . . . (1 + kn−s+2)(1 + kn−s+1)
M(p, 1), (1.2)

(obtained by repeated applications of ineq.(1.1)), for

k > k0,

where k0(> 1) is the greatest positive root of the equation

{(1+kn−s+1) . . . (1+kn−1)(1+kn)}−[kn+

s−1∑
t=1

(st ){(1+kn−t)(1+kn−t−1) . . . (1+kn−s+1)}+1] = 0,

(it being easily observed that left hand side of the equation is negative for k = 1).

Remark 3. For the polynomial

p(z) = (z + 1)2(z + 2),

having all its zeros in |z| ≤ 2,

M(p′, 1) ≥ 4, (by ineq. (1.1)),

M(p′, 1) ≥ 5.684, (by Theorem 1),

thereby implying that we get better estimate for M(p′, 1) by Theorem 1 than by ineq.( 1.1)
and similarly

M(p′′, 1) ≥ 1.6, (by ineq. (1.2)),

M(p′′, 1) ≥ 3.789, (by Theorem 2),

thereby implying that we get better estimate for M(p′′, 1) by Theorem 2 than by ineq. (1.2).

2 Lemmas

For the proofs of the theorems we require the following lemmas.

Lemma 1. If p(z) is a polynomial of degree n then

max
|z|=R

|p(z)| ≤ Rn(max
|z|=1

|p(z)|), R ≥ 1,

with equality only for p(z) = λzn.

Proof of Lemma 1. It is a simple consequence of maximum modulus principle, (see [4]).
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Lemma 2. Let f(z) be analytic in |z| < 1, with f(0) = a and |f(z)| ≤M , |z| < 1. Then

|f(z)| ≤MM |z|+ |a|
|a||z|+M

, |z| < 1.

Lemma 2 is a well-known generalization of Schwarz’s lemma, (see [5, p.212 ]).

Lemma 3. Let f(z) be analytic in |z| ≤ 1, with f(0) = a and |f(z)| ≤M, |z| ≤ 1. Then

|f(z)| ≤M M |z|+|a|
|a||z|+M , |z| ≤ 1.

Proof of Lemma 3. It easily follows from Lemma 2.

Lemma 4. Let p(z) be a polynomial of degree n and

q(z) = znp(1/z).

Then for 1 ≤ s ≤ n

q(s)(z) = (n(n− 1) . . . (n− s− 1))zn−s p(1/z)−
(s1)((n− 1)(n− 2) . . . (n− s− 1))zn−s−1 p′(1/z) +

(s2)((n− 2)(n− 3) . . . (n− s− 1))zn−s−2 p′′(1/z)−
(s3)((n− 3)(n− 4) . . . (n− s− 1))zn−s−3 p′′′(1/z) + . . .+

(−1)t(st )((n− t) . . . (n− s− 1))zn−s−t p(t)(1/z) + . . .+

(−1)s−1(ss−1)(n− s− 1)zn−s−s−1 p(s−1)(1/z) +

(−1)s(ss)z
n−2s p(s)(1/z).

Proof of Lemma 4. It follows easily by mathematical induction.

Lemma 5. If p(z) is polynomial of degree n, having all its zeros in |z| ≤ k, (k ≥ 1) then
for 2 ≤ s ≤ n and 1 ≤ t ≤ s− 1

{(n−t)(n−t−1) . . . (n−s− 1)}M(p(t), 1) ≤ {(kn−t+1)(kn−t−1+1) . . . (kn−s−1+1)}M(p(s), 1).

Proof of Lemma 5. It follows by repeated applications of ineq.(1.1).

Lemma 6. Let T (z) be a polynomial of degree n, having all its zeros in |z| ≤ 1 and let
R(z) be a polynomial with its degree ≤ n. If

|R(z)| ≤ |T (z)|, |z| = 1 (2.1)

then for 0 ≤ s ≤ n

|R(s)(z)| ≤ |T (s)(z)|, |z| ≥ 1, (R(0)(z) = R(z), T (0)(z) = T (z)).

Proof of Lemma 6. Using (2.1) we can say that the zero z′j , (with |z′j | = 1 and multiplicity
tj), of T (z) will also be a zero, (with muliplicity (≥ tj)), of R(z), thereby helping us to write

T (z) = φ0(z)T1(z), (2.2)

R(z) = φ0(z)R1(z), (2.3)

φ0(z) =

{
Πm
j=1(z − z′j)tj ; |z′j | = 1 ∀j with

∑m
j=1 tj = t, T (z) has certain zeros on |z| = 1,

1 , T (z) 6= 0 on |z| = 1,
(2.4)

T1(z) 6= 0, |z| = 1, (2.5)
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with

|R1(z)| ≤ |T1(z)|, |z| = 1, (by (2.1), (2.2), (2.3) and (2.4)). (2.6)

Firstly let T (z) have certain zeros on |z| = 1. Then by (2.2), (2.4) and (2.5) we can say that
T1(z) is a polynomial of degree (n− t), having all its zeros in |z| < 1. Now by (2.6) we have
for λ with |λ| > 1

|R1(z)| < |λT1(z)|, |z| = 1.

Therefore by Rouché’s theorem, the polynomial λT1(z)−R1(z) will have (n−t) zeros in |z| < 1
and accordingly the polynomial λT (z)−R(z) will have all its zeros in |z| ≤ 1. Further by using
Gauss-Lucas’ theorem we can say that for 0 ≤ s ≤ n, the polynomial λT (s)(z)−R(s)(z) will
have all its zeros in |z| ≤ 1 and therefore |R(s)(z)| ≤ |T (s)(z)|, |z| > 1. On using continuity
Lemma 6 follows for the possibility under consideration. Finally let T (z) 6= 0 on |z| = 1.
Then T1(z) = T (z), (a polynomial of degree n), (by ( 2.2) and ( 2.4)), R1(z) = R(z), (by
( 2.3) and ( 2.4)). Now Lemma 6 for the present possibility will follow similar to previous
possibility. This completes the proof of Lemma 6.

Remark 4. Lemma 6 is a generalization of Bernstein’s result( [1], [3, Theorem C]).

Lemma 7. If p(z) is a polynomial of degree n, having all its zeros in |z| ≤ k, (k ≥ 1)
and

q(z) = znp(1/z) (2.7)

then for 0 ≤ s ≤ n
M(q(s), 1) ≤ knM(p(s), 1).

Proof of Lemma 7. We observe that

P (z) = p(kz) (2.8)

is a polynomial of degree n, having all its zeros in |z| ≤ 1 and

Q(z) = znP (1/z), (2.9)

= kn(
z

k
)np(k/z), (by (2.8)),

= knq(z/k), (by (2.7)) (2.10)

is a polynomial of degree ≤ n, with the characteristic |Q(z)| = |P (z)|, |z| = 1. Therefore by
Lemma 6 we can say that for 0 ≤ s ≤ n

|Q(s)(z)| ≤ |P (s)(z)|, |z| ≥ 1, (2.11)

i.e.
kn−2s|q(s)( z

k
)| ≤ |p(s)(kz)|, |z| ≥ 1, (by (2.8) and (2.10)). (2.12)

On taking z = keiθ, 0 ≤ θ ≤ 2π, in (2.12) we get for 0 ≤ s ≤ n

kn−2s|q(s)(eiθ)| ≤ |p(s)(k2eiθ)|, 0 ≤ θ ≤ 2π,

which implies

kn−2sM(q(s), 1) ≤ M(p(s), k2),

≤ (k2)n−sM(p(s), 1), (by Lemma 1)

and Lemma 7 follows.



On the Derivatives of a Polynomial 343

3 Proofs of the theorems

Proof of Theorem 1. By symbols used in Proof of Lemma 7 and inequality (2.11) we
can say that

|Q′(z)| ≤ |P ′(z)|, |z| = 1. (3.1)

Using (3.1) we can say that a zero zj , (with |zj | = 1 and multiplicity mj), of P ′(z) will also
be a zero, with multiplicity (≥ mj), of Q′(z), thereby helping us to write

P ′(z) = φ(z)P1(z), (3.2)

Q′(z) = φ(z)Q1(z), (3.3)

where

φ(z) =

{
1 , P ′(z) 6= 0 on |z| = 1,
Πp
j=1(z − zj)mj ; |zj | = 1∀j , P ′(z) has certain zeros on |z| = 1,

(3.4)

P1(z) 6= 0, |z| = 1 (3.5)

and
|Q1(z)| ≤ |P1(z)|, |z| = 1, (by (3.1), (3.2) and (3.3)). (3.6)

Now as P (z) has all its zeros in |z| ≤ 1, we can say by Gauss-Lucas’ theorem that P ′(z) will
also have all its zeros in |z| ≤ 1. Therefore by (3.2), (3.4) and (3.5), we can say that

ψ(z) =
Q1(z)

P1(z)
(3.7)

is analytic in |z| > r′, (for certain r′, with (0 < r′ < 1)), including ∞ and accordingly

f(z) = ψ(1/z), (3.8)

with

f(0) = ψ(∞) = ltz→∞ψ(z),

= ltz→∞
Q′(z)

P ′(z)
, (by (3.7), (3.2) and (3.3)),

=
a0
ankn

, (by (2.8) and (2.9)) (3.9)

is analytic in |z| < 1
r′ , (

1
r′ > 1). Further |ψ(z)| ≤ 1, |z| = 1, (by (3.6)) and therefore

|f(z)| ≤ 1, |z| = 1, (by (3.8)), (3.10)

which, by (3.9) and Lemma 3, helps us to write

|f(z)| ≤
|z|+ | a0

ankn
|

| a0
ankn
||z|+ 1

, |z| ≤ 1,
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i.e.

|f(reiθ)| ≤ |an|k
nr + |a0|

|a0|r + |an|kn
, r ≤ 1 and 0 ≤ θ ≤ 2π, (3.11)

i.e.

|ψ(
1

r
e−iθ)| ≤ |an|k

nr + |a0|
|a0|r + |an|kn

, 0 < r ≤ 1 and 0 ≤ θ ≤ 2π, (by (3.8)),

i.e.

|ψ(Re−iθ)| ≤ |an|k
n + |a0|R

|a0|+ |an|knR
, R ≥ 1 and 0 ≤ θ ≤ 2π,

i.e.

|Q1(Re−iθ)| ≤ |an|k
n + |a0|R

|a0|+ |an|knR
|P1(Re−iθ)|, R ≥ 1, (by (3.7)),

i.e.

|Q′(Re−iθ)| ≤ |an|k
n + |a0|R

|a0|+ |an|knR
|P ′(Re−iθ)|, R ≥ 1, (by (3.2) and (3.3)),

i.e.

|Q′(z)| ≤ |an|k
n + |a0||z|

|a0|+ |an|kn|z|
|P ′(z)|, |z| ≥ 1,

i.e.

kn−2|q′(z/k)| ≤ |an|k
n + |a0||z|

|a0|+ |an|kn|z|
|p′(kz)|, |z| ≥ 1, (by (2.8) and (2.10)). (3.12)

By taking z = keiθ in (3.12) we get

kn−3|q′(eiθ)| ≤ |an|k
n−1 + |a0|

|a0|+ |an|kn+1
|p′(k2eiθ)|, 0 ≤ θ ≤ 2π,

which implies

kn−3M(q′, 1) ≤ |an|k
n−1 + |a0|

|a0|+ |an|kn+1
M(p′, k2)

and therefore

M(q′, 1) ≤ |an|k
n−1 + |a0|

|a0|+ |an|kn+1
kn+1M(p′, 1), (by Lemma 1). (3.13)

Now by (2.7), we get

|q′(eiθ)|+ |p′(eiθ)| ≥ n|p(eiθ)|, 0 ≤ θ ≤ 2π,

which implies
M(q′, 1) +M(p′, 1) ≥ nM(p, 1)

and on using (3.13) we get

M(p′, 1) ≥ n |a0|+ |an|kn+1

|a0|(1 + kn+1) + |an|(kn+1 + k2n)
M(p, 1). (3.14)

This completes the proof of Theorem 1.
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Remark 5. If instead of, the polynomial p(z) =
∑n
j=0 ajz

j, (of degree n), having all its
zeros in
|z| ≤ k, (k ≥ 1) we consider the polynomial p(z) =

∑n
j=m ajz

j , (0 ≤ m < n), (of degree n),
having all its zeros in |z| ≤ k, (k ≥ 1), then, by thinking of, the function

χ(z) =
Q′(z)

P ′(z)
,

 (P (z) and Q(z), as in (2.8) and (2.9)),
analytic in 1 < |z| <∞, as well as in r′ < |z| < 1,
(for certain r′, with (0 < r′ < 1))

 , (3.15)

=
(n−m)amk

mzn−m−1 + . . .+ an−1k
n−1

nanknzn−1 + . . .+ amkmmzm−1
,

(
analytic in 1 < |z| <∞,
as well as in r′ < |z| < 1

)
,(3.16)

along with

f(z) = ψ(1/z), (as in (3.8)), (3.17)

the relation

f(z) = χ(1/z), (0 < |z| < 1, 1 < |z| < 1/r′),

= zm
(n−m)amk

m + . . .+ an−1k
n−1zn−m−1

nankn + . . .+ amkmmzn−m
, (0 < |z| < 1, 1 < |z| < 1/r′),

(by (3.16)), (3.18)

= zmT (z), (say) , (0 < |z| < 1, 1 < |z| < 1/r′), (3.19)

with

T (0) =
(n−m)amk

m

nankn
, (by (3.19)), (3.20)

= d, (say),

T (z) = f(z)/zm, (0 < |z| < 1, 1 < |z| < 1/r′), (3.21)

T (z) = ltζ→zT (ζ), |z| = 1, (by using (3.21) and (3.17)), (3.22)

|T (z)| ≤ 1, |z| ≤ 1,

 as T (z) is analytic in |z| < 1, by (3.15), (3.19), (3.18)
and (3.20), and T (z) is continuous in |z| ≤ 1, by (3.21),
(3.22) and the fact that T (z) is analytic in |z| < 1


and on applying Lemma 2 to T (z) we get

|T (z)| ≤ |z|+ |d|
1 + |z||d|

, |z| < 1,

which, by (3.21), implies that

|f(z)| ≤ |z|m |z|+ |d|
1 + |z||d|

, 0 < |z| < 1

and therefore

|f(z)| ≤ |z|m |z|+ |d|
1 + |z||d|

, |z| < 1,
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as well as

|f(z)| ≤ |z|m |z|+ |d|
1 + |z||d|

, |z| ≤ 1, (by (3.10)),

i.e.

|f(reiθ)| ≤ n|an|knrm+1 + (n−m)|am|kmrm

n|an|kn + (n−m)|am|kmr
, r ≤ 1,

thereby giving, (on repeating steps from (3.11) to (3.14), (of, Proof of Theorem 1))

M(p′, 1) ≥ n n|an|kn+1 + (n−m)|am|km

n|an|(k2n−m + kn+1) + (n−m)|am|(kn+1 + km)
M(p, 1), (3.23)

a generalization of Theorem 1. (Please note that ( 3.23) is trivially true for m = n also,
thereby suggesting that (3.23) is true for the polynomial p(z) =

∑n
j=m ajz

j , (0 ≤ m ≤ n),
(of degree n), having all its zeros in |z| ≤ k, (k ≥ 1)).

Proof of Theorem 2. Using Lemma 4 we get for 2 ≤ s ≤ n

|q(s)(z)| +

s−1∑
t=1

(st )((n− t)(n− t− 1) . . . (n− s+ 1))|p(t)(z)|+ (ss)|p(s)(z)|

≥ (n(n− 1) . . . (n− s+ 1))|p(z)|, |z| = 1,

which implies

M(q(s), 1) +

s−1∑
t=1

(st )((n− t)(n− t− 1) . . . (n− s+ 1))M(p(t), 1) + (ss)M(p(s), 1)

≥ (n(n− 1) . . . (n− s+ 1))M(p, 1). (3.24)

Now by combining (3.24) with Lemma 5 and Lemma 7 we get for 2 ≤ s ≤ n

[kn +

s−1∑
t=1

(st ){(1 + kn−t)(1 + kn−t−1) . . . (1 + kn−s+1)}+ (ss)]M(p(s), 1)

≥ (n(n− 1) . . . (n− s+ 1))M(p, 1)

and Theorem 2 follows.
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