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Abstract

Let C be a locally finitely presented additive category, and let E be a finitely presented
pure-injective object of C. We prove that E has an indecomposable decomposition if and
only if every pure epimorphic image of E is pure-injective if and only if the endomorphism
ring of E is semiperfect. This extends a module-theoretic result which generalises the
classical Osofsky Theorem.

Key Words: Locally finitely presented category, Krull-Schmidt category, indecom-
posable decomposition, (completely) pure-injective object, semiperfect ring, semisim-
ple ring, Osofsky theorem.
2010 Mathematics Subject Classification: Primary 18E05,
Secondary 18C35, 16D90.

Running title Complete pure-injectivity

1 Introduction

For a finitely accessible additive category C with products and a family (Ui)i∈I of representative
classes of finitely presented objects in C such that each object Ui is pure-injective, C is a Krull-
Schmidt category if and only if each object Ui is completely pure-injective, in the sense that
every pure epimorphic image of the objects Ui is pure-injective [5, Theorem 3.6]. Recall that
the category C is Krull-Schmidt if every finitely presented object of C is a finite direct sum of
indecomposable objects with local endomorphism ring [1, Section 2].

The motivation of the present paper is to establish a local version of the aforementioned
result in a locally finitely presented additive category. More precisely, we show that, for a
locally finitely presented additive category C and a finitely presented pure-injective object E of
C, E has an indecomposable decomposition if and only if E is completely pure-injective. Then
each summand of the indecomposable decomposition of E must have local endomorphism ring,
and we may deduce [5, Theorem 3.6] as a corollary of our theorem.

We use functorial techniques, and we show that, under the above hypotheses, E has an
indecomposable decomposition if and only if its endomorphism ring S is semiperfect, whereas
E is completely pure-injective if and only if S is a completely pure-injective right S-module.
These reduce the problem to a module-theoretic theorem of Gómez Pardo and Guil Asensio [9,
Corollary 2.3].

As a consequence, we show that if C is a locally finitely presented additive category and E
is a finitely presented pure-injective object of C with von Neumann regular endomorphism ring
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S, then E is completely pure-injective if and only if S is semisimple. This extends a result of
Gómez Pardo, Dung and Wisbauer [8, Theorem 1], which is a general version of the Osofsky
Theorem [12] for Grothendieck categories (see also [6]).

2 Locally finitely presented additive categories

We recall some terminology on finitely accessible additive categories, following [13]. An additive
category C is called finitely accessible (locally finitely presented in the terminology of [3]) if it
has direct limits, the class of finitely presented objects is skeletally small, and every object is a
direct limit of finitely presented objects. The category C will be called locally finitely presented
if it is finitely accessible and cocomplete (i.e., it has all colimits), or equivalently, it is finitely
accessible and complete (i.e., it has all limits).

Let C be a finitely accessible additive category. By a sequence

0→ X
f→ Y

g→ Z → 0

in C we mean a pair of composable morphisms f : X → Y and g : Y → Z such that gf = 0.
The above sequence in C is called pure exact if it induces a short exact sequence of abelian
groups

0→ HomC(P,X)→ HomC(P, Y )→ HomC(P,Z)→ 0

for every finitely presented object P of C. This implies that f and g form a kernel-cokernel
pair, that f is a monomorphism and g an epimorphism. In such a pure exact sequence f is said
to be a pure monomorphism and g a pure epimorphism. Pure-injectivity and pure-projectivity
in C are defined in the usual way.

Let C be a locally finitely presented additive category, and let E be an object of C with
endomorphism ring S = EndC(E). We denote by Mod(S) the category of right S-modules.
Since C is complete, Freyd’s Adjoint Functor Theorem [7, p. 84] implies the existence of a left
adjoint T : Mod(S)→ C for the functor H = HomC(E,−) : C → Mod(S) such that TH(E) ∼= E
(see also [2]). As a left adjoint, T preserves direct limits. If E is finitely presented, then H
preserves direct limits as well. In this case, both T and H preserve pure exact sequences by
the following result.

Lemma 1. [5, Lemma 2.1] Let F : A → B be a functor between locally finitely presented additive
categories such that F is left or right exact and preserves direct limits. Then F preserves pure
short exact sequences.

We are also interested in preservation of pure-injectivity and pure-projectivity by some
adjoint functors, as shown in the following lemma.

Lemma 2. Let L : A → B be a functor between locally finitely presented additive categories
having a right adjoint R : B → A. Then:

(1) R preserves pure-injective objects.

(2) If R preserves direct limits, then L preserves pure-projective objects.
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Proof. (1) This is [5, Lemma 2.2].
(2) This is basically dual to (1), but we sketch a proof for completeness. Let A be a pure-

projective object in A and let 0→ X → Y → Z → 0 be a pure short exact sequence in B. The
functor R is left exact as a right adjoint, and preserves direct limits, hence Lemma 1 yields the
pure exact sequence

0→ R(X)→ R(Y )→ R(Z)→ 0

in A. This induces the short exact sequence

0→ HomA(A,R(X))→ HomA(A,R(Y ))→ HomA(A,R(Z))→ 0.

Using the adjointness we have the short exact sequence

0→ HomB(L(A), X)→ HomB(L(A), Y )→ HomB(L(A), Z)→ 0,

which shows that L(A) is pure-projective in B.

Let C be a locally finitely presented additive category, and let E be an object of C. Following
[4, Section 3], we denote by PAdd(E) the class of pure epimorphic images of direct sums of
copies of E. As usual, Add(E) denotes the class of objects isomorphic to direct summands of
direct sums of copies of E. The properties of the class PAdd(E) presented in the rest of the
section will be essential for proving our main theorem.

Lemma 3. Let C be a locally finitely presented additive category, and let E be a finitely presented
object of C. Then PAdd(E) is closed under pure epimorphic images and direct limits.

Proof. This follows similarly as [4, Lemma 3.1].

Theorem 1. Let C be a locally finitely presented additive category, and let E be a finitely
presented object of C with endomorphism ring S = EndC(E). Consider the functor H =
HomC(E,−) : C → Mod(S) and its left adjoint T : Mod(S) → C. Then the adjoint pair
(T,H) induces an equivalence between PAdd(E) and the flat right S-modules.

Proof. Let C ∈ PAdd(E). Then there is a pure epimorphism E(I) → C in C. Since H preserves
direct limits, the induced epimorphism

S(I) = H(E)(I) ∼= H(E(I))→ H(C)

is pure in Mod(S) by Lemma 1. Then H(C) is flat in Mod(S) [14, 36.6]. Also, we have
C = lim

−→
Cj , where each Cj is a finite direct sum of copies of E by [14, 34.2], whose proof works

for any locally finitely presented category. Since TH(E) ∼= E and both T and H preserve direct
sums, the restriction of TH to Add(E) is the identity, hence TH(Cj) ∼= Cj for each Cj . It
follows that

C ∼= lim
−→

TH(Cj) = TH(lim
−→

Cj) = TH(C),

because H and T preserve direct limits.
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Let Z be a flat right S-module. Then Z = lim
−→

Pk, where each Pk is a finitely generated

projective right S-module. Hence T (Z) ∼= lim
−→

T (Pk). There are split epimorphisms Snk → Pk

in Mod(S), hence split epimorphisms

Enk ∼= T (S)nk ∼= T (Snk)→ T (Pk).

It follows that each T (Pk) ∈ PAdd(E). Then T (Z) ∼= lim
−→

T (Pk) ∈ PAdd(E) by Lemma 3. Also,

since HT (S) ∼= S and both T and H preserve direct sums, the restriction of HT to projective
right S-modules is the identity. It follows that

Z = lim
−→

Pk
∼= lim
−→

HT (Pk) ∼= HT (lim
−→

Pk) = HT (Z),

because H and T preserve direct limits.

Corollary 1. Let C be a locally finitely presented additive category, and let E be a finitely
presented object of C. Then PAdd(E) is closed under pure subobjects.

Proof. Consider the functor H = HomC(E,−) : C → Mod(S) and its left adjoint T : Mod(S)→
C. Let 0 → A → B → C → 0 be a pure short exact sequence in C with B ∈ PAdd(E). Then
C ∈ PAdd(E) by Lemma 3. We have an induced pure short exact sequence

0→ H(A)→ H(B)→ H(C)→ 0

in Mod(S) by Lemma 1. Since B ∈ PAdd(E), H(B) is flat in Mod(S) by Theorem 1, hence
H(A) must be flat in Mod(S) [13, Proposition 5.9]. Thus we have H(A) ∼= H(A′) for some
object A′ ∈ PAdd(E) by Theorem 1. This implies that A ∼= A′ ∈ PAdd(E).

3 Complete pure-injectivity of finitely presented objects

Following [9], an object E of a locally finitely presented additive category is called completely
pure-injective if every pure epimorphic image of E is pure-injective. Also, a ring R is called
semilocal if R is semisimple modulo its Jacobson radical [11, p. 7].

Now we are in a position to establish the main result of the paper, which generalises [9,
Corollary 2.5].

Theorem 2. Let C be a locally finitely presented additive category, and let E be a finitely
presented pure-injective object of C with endomorphism ring S = EndC(E). Then the following
statements are equivalent:

(1) E has an indecomposable decomposition.

(2) E is completely pure-injective.

(3) Every pure subobject of E is pure-projective.

(4) S is a semilocal ring.
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(5) S is a semiperfect ring.

(6) S is a completely pure-injective right S-module.

(7) Every pure right ideal of S is pure-projective.

Proof. Consider the functor H = HomC(E,−) : C → Mod(S) and its left adjoint T : Mod(S)→
C. By Lemma 2 it follows that S = H(E) is a pure-injective right S-module.

(5)⇔(6)⇔(7) These follow by [9, Corollary 2.3].
(1)⇔(5) Since both functors T and H preserve direct sums, E has an indecomposable

decomposition in C if and only if so does S = H(E) in Mod(S). Since S is a pure-injective
right S-module, it follows by [15, Theorem 9] and [14, 42.6] that E has an indecomposable
decomposition in C if and only if S is semiperfect.

(2)⇔(6) Assume first that E is completely pure-injective. Let S → Z be a pure epimorphism
in Mod(S). Lemma 1 yields a pure epimorphism E ∼= T (S)→ T (Z) in C, whence T (Z) is pure-
injective in C by hypothesis. Then HT (Z) is pure-injective in Mod(S) by Lemma 2. But Z is
flat in Mod(S) by [14, 36.6], hence we have Z ∼= HT (Z) by Theorem 1. It follows that S is a
completely pure-injective right S-module.

Conversely, assume that S is a completely pure-injective right S-module. Let E → C be a
pure epimorphism in C. Lemma 1 yields a pure epimorphism S = H(E) → H(C) in Mod(S),
whence H(C) is pure-injective in Mod(S) by hypothesis. Then H(C) is flat cotorsion in Mod(S),
which implies that C is pure-injective in C [10, Lemma 3]. Hence E is completely pure-injective.

(3)⇔(7) Assume first that every pure subobject of E is pure-projective. Let I be a pure
right ideal of S, and consider the inclusion monomorphism I → S. Lemma 1 yields a pure
monomorphism T (I)→ T (S) ∼= E in C. Then T (I) is pure-projective in C by hypothesis, which
implies that HT (I) is projective in Mod(S) [3, (3.1) Lemma]. Since I is a flat right S-module,
HT (I) ∼= I by Theorem 1. Hence I is projective.

Conversely, assume that every pure right ideal of S is pure-projective. Let A be a pure
subobject of E. Lemma 1 yields a pure monomorphism H(A) → H(E) = S in Mod(S),
where H(A) is pure-projective by hypothesis. Since H preserves direct limits, TH(A) is pure-
projective in C by Lemma 2. But A ∈ PAdd(E) by Corollary 1, hence we have TH(A) ∼= A by
Theorem 1. Thus A is pure-projective.

(4)⇔(5) Note that an arbitrary ring S is semiperfect if and only if S is semilocal and
idempotents lift modulo the Jacobson radical of S (e.g. see [11, p. 363]). Since S is right pure-
injective, idempotents lift modulo any ideal of S [15, Theorem 9], hence the required equivalence
follows.

Remark 1. Each summand of the indecomposable decomposition of E must have local endo-
morphism ring. Indeed, if C is such an indecomposable pure-injective object of C, then H(C) is
an indecomposable pure-injective right S-module by Lemma 2. But every indecomposable pure-
injective module has a local endomorphism ring [15, Theorem 9], hence EndC(C) ∼= EndS(H(C))
is local.

Following [1, Section 2], a locally finitely presented additive category C is called Krull-
Schmidt if every finitely presented object of C is a finite direct sum of indecomposable objects
with local endomorphism ring. Now we obtain the following corollary, which generalises the
module-theoretic result [9, Corollary 2.6].
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Corollary 2. [5, Theorem 3.6] Let C be a locally finitely presented additive category with a
family (Ui)i∈I of representative classes of finitely presented objects in C such that each object
Ui is pure-injective. Then each object Ui is completely pure-injective if and only if C is a
Krull-Schmidt category.

Proof. The direct implication follows by Theorem 2 and Remark 1. For the converse, see the
proof of [5, Theorem 3.6].

Remark 2. The hypothesis that each finitely presented object is completely pure-injective
from Corollary 2 is satisfied, for instance, if the locally finitely presented additive category is
pure-semisimple.

The next consequence is related to [8, Theorem 1], whose context of a locally finitely gen-
erated Grothendieck category is replaced here by that of a locally finitely presented additive
category. It follows by Theorem 2, because a von Neumann regular semiperfect ring is semisim-
ple. As in [8], an object C of C is called completely injective if every epimorphic image of C is
injective.

Corollary 3. Let C be a locally finitely presented additive category, and let E be a finitely
presented pure-injective object of C with von Neumann regular endomorphism ring S. Then E
is completely pure-injective if and only if S is semisimple.

Corollary 4. Let C be a locally finitely presented additive category, and let E be a finitely
generated projective injective object of C with endomorphism ring S. Then E is completely
injective if and only if S is semisimple.

Proof. This is the same as the proof of [8, Corollary 2], using Corollary 3.
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[6] S. Crivei, C. Năstăsescu, B. Torrecillas, On the Osofsky-Smith theorem, Glasgow
Math. J., 52A (2010), 61–67.

[7] P. Freyd, Abelian categories, Harper and Row, New York, 1964.
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