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Abstract

We investigate surfaces in the nearly Sasakian 5-sphere for which the structure vector
field ξ is normal to the surface and which are anti-invariant with respect to the nearly
Sasakian structure. We show that such surfaces are always minimal. We moreover
obtain a correspondence between such surfaces and minimal Lagrangian surfaces in the
complex projective space. We also show the same results for surfaces in the nearly
cosymplectic 5-sphere.
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1 Introduction

The notion of a nearly Sasakian structure on an almost contact metric manifold has been
introduced by Blair, Showers and Yano in [3]. The basic properties of such a manifold
will be recalled in Section 2. They also give necessary and sufficient condition for when a
hypersurface of a nearly Kaehler manifold inherits a nearly Sasakian structure. An example
of such hypersurface is the 5-dimensional sphere S5, with radius 1√

2
umbilically embedded

at an angle of π
4 . As on this sphere all sectional curvatures are equal to 2, it immediately

follows that its inherited structure is not a Sasakian structure.

The notion of nearly cosymplectic structure on an almost contact metric manifold was
introduced and studied by Blair and Showers some years earlier in [1] and [2]. They show also
that the totally geodesic 5-sphere in the nearly Kaehler 6-sphere, has a nearly cosymplectic
structure.

Submanifolds of the nearly Kaehler sphere S6 have been investigated by many authors
leading to many classification results. The existence of such a structure for the 6-sphere was
proved by Fukami and Ishihara [8] by using the properties of the Cayley algebra. The study
of the surfaces in nearly Keahlerian 6-dimensional sphere were already realized by Bolton,
Dillen, Opozda, Verstraelen, Vrancken and Woodward (see [4], [6]).

In contrast to previous submanifolds of the nearly Kaehler sphere S6, we have few results
about nearly Sasakian manifolds. For example, Cappelletti-Montano and Dileo focused on
the 5-dimensional case and proved that there exists a one-to-one correspondence between
nearly Sasakian structures and some special class of SU(2)-structures, (see [5]). Moreover,
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almost nothing is known about submanifolds of the nearly Sasakian S5. This despite the
fact that it is by far the easiest example of a non trivial nearly Sasakian manifold.

In this paper we will focus on surfaces of the nearly Sasakian S5 and the nearly cosym-
plectic S5 for which the structure vector field ξ is normal to the surface. In the Sasakian
case, submanifolds of dimension n of a (2n + 1)-dimensional Sasakian sphere for which ξ is
normal are called, depending on the literature, C-totally real or horizontal submanifolds. In
that case, it is known that such submanifolds are always anti invariant, i.e. the structure ϕ
maps tangent vectors to normal vectors. In this paper we first show that this is no longer
the case in the nearly Sasakian 5-sphere or the nearly cosymplectic 5-sphere.

In view of this, we suggest to call a surface of the 5-sphere with nearly Sasakian structure,
or nearly cosymplectic structure, totally real if and only if the structure vector field ξ is normal
to the surface and ϕ maps tangent vectors to normal vectors. Note that in the Sasakian case
the second condition is redundant.

The main result we will prove about such surfaces is the following:

Theorem 1. A totally real surface of the nearly Sasakian S5 is always minimal.

Note that this result is also valid for the surfaces in nearly cosymplectic 5-sphere, (see
theorem 2). This result is neither true for C-totally real surfaces in Sasakian manifolds or
for totally real surfaces of the nearly Kaehler 6-sphere.

As a consequence of the minimality, we can also obtain a local correspondence between to-
tally real surfaces of the S5 with nearly Sasakian structure, or nearly cosymplectic structure,
and minimal Lagrangian surfaces of the complex projective space CP 2 (see theorem 3).

2 Preliminaries

We begin by recalling some fundamental proprieties of almost contact manifolds, nearly
Sasakian manifolds and nearly cosymplectic manifolds.

2.1 Almost contact manifolds

A (2n + 1)-dimensional manifold M̄2n+1 of class C∞ is said to have an almost contact
structure with an associated Riemannian metric g if there exist on M̄2n+1 a tensor field ϕ
of type (1,1), a unit vector field ξ and dual 1-form η with respect to which the fallowing are
satisfied : for any vector field X, Y on M̄2n+1

ϕ2X = −X + η(X)ξ, η(ξ) = 1, g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ), and it get that ϕ(ξ) =
0, η(ϕX) = 0, rank ϕ = 2n. For details we refer to [9] and [11].

2.2 Nearly Sasakian manifolds

An almost contact metric structure (ϕ, ξ, η, g) is said to be nearly Sasakian, if
(∇Xϕ)Y + (∇Y ϕ)X = −2g(X,Y )ξ + η(X)Y + η(Y )X, where ∇ denotes covariant differ-
entiation with respect to the Levi Civita connection of g. On a nearly Sasakian mani-
fold, we know that the vector field ξ is Killing. Note that a vector field ξ is called a
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Killing vector field if and only if Lξg(X,Y ) = g(∇ξX,Y ) + g(X,∇ξY ) = 0, for all vec-
tors fields X,Y , where L denotes Lie differentiation. It follows from [3] and [11] that
(∇ξϕ)ξ = 0, ϕ∇ξξ = 0, ∇ξξ = 0, ∇ξη = 0. In [3] the authors proved the theorem:
Theorem A. Let M2n+1 be a hypersurface of a nearly Kaehler manifold M2n+2. Then the
induced structure on M2n+1 is nearly Sasakian if and only if
h(X,Y ) = g(X,Y ) + (h(ξ, ξ) − 1)η(X)η(Y ), for all X,Y vectors fields in M2n+1, where h
denotes the second fundamental form.

2.3 Nearly cosymplectic manifolds

An almost contact metric manifold whose tensors are Killing field is called nearly cosymplec-
tic, if: (∇Xϕ)X = 0, or (∇Xϕ)Y + (∇Y ϕ)X = 0, where ∇ denotes covariant differentia-
tion with respect to the Levi Civita connection of g. On a nearly cosymplectic manifold we
know that the vector field ξ is Killing. In [1] the authors proved the theorem:
Theorem B. Let M2n a nearly Kaehler manifold and M2n−1 a C∞ orientable hypersurface.
Let η denote the induced almost contact form and suppose the second fundamental form h is
proportional to η⊗η. Then η is Killing and in particular, on M2n−1, it is nearly cosymplectic.

2.4 Cayley algebra on R7

The multiplication on the Cayley numbers may be used to define a vector cross product on
the purely imaginary Cayley numbers R7 using the formula u× v = 1/2(uv − vu), while the
standard inner product on R7 is given by 〈u, v〉 = −1/2(uv + vu). An ordered orthonormal
basis, e1, e2, ..., e7 is called a G2-frame if e3 = e1×e2, e5 = e1×e4, e6 = e2×e4, e7 = e3×e4.
We refer the reader to [7] for more details.

2.5 Nearly Sasakian structure on S5

In [3] the authors show how to induce a nearly Sasakian structure on S5. In order to do
so, they look at S5 as a hypersurface in S6 equipped with its nearly Kaehler structure. We
have S5 ↪→ S6 ↪→ R7, where S6 is the unit sphere in R7 with its cross product × induced
by the Cayley algebra. We denote by P the unit outer normal. It is well known that S6

has a nearly Kaehler structure with respect to the induced metric, we now consider S5

umbilically embedded in S6 at a latitude of 45◦, and with normal unit N such that the
second fundamental form h̃(X,Y ) = g(X,Y ). Then we see that the induced structure on S5

from the nearly Kaehler structure is nearly Sasakian. In this case we have: for P ∈ S5, V
tangent vector to S5 and N the normal vector of S5 in S6 : P = 1√

2
(x1, x2, x3, 1, x5, x6, x7),

N = − 1√
2
(x1, x2, x3,−1, x5, x6, x7), V = 1√

2
(v1, v2, v3, 0, v5, v6, v7), and ξ and ϕ from the

nearly Sasakian structure are respectively given by

ξ = −P ×N, ϕ(V ) = P × V − η(V )N, η(V ) = 〈ξ, V 〉.

With the cross product, we obtain that ξ = (x5, x6, x7, 0,−x1,−x2,−x3).
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2.6 Nearly cosymplectic structure on S5

In [1] the author show how to induce a nearly cosymplectic structure on S5. In order to do
so, they look at S5 as a hypersurface in S6 equipped with its nearly Kaehler structure. We
have S5 ↪→ S6 ↪→ R7, where S6 has the same structure as constructed before. We denote by
P the unit outer normal. We now consider S5 as a totally geodesic hypersurface of S6. Then
the induced structure on S5 from the nearly Kaehler structure is nearly cosymplectic. We
denote by V and N a tangent vector to S5 and the normal vector of S5 in S6 at the point
P ∈ S5. P = (x1, x2, x3, 0, x5, x6, x7), N = (0, 0, 0, 1, 0, 0, 0), V = (v1, v2, v3, 0, v5, v6, v7),
and ξ and ϕ from the nearly cosymplectic structure are respectively given by

ξ = −P ×N, ϕ(V ) = P × V − η(V )N, η(V ) = 〈ξ, V 〉.

With the cross product, we obtain that ξ = (−x5,−x6,−x7, 0, x1, x2, x3).

2.7 Totally real surfaces

Definition 1. Let M a surface of S5 with nearly Sasakian structure or nearly cosymplectic
structure , we say that M is totally real submanifold of S5 if for all P ∈M we have

ξ ∈ NpM and ϕ(TpM) ⊂ NpM, (2.1)

where NPM and TPM denote respectively the normal space and the tangent space to M at
the point P .

Let D be the standard Riemannian connection in R7. We denote the induced connections
in S6, S5 and M by the previously mentioned immersions, respectively by ∇̃, ∇̄ and∇. Using
the Gauss formula, we have

DXY = ∇̃XY − 〈X,Y 〉P, ∇̃XY = ∇̄XY + h̃(X,Y )N, ∇̄XY = ∇XY + h(X,Y ),

where P denotes the position vector of the immersion of M into R7, and h, h̃ are the second
fundamental forms of M and S5 respectively, and X,Y are tangent vectors fields on M . It
then follows that

DXY = ∇XY︸ ︷︷ ︸
TpM

+h(X,Y )︸ ︷︷ ︸
NpM︸ ︷︷ ︸

TpS5

+ h̃(X,Y )N︸ ︷︷ ︸
NpS5

︸ ︷︷ ︸
TpS6

−〈X,Y 〉P︸ ︷︷ ︸
NpS6

︸ ︷︷ ︸
TpR7

. (2.2)

Remarks :

1. As we have previously mentioned, a n-dimensional manifold of a Sasakian manifold,
for which ξ is normal, is always anti-invariant, i.e. ϕ(TPM) ⊂ NPM . In the following
examples we show that this result is no longer true in the 5-sphere with nearly Sasakian
structure or nearly cosymplectic structure.
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2. In the case of nearly cosymplectic structure, S5 is totally geodesic in S6, then h̃ is
vanishes, and the Gauss formula is given by :

DXY = ∇XY + h(X,Y )− 〈X,Y 〉P.

Example 1 : We look at S2, which we parametrize in the usual way by
(cosθ cosψ, sin θ cosψ, sinψ). We define a 1-parameter family of immersions in the nearly
Sasakian S5 ⊂ S6(1) ⊂ R7 by

P = 1√
2
(cos a cos θ cosψ, cos a sin θ cosψ, cos a sinψ, 1,

sin a cos θ cosψ, sin a sin θ cosψ, sin a sinψ),

where a is an arbitrary constant. Straightforward computations yield that :

∂P

∂θ
=

1
√
2



− cos a sin θ cosψ
cos a cos θ cosψ

0
0

− sin a sin θ cosψ
sin a cos θ cosψ

0


, ϕ(

∂P

∂θ
) =

1

2



−
√
2 sin a sin θ cosψ − 1

2 cos 2a cos θ sin 2ψ

cosψ
(√

2 sin a cos θ − cos 2a sin θ sinψ
)

cos 2a cos2 ψ
0

cos a cosψ
(√

2 sin θ + 2 sin a cos θ sinψ
)

cos a cosψ
(
2 sin a sin θ sinψ −

√
2 cos θ

)
−2 cos a cos2 ψ sin a


,

∂P

∂ψ
=

1
√
2



− cos a cos θ sinψ
− cos a sin θ sinψ

cos a cosψ
0

− sin a cos θ sinψ
− sin a sin θ sinψ

sin a cosψ


, ϕ(

∂P

∂ψ
) =

1

2



cos 2a sin θ −
√
2 sin a cos θ sinψ

− cos 2a cos θ −
√
2 sin a sin θ sinψ√

2 sin a cosψ
0

cos a
(√

2 cos θ sinψ − 2 sin a sin θ
)

cos a
(
2 sin a cos θ +

√
2 sin θ sinψ

)
−
√
2 cos a cosψ


.

We also get that ξ = (− sin a cos θ cosψ, − sin a sin θ cosψ, − sin a sinψ, 0,

cos a cos θ cosψ, cos a sin θ cosψ, cos a sinψ),

from which it follows that
〈ϕ(∂P∂θ ), ξ〉 = 〈ϕ(∂P∂ψ ), ξ〉 = 〈ϕ(∂P∂θ ), ϕ(∂P∂ψ )〉 = 〈ϕ(∂P∂θ ), ∂P∂θ 〉 = 〈ϕ(∂P∂ψ ), ∂P∂ψ 〉 = 0, and

〈ϕ(∂P∂θ ), ∂P∂ψ 〉 = − 1
2
√
2

cos 3a cosψ, 〈ϕ(∂P∂ψ ), ∂P∂θ 〉 = 1
2
√
2

cos a(1− 2 cos 2a) cosψ.

So we see that for all of these examples ξ is a normal vector to the immersion. However
ϕ(TpM) * NpM , unless a = ±π6 + kπ , or a = π

2 + kπ, where k ∈ Z.

Therefore, in the nearly Sasakian case we define the notion of a totally real submanifold
by demanding that ξ is normal and ϕ(TPM) ⊂ NPM . So for the immersions in our family
which are totally real, i.e. when a = ±π6 + kπ , or a = π

2 + kπ, we will now compute the

second fundamental form. Note that in this case, {ϕ(∂P∂θ ), ϕ(∂P∂ψ ), ξ} is a frame of normal
space consisting of the mutually orthogonal vectors. Therefore the second fundamental form
of the immersion is given by

h(
∂P

∂ζ1
,
∂P

∂ζ2
) =
〈 ∂2P
∂ζ1∂ζ2

, ϕ(∂P∂θ )〉∣∣∂P
∂θ

∣∣2 ϕ(
∂P

∂θ
) +
〈 ∂2P
∂ζ1∂ζ2

, ϕ(∂P∂ψ )〉∣∣∣∂P∂ψ ∣∣∣2 ϕ(
∂P

∂ψ
) + 〈 ∂2P

∂ζ1∂ζ2
, ξ〉ξ,
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where ζ1, ζ2 ∈ {θ, ψ}. Before fixing a, straightforward computations, show that

〈∂
2P
∂θ2 , ϕ(∂P∂ψ )〉, 〈∂

2P
∂θ2 , ξ〉, 〈

∂2P
∂ψ2 , ϕ(∂P∂θ )〉, 〈∂

2P
∂ψ2 , ϕ(∂P∂ψ )〉, 〈∂

2P
∂ψ2 , ξ〉, 〈 ∂

2P
∂ψ∂θ , ϕ(∂P∂θ )〉, 〈 ∂

2P
∂ψ∂θ , ξ〉 are all

vanished, and

〈∂
2P

∂θ2
, ϕ(

∂P

∂θ
)〉 = − 1

2
√

2
cos a(1− 2 cos 2a) cos2 ψ sinψ,

〈 ∂
2P

∂ψ∂θ
, ϕ(

∂P

∂ψ
)〉 = − 1

2
√

2
cos a(1− 2 cos 2a) sinψ.

Then, if M is totally real we find h(∂P∂θ ,
∂P
∂θ ) = h(∂P∂θ ,

∂P
∂ψ ) = h(∂P∂ψ ,

∂P
∂ψ ) = 0.

Therefore we obtain our examples of totally real surfaces S2 which are totally geodesic in
the nearly Sasakian S5.

Example 2 : We look at S2, which we parametrize in the usual way by
(cosθ cosψ, sin θ cosψ, sinψ). We define a 1-parameter family of immersions in the nearly
cosymplectic S5 ⊂ S6(1) ⊂ R7 by

P = (cos a cos θ cosψ, cos a sin θ cosψ, cos a sinψ, 0,

sin a cos θ cosψ, sin a sin θ cosψ, sin a sinψ),

where a is an arbitrary constant.

In the same way as in the Example I, we prove that ϕ(TPM) 6⊂ NPM unless a = π
2 + kπ

or a = ±π3 + kπ, where k ∈ Z.

Therefore we obtain our examples of totally real surfaces S2 which are totally geodesic
in the nearly cosymplectic S5.

3 Main results

In this section we have always two possible cases : the surface M is a submanifold of the
nearly Sasakian sphere S5 or a submanifold of the nearly cosymplectic sphere S5.

3.1 Surfaces in the nearly Sasakian 5-sphere

In this subsection, M will always denote a totally real surface of the 5-dimension nearly
Sasakian sphere S5 which we consider as a subset of R7. The structure of M is, as previously,
built with the immersions :

M ↪→ S5 ↪→ S6 ↪→ R7. (3.1)

We now will start the proof of theorem 1. We divide it into three lemmas.

Lemma 1. Let M be a totally real surface of the 5-dimensional nearly Sasakian sphere and
let {u, v} be a local orthonormal basis of tangent vector fields on M . Then {ξ, ϕu, ϕv} is an
orthonormal basis of the normal space NpM . Moreover a basis of R7 is given by

{u, v︸ ︷︷ ︸
TpM

, ξ , ϕu , ϕv︸ ︷︷ ︸
NpM

, −N︸ ︷︷ ︸
NpS5

, p︸ ︷︷ ︸
NpS6

},
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where we denote ϕV := ϕ(V ).

Proof: We have ξ = −P × N and ϕu = P × u − η(u)N . As η(u) = 〈u, ξ〉 = 0, it follows
ξ = −P ×N, ϕu = P × u, ϕv = P × v. Using the properties of the cross product we get :

〈ξ, ϕu〉 =〈−P ×N,P × u〉=− 〈P, P 〉〈N, u〉+ 〈P,N〉〈P, u〉 = 0,

〈ξ, ϕv〉 =〈−P ×N,P × v〉=− 〈P, P 〉〈N, v〉+ 〈P,N〉〈P, v〉 = 0,

〈ϕu, ϕv〉=〈P × u, P × v〉 =〈P, P 〉〈u, v〉 − 〈P, u〉〈P, v〉 = 0.

thus ξ⊥ϕu, ξ⊥ϕv and ϕu⊥ϕv. In order to be able to use the multiplication table for the
cross product in R7, we first remark that ξ = −P ×N = u × v and therefore {u = e2, v =
e4, P × u = e3, P × v = e5, ξ = e6, −N = e7, P = e1} is a G2 basis along the surface.

Lemma 2. On the surface M , for any tangent vector fields X,Y , we have h(X,Y )⊥ ξ.
Moreover, we get :

〈h(u, v), ϕv〉 = 〈h(v, v), ϕu〉, 〈h(u, v), ϕu〉 = 〈h(u, u), ϕv〉.

Proof: We know that ξ is in the normal space of M in S5, then 〈ξ, u〉 = 〈ξ, v〉 = 0.
From Dv〈u, ξ〉 = 0 we have 〈h(u, v), P ×N〉︸ ︷︷ ︸

Symmetric

+ 〈u× v,N〉︸ ︷︷ ︸
antisymmetric

= 0,

so 〈h(u, v), P ×N〉 = 0 and Dv〈u, ξ〉 = 0⇒ h(u, v)⊥ ξ.
In the same way, from Du〈u, ξ〉 = 0 and Dv〈v, ξ〉 = 0 respectively, we get h(u, u)⊥ ξ and
h(v, v)⊥ ξ. Therefore h(X,Y )⊥ ξ, for any tangent vector fields X and Y on M . Next using
that the immersion is anti-invariant, i.e. 〈u, ϕv〉 = 0 and 〈v, ϕu〉 = 0, we deduce that:

Dv〈u, ϕv〉 = 0⇒ 〈h(u, v), P × v〉 = 〈h(v, v), P × u〉,
Du〈v, ϕu〉 = 0⇒ 〈h(u, v), P × u〉 = 〈h(u, u), P × v〉.

This completes the proof of the lemma.

Lemma 3. We have ∇uu = α v, ∇vu = β v, ∇vv = −β u, ∇uv = −αu,
where α and β are local functions on M .

Proof: We have 〈u, u〉 = 〈v, v〉 = 1 and 〈u, v〉 = 0. From Du〈u, u〉 = 2〈Duu, u〉 = 0 we
have 〈∇uu, u〉 = 0. Then Du〈u, u〉 = 0 ⇒ ∇uu = α v, where α ∈ F(M). In the same way,
the fact that Dv〈u, u〉 = Dv〈v, v〉 = Du〈v, v〉 = Dv〈u, v〉 = Du〈u, v〉 = 0, we get that there
exist local functions α′, β and β′ on M such that: ∇vu = β v, ∇vv = α′ u, ∇uv = β′ u and
α′ = −β, β′ = −α.

Now we give the proof of the theorem 1.
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Proof: From lemmas 2 and 3, we have that h⊥ ξ, therefore we get :

h(u, u) = a1ϕu+ a2ϕv, h(u, v) = b1ϕu+ b2ϕv, h(v, v) = c1ϕu+ c2ϕv, (3.2)

where a1, a2, b1, b2, c1, c2 are local functions on M .
As ξ = −P ×N = u× v, we can compute the covariant derivative of ξ in two different ways.
Indeed, we have that Duξ = Du(−P ×N) = Du(u× v). So, we see that

−Du(P ×N) = −P × v − P × u
and Du(u× v) = (−a1 − b2)N + (−a2 + b1)P − P × u− P × v.

From these equalities, we get (−a1 − b2)N + (−a2 + b1)P = 0, so

{
b1 = a2,

b2 = −a1.

In a similar way, we obtain : Dvξ = Dv(−P ×N) = Dv(u× v)⇒

{
c1 = b2,

c2 = −b1.

Finally we get

{
c1 = b2 = −a1,
c2 = −b1 = −a2.

Therefore we have h(u, u) = −h(v, v) i.e M is a minimal surface.

3.2 Surface in the nearly cosymplectic 5-sphere

We use the same kind of arguments as in subsection 3.1 and M will denote a totally real
surface of the nearly cosymplectic sphere S5 which we consider as a subset of R7. The
structure of M is built as previously, with the immersions : M ↪→ S5 ↪→ S6 ↪→ R7. We
obtain the following theorem :

Theorem 2. A totally real surface of the nearly cosymplectic S5 is always minimal.

Remark

1. Changing the expression ”nearly Sasakian” with ”nearly cosymplectic” in the subsec-
tion 3.1, the lemmas 1, 2 and 3 remain valid and their proofs are similar. But, in the
nearly cosymplectic case, h̃ vanishes.

2. The proof of theorem 2 is the consequence of the previous lemmas as in the subsec-
tion 3.1.
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3.3 Minimal surfaces in the 5-sphere with nearly Sasakian structure
or nearly cosymplectic structure

As indicated in the following proposition, we can further improve our choice of basis.

Proposition 1. Let M be a totally real surface of the sphere S5 with its nearly Sasakian
structure, respectively nearly cosymplectic structure. Then if necessary by restricting to an
open dense subset there exists a local orthonormal frame {u, v} of M at each point P of M
such that

∇uu = α v, ∇vu = β v, ∇vv = −β u, ∇uv = −αu,
h(u, u) = aP × u, h(u, v) = −aP × v,

where α, β are the functions defined before and a is a function on this open dense subset of
M satisfying : 

v(α)− u(β) + 2a2 − α2 − β2 − ε = 0,

v(β) + u(α) = 0,

v(a) = 3αa,

u(a) = −3βa,

(3.3)

where ε = 2 in the nearly Sasakian case and 1 in the nearly cosymplectic case.

First, note that if the immersion is totally geodesic on an open part, then we can take
a1 = a2 = 0 (where a1, a2 are defined in (3.2)) and it follows from the Gauss equation that
the first equations in (3.3) are satisfied.
Else, by restricting to an open dense subset, we may assume that a21 + a22 6= 0.

Lemma 4. Let M be a totally real surface. In a neighborhood of a non totally geodesic point
of M , there exist a local function a such that the second fundamental form h can be written
as

h(u, u) = aϕu, h(u, v) = −aϕv, h(v, v) = −aϕu,

where {u, v} is the frame of M at each point P of the neighborhood.

Proof: Using a rotation of the orthonormal frame, we write{
U = cos θ u− sin θ v,

V = sin θ u+ cos θ v,

where θ is a differentiable function. Then we have h(U,U) = A1P × U +A2P × V .
We now want to find a function θ such that A2 vanishes. As
h(u, u) = a1ϕu+ a2ϕv, h(u, v) = a2ϕu− a1ϕv, h(v, v) = −a1ϕu− a2ϕv,
we get :

h(U,U) = (a1(cos2 θ − sin2 θ)− 2a2 cos θ sin θ)P × u
+ (a2(cos2 θ − sin2 θ),+2a1 cos θ sin θ)P × v.
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We have P × V = sin θ P × u+ cos θ P × v and A2 = 〈h(U,U), P × V 〉 = 0 then

A2 = a1 sin 3θ + a2 cos 3θ = 0.

As by assumption a1 and a2 do not both vanish, we see that it is sufficient to take θ such
that cos 3θ = − a1

a21+a
2
2

and sin 3θ = a2
a21+a

2
2

and take a = A1.

Remark : This lemma is true regardless of whether the sphere S5 has the structure
nearly Sasakian or nearly cosymplectic.
Using the previous lemma, we complete the proof of proposition 1.

Proof: Using the frame vectors along our surface, we can compute the curvature tensor
of R7. So, we take X and Y tangent vector fields to the surface and for Z we take any
vector field belonging to our frame of R7. As the connection on R7 is flat, we have that :
R(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z = 0.
Using lemma 3 and 4 and Gauss formula, straightforward computations in the nearly Sasakian
case show that

R(u, v)P = R(u, v)(P ×N) = 0,

R(u, v)u = (u(β)− v(α)− 2a2 + α2 + β2 + 2)v

+ (3αa− v(a))P × u+ (−3βa− u(a))P × v,
R(u, v)v = (−u(β) + v(α) + 2a2 − α2 − β2 − 2)u

+ (−3βa− u(a))P × u+ (−3αa+ v(a))P × v,
R(u, v)(P × u) = (−3αa+ v(a))u+ (3βa+ u(a))v

+ (u(β)− v(α)− 2a2 + α2 + β2 + 2)P × v,
R(u, v)(P × v) = (3βa+ u(a))u+ (3αa− v(a))v

+ (−u(β) + v(a) + 2a2 − α2 − β2 − 2)P × u.

We deduce that : 
v(α)− u(β) + 2a2 − α2 − β2 − 2 = 0,

v(a) = 3αa,

u(a) = −3βa.

Note that, as we are working with the Levi Civita connection, we have that

[v, u](f) = v(u(f))− u(v(f)) = (∇vu−∇uv)(f),

where f is an arbitrary function. With these two ways of computing the Lie bracket for the
function a, we deduce that

−4βv(a)− 4αu(a)− 3v(β)a− 3u(α)a = 0.

From this equation, we obtain v(β) + u(α) = 0.

In the same way, we get the system (3.3), with ε = 1, in the nearly cosymplectic case.
This completes the proof of the proposition.
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In order to relate our surfaces to minimal Lagrangian surfaces in the complex projective
space, we will use this proposition in order to introduce suitable coordinates on the surface.

Theorem 3. Let M be totally real surface of the 5 dimension sphere S5 with nearly Sasakian
structure or nearly cosymplectic structure, then around each non totally geodesic point, M
locally corresponds to a minimal Lagrangian in the complex projective space CP 2 with the
group SU(3).

Proof: In the nearly Sasakian case, we have the differential system (3.3) :
v(α)− u(β) + 2a2 − α2 − β2 − 2 = 0,

v(β) + u(α) = 0,

v(a) = 3αa,

u(a) = −3βa.

As we are working on a neighborhood of a non totally geodesic point, we have that a 6= 0.
We define a function ρ on M by ρ = a−

1
3 . It then follows that{

u(ln ρ) = β,

v(ln ρ) = −α,
or equivalently

{
u(ρ) = ρβ,

v(ρ) = −ρα.

Computing now ∇ρvρu and ∇ρuρv, we get :

∇ρvρu = ρ v(ρ)u+ ρ2βv = −ρ2αu+ ρ2βv,

∇ρuρv = ρ u(ρ)v − ρ2αu = ρ2βv − ρ2αu.

Hence [ρu, ρv] = 0. This implies that there exist local coordinates x and y on M such that
∂
∂x = ρu and ∂

∂y = ρv. It now follows that α = − 1
ρ2

∂
∂y (ρ) and β = 1

ρ2
∂
∂x (ρ). We compute

v(α) and u(β) :

v(α) =
1

ρ

∂

∂y
(α) =

2

ρ4

(
∂

∂y
(ρ)

)2

− 1

ρ3
∂2

∂y2
(ρ),

u(β) =
1

ρ

∂

∂x
(β) =

−2

ρ4

(
∂

∂x
(ρ)

)2

+
1

ρ3
∂2

∂x2
(ρ).

Replacing it all in the equation v(α)−u(β)−α2−β2+2a2−2 = 0, it reduces to the following
differential equation :

−ρ∆ρ+

(
∂

∂x
(ρ)

)2

+

(
∂

∂y
(ρ)

)2

+ 2ρ−2 − 2ρ4 = 0.

If we write now ρ = eψ, we get :{
∂
∂x (ρ) = ∂

∂x (ψ)eψ,
∂
∂y (ρ) = ∂

∂y (ψ)eψ,
and


∂2

∂x2 (ρ) =
(
∂
∂x (ψ)

)2
eψ + ∂2

∂x2 (ψ)eψ,

∂2

∂y2 (ρ) =
(
∂
∂y (ψ)

)2
eψ + ∂2

∂y2 (ψ)eψ,
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and the differential equation reduces to : 2∆ψ − 4e−4ψ + 4e2ψ = 0.
In this last equation, applying the change of coordinates ψ = γ+d, where d is constant gives
: 2∆γ − 4e−4de−4γ + 4e2de2γ = 0.
For d = − ln 2, we get the final equation :

2∆γ − 64 e−4γ + e2γ = 0, (3.4)

with γ = − 1
3 ln a+ ln 2.

In the nearly cosymplectic case, from the differential system of the Proposition 1, we get
in the same way than before :

2∆γ − 16 e−4γ + e2γ = 0, (3.5)

with γ = − 1
3 ln a+ 1

2 ln 2.
The differential equations (3.4) and (3.5) are elliptic equations of Ţiţeica type of the form

:
2∆ψ + εQ2e−4ψ + λe2ψ = 0.

Using the classification in [10] for both cases, we obtain that our surface M is minimal
Lagrangian in CP 2 with SU(3) group.
This completes the proof of the theorem.

We give now two examples of totally real surfaces which are not totally geodesic in S5,
equipped with the nearly Sasakian structure or nearly cosymplectic structure.
Example 3 : We consider the sphere S5 equipped with the nearly Sasakian structure con-
structed before, and the surface M defined by the position vector :

P =



cos(
√
2(x−y))+cos

(√
2+
√
3x+
√

2−
√
3y

)
+cos

(√
2−
√
3x+
√

2+
√
3y

)
3
√
2

2 sin(
√
2(x−y))+(1+

√
3) sin

(√
2+
√
3x+
√

2−
√
3y

)
+(
√
3−1) sin

(√
2−
√
3x+
√

2+
√
3y

)
6
√
2

−
2 cos(

√
2(x−y))+(

√
3−1) cos

(√
2+
√
3x+
√

2−
√
3y

)
−(1+

√
3) cos

(√
2−
√
3x+
√

2+
√
3y

)
6
√
2

1√
2

sin(
√
2(x−y))−sin

(√
2+
√
3x+
√

2−
√
3y

)
+sin

(√
2−
√
3x+
√

2+
√
3y

)
3
√
2

−
2 cos(

√
2(x−y))−(1+

√
3) cos

(√
2+
√
3x+
√

2−
√
3y

)
+(
√
3−1) cos

(√
2−
√
3x+
√

2+
√
3y

)
6
√
2

−2 sin(
√
2(x−y))+(

√
3−1) sin

(√
2+
√
3x+
√

2−
√
3y

)
+(1+

√
3) sin

(√
2−
√
3x+
√

2+
√
3y

)
6
√
2



.

In the same way as in the example 1, we prove that this surface is totally real in S5 but
not totally geodesic. In fact, we find that the second fundamental form h is given by :
h(u, u) = ϕu, h(u, v) = −ϕv, h(v, v) = −ϕu.



Surfaces in the nearly Sasakian 5-sphere 329

Example 4 : We consider the sphere S5 equipped with the nearly cosymplectic structure
constructed before, and the surface M defined by the position vector

P =



1
3

(
2 cos

(√
3
2
x
)

cos
(

y√
2

)
+ cos

(√
2y
))√

2
3

sin
(√

3
2
x
)

cos
(

y√
2

)
1
3

√
2
(

cos
(√

2y
)
− cos

(√
3
2
x
)

cos
(

y√
2

))
0

1
3

(
sin
(√

2y
)
− 2 cos

(√
3
2
x
)

sin
(

y√
2

))
−
√

2
3

sin
(√

3
2
x
)

sin
(

y√
2

)
1
3

√
2 sin

(
y√
2

)(
cos
(√

3
2
x
)

+ 2 cos
(

y√
2

))


.

This surface is totally real in S5 too and its second fundamental form h has the same form
as in the previous example.
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