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Abstract

The initial-boundary value problem for some nonlinear Petrovsky system with vis-
coelastic term in bounded domain is studied. The existence of global solutions for this
problem is proved by constructing a stable set in H2

0 (Ω) and the decay of solution energy
is established by applying a difference inequality due to M.Nakao.
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1 Introduction

In this paper, we are concerned with the following initial-boundary value problem of nonlinear
Petrovsky system

utt + ∆2u−
∫ t

0

g(t− s)∆2u(s)ds+ a|ut|mut

= b|u|pu, (x, t) ∈ Ω×R+,

u(x, 0) = u0(x) ∈ H2
0 (Ω), ut(x, 0) = u1(x) ∈ L2(Ω), x ∈ Ω,

u(x, t) =
∂u

∂ν
(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1.1)

where m ≥ 0, p > 0 and a, b > 0 are real numbers, Ω is a bounded domain in Rn with smooth
boundary ∂Ω so that the divergence theorem can be applied, ν is unit outward normal on
∂Ω, and ∂u

∂ν denotes the normal derivation of u.
A.Guesmia [1] considered the equation

utt + ∆2u+ q(x)u+ f(ut) = 0, x ∈ Ω, t > 0, (1.2)

where f is a continuous and increasing function with f(0) = 0, and q : Ω −→ [0,+∞) is a
bounded function, and he proved a global existence and a regularity result of the equation
(1.2) with initial-boundary value conditions. Under suitable growth conditions on f , he also
established decay results for weak and strong solutions. In addition, results similar to above
system, coupled with a semi-linear wave equation, are also established by A.Guesmia [2]. As
q(x)u+f(ut) in (1.2) is replaced by ∆2ut+∆f(∆u), M.Aassila and A.Guesmia [3] obtained an
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exponential decay theorem through the use of an important lemma of V.Komornik [4]. S.A.
Messaoudi [5] set up an existence result of the initial-boundary value problem of equation

utt + ∆2u+ a|ut|mut = b|u|pu, (1.3)

and showed that the solution continues to exist globally if m ≥ p; however, it blows up in
finite time if m < p. S.T.Wu and L.Y.Tsai [6] also study the problem (1.3), they showed that
the solution is global in time under some conditions without the relation between m and p.
They also proved the local solution blows up in finite time if p > m and the initial energy is
positive.

In this paper, we prove the global existence for the problem (1.1) by constructing a stable
set in H2

0 (Ω) and the decay of solution energy by applying a difference inequality due to
M.Nakao.

We adopt the usual notations and convention. Let H2(Ω) denote the Sobolev space with
the usual scalar products and norm. Meanwhile, H2

0 (Ω) denotes the closure in H2(Ω) of
C∞0 (Ω). For simplicity of notations, hereafter we denote by ‖ · ‖s the Lebesgue space Ls(Ω)
norm and ‖ · ‖ denotes L2(Ω) norm, we write equivalent norm ‖∆ · ‖ instead of H2

0 (Ω) norm
‖ · ‖H2

0 (Ω). Moreover, Ci (i = 1, 2, · · · ) denote various positive constants which depend on the
known constants and may be difference at each appearance.

2 Preliminaries

To prove our main results, we make the following assumptions.
(A1) g : R+ → R+ is a bounded C1 function which satisfies

g(s) > 0, g′(s) ≤ 0, l = 1−
∫ +∞

0

g(s)ds > 0,

and there exist positive constants η1 and η2 such that

−η1g(t) ≤ g′(t) ≤ −η2g(t).

(A2) Supposed that p and m satisfy the following conditions:

2 ≤ p < +∞, n ≤ 4; 2 < p ≤ 4

n− 4
, n > 4. (2.1)

2 ≤ m < +∞, n ≤ 4; 2 < m ≤ 8

n− 4
, n > 4. (2.2)

Now, we define the following functionals:

J(t) =
1

2

(
1−

∫ t

0

g(s)ds

)
‖∆u‖2 +

1

2
(g ◦∆u)(t)− b

p+ 2
‖u‖p+2

p+2, (2.3)

K(t) =

(
1−

∫ t

0

g(s)ds

)
‖∆u‖2 + (g ◦∆u)(t)− b‖u‖p+2

p+2, (2.4)
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for u ∈ H2
0 (Ω), where

(g ◦∆u)(t) =

∫ t

0

g(t− s)‖∆u(s)−∆u(t)‖2ds.

Then we introduce the stable set W by

W = {u ∈ H2
0 (Ω) : K(t) > 0} ∪ {0}. (2.5)

We denote the total energy related to the equation (1.1) by

E(t) =
1

2
||ut||2 +

1

2

(
1−

∫ t

0

g(s)ds

)
‖∆u‖2

+
1

2
(g ◦∆u)(t)− b

p+ 2
‖u‖p+2

p+2 =
1

2
||ut||2 + J(t)

(2.6)

for u ∈ H2
0 (Ω), t ≥ 0 and E(0) = 1

2 ||u1||2 + J(0) is the initial total energy.

For latter applications, we list up some lemmas.

Lemma 2.1 Let s be a number with 2 ≤ s < +∞ if n ≤ 4 and 2 ≤ s ≤ 2n
n−4 if n > 4.

Then there is a constant B1 depending on Ω and s such that

‖u‖s ≤ B1‖∆u‖, ∀u ∈ H2
0 (Ω).

Lemma 2.2 Supposing that (A1) holds and that u(t) is a solution to the problem (1.1),
then E(t) is a non-increasing function for t > 0 and

E′(t) =
1

2
(g′ ◦∆u)(t)− 1

2
g(t)‖∆u‖2 − a‖ut‖m+2

m+2 ≤ 0. (2.7)

Proof Multiplying the equation in (1.1) by ut, and integrating over Ω× [0, t]. Then we
get from integrating by parts that

E(t) = E(0) +

∫ t

0

[
1

2
(g′ ◦∆u)(s)− 1

2
g(s)‖∆u‖2 − a‖ut‖m+2

m+2]ds (2.8)

for t ≥ 0. Being the primitive of an integrable function, E(t) is absolutely continuous and
equality (2.7) is satisfied.

We conclude this section by stating a local existence result of the problem (1.1), which
can be established by combination of the arguments in [5, 7]. The readers are also referred
to the references [8, 9].

Theorem 2.1(Local existence) Assuming that (A1) and (A2) hold, if (u0, u1) ∈ H2
0 (Ω)×

L2(Ω). Then there exists T > 0 such that the problem (1.1) has a unique local solution u(t)
which satisfies

u ∈ C([0, T ); H2
0 (Ω)), ut ∈ C([0, T ); L2(Ω)) ∩ Lm+2(Ω× [0, T )).
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3 Global Solutions

To prove the global existence of solution to the problem (1.1), we need the following lemmas:

Lemma 3.1 Supposing that (A1) and (A2) hold, then

p

2(p+ 2)

[(
1−

∫ t

0

g(s)ds

)
‖∆u‖2 + (g ◦∆u)(t)

]
≤ J(t), (3.1)

for u ∈W .

Proof By the definition of K(t) and J(t), we have the following identity

(p+ 2)J(t) = K(t) +
p

2

[(
1−

∫ t

0

g(s)ds

)
‖∆u‖2 + (g ◦∆u)(t)

]
. (3.2)

Since u ∈W , so we get K(t) ≥ 0. Therefore, we obtain from (3.2) that (3.1) is valid.

Lemma 3.2 Let (A1) and (A2) hold, if u0 ∈W and u1 ∈ L2(Ω) such that

θ =
bBp+2

1

l

[
2(p+ 2)

pl
E(0)

] p
2

< 1, (3.3)

then u(t) ∈W , for each t ∈ [0, T ).

Proof Since u0 ∈W , so K(0) > 0. Then it follows from the continuity of u(t) that

K(t) ≥ 0, (3.4)

for some interval near t = 0. Let tmax > 0 be a maximal time (possibly tmax = T ) when
(3.4) holds on [0, tmax).

We have from (2.6) and (3.1) that

p

2(p+ 2)

[(
1−

∫ t

0

g(s)ds

)
‖∆u‖2 + (g ◦∆u)(t)

]
≤ E(t), (3.5)

We get from (A1) and Lemma 2.2 that

l‖∆u‖2 ≤
(

1−
∫ t

0

g(s)ds

)
‖∆u‖2 ≤ 2(p+ 2)

p
E(0), (3.6)

for ∀t ∈ [0, tmax).
By exploiting (A1), Lemma 2.1, (3.3) and (3.6), we easily arrive at

b‖u(t)‖p+2
p+2 ≤ bBp+2

1 ‖∆u(t)‖p+2 ≤ bBp+2
1

l
‖∆u(t)‖p · (l‖∆u(t)‖2)

≤ bBp+2
1

l

[
2(p+ 2)

pl
E(0)

] p
2

· (l‖∆u(t)‖2) ≤ θl‖∆u(t)‖2

≤ θ
(

1−
∫ t

0

g(s)ds

)
‖∆u‖2 <

(
1−

∫ t

0

g(s)ds

)
‖∆u‖2,

(3.7)
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for all t ∈ [0, tmax). Therefore,

K(t) =

(
1−

∫ t

0

g(s)ds

)
‖∆u‖2 + (g ◦∆u)(t)− b‖u‖p+2

p+2 > 0

on t ∈ [0, tmax). By repeating this procedure, and using the fact that

lim
t→tmax

bBp+2
1

l

[
2(p+ 2)

pl
E(t)

] p
2

≤ θ < 1,

tmax is extended to T . Thus, we conclude that u(t) ∈W on [0, T ).

Theorem 3.1 Assuming that (A1) and (A2) hold and that u(t) is a local solution as
that obtained in Theorem 2.1. If u0 ∈ W and u1 ∈ L2(Ω) satisfy (3.3), then the solution
u(t) is a global and bounded solution of the problem (1.1).

Proof It suffices to show that ‖∆u(t)‖2 + ‖ut(t)‖2 is bounded independently of t.
Under the hypotheses in Theorem 3.1, we get from Lemma 3.2 that u(t) ∈ W on [0, T ).

So the formula (3.1) in Lemma 3.1 holds on [0, T ).
Therefore, we have from (3.1) that

1

2
‖ut‖2 +

p

2(p+ 2)

[
l‖∆u‖2 + (g ◦∆u)(t)

]
≤ 1

2
‖ut‖2 +

p

2(p+ 2)

[(
1−

∫ t

0

g(s)ds

)
‖∆u‖2 + (g ◦∆u)(t)

]
≤ 1

2
‖ut‖2 + J(t) = E(t) ≤ E(0).

(3.8)

Hence, we get

‖ut(t)‖2 + ‖∆u(t)‖2 ≤ max

(
2,

2(p+ 2)

pl

)
E(0) < +∞.

The above inequality and the continuation principle lead to the global existence of the so-
lution, that is, T = +∞. Thus, the solution u(x, t) is a global solution of the problem
(1.1).

4 Energy Decay of Global Solution

The following lemmas play an important role in studying the energy decay estimate of global
solutions for the problem (1.1).

Lemma 4.1[10] Supposing that ϕ(t) is a non-increasing and nonnegative function on
[0, T ], T > 1, such that

ϕ(t)1+r ≤ ω0[ϕ(t)− ϕ(t+ 1)], on [0, T ],

where ω0 is a positive constant and r is a nonnegative constant. Then ϕ(t) has the following
decay properties
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(i) if r > 0, then

ϕ(t) ≤
(
ϕ(0)−r + ω−1

0 r[t− 1]+
)− 1

r

on [0, T ],

where [t− 1]+ = max{t− 1, 0}.
(ii) if r = 0, then

ϕ(t) ≤ ϕ(0)e−ϑ[t−1]+ on [0, T ],

where ϑ = ln ω0

ω0−1 , ω0 > 1.

Lemma 4.2 Let u satisfy the assumptions of Lemma 3.2. Then there exists 0 < θ1 < 1
such that (

1−
∫ t

0

g(s)ds

)
‖∆u(t)‖2 ≤ 1

θ1
K(t), t ∈ [0, T ], (4.1)

where θ1 = 1− θ.

Proof From (3.7), we get that

b‖u(t)‖p+2
p+2 ≤ θ

(
1−

∫ t

0

g(s)ds

)
‖∆u(t)‖2, t ∈ [0, T ].

Let θ = 1− θ1, then

b‖u(t)‖p+2
p+2 ≤ (1− θ1)

(
1−

∫ t

0

g(s)ds

)
‖∆u(t)‖2 + (g ◦∆u)(t), t ∈ [0, T ]. (4.2)

We have from (2.4) and (4.2) that (4.1) is valid.

Theorem 4.1 Under the assumptions of Theorem 3.1, if u0 ∈W and u1 ∈ L2(Ω) satisfy
(3.3), then the global solution u ∈ W of the problem (1.1) satisfies the following decay
properties:

(i) If m = 0, then E(t) ≤ E(0)e−ϑ[t−1]+ .

(ii) If m > 0, then

E(t) ≤
(
E(0)−

m
2 + ~[t− 1]+

)− 2
m

.

where ϑ and ~ are positive constants which will be determined later.

Proof Multiplying the equation in (1.1) by ut and integrating over Ω× [t, t+ 1], we get

a

∫ t+1

t

‖ut(s)‖m+2
m+2ds−

1

2

∫ t+1

t

(g′ ◦∆u)(s)ds

+
1

2

∫ t+1

t

g(s)‖∆u(s)‖2ds = E(t)− E(t+ 1).

(4.3)

Thus, there exist t1 ∈
[
t, t+ 1

4

]
, t2 ∈

[
t+ 3

4 , t+ 1
]

such that

4a‖ut(ti)‖m+2
m+2 − 2(g′ ◦∆u)(ti)

+2g(ti)‖∆u(ti)‖2 = E(t)− E(t+ 1), t = 1, 2.
(4.4)
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On the other hand, we multiply the equation in (1.1) by u and integrate over Ω× [t1, t2].
We obtain ∫ t2

t1

K(t)ds =

∫ t2

t1

‖ut(s)‖2ds+ (ut(t1), u(t1))− (ut(t2), u(t2))

−a
∫ t2

t1

∫
Ω

|ut|mutudxds+

∫ t2

t1

(g ◦∆u)(s)ds

+

∫ t2

t1

∫
Ω

∫ t

0

g(t− s)∆u(t)[∆u(s)−∆u(t)]dsdxdt.

(4.5)

From (4.3) and Hölder inequality, we have∫ t2

t1

‖ut‖2ds ≤ C3

(∫ t2

t1

‖ut‖m+2
m+2ds

) 2
m+2

≤ C3[E(t)− E(t+ 1)]
2

m+2 . (4.6)

We get from (3.8), (4.4), Hölder inequality and Young inequality that

|(ut(ti), u(ti))| ≤ ‖ut(ti)‖‖u(ti)‖

≤ C4(E(t)− E(t+ 1))
1

m+2 sup
t≤s≤t+1

E(s)
1
2 , i = 1, 2.

(4.7)

From Hölder inequality and Lemma 2.1, (3.8) and (4.3), we get∣∣∣∣∣
∫ t2

t1

∫
Ω

|ut|mutudxds

∣∣∣∣∣ ≤ C5(E(t)− E(t+ 1))
m+1
m+2 sup

t≤s≤t+1
E(s)

1
2 . (4.8)

By using Young inequality, we have∫ t2

t1

∫
Ω

∫ t

0

g(t− s)∆u(t)[∆u(s)−∆u(t)]dsdxdt

≤ σ
∫ t2

t1

∫ t

0

g(t− s)‖∆u(t)‖2dsdt+
1

4σ

∫ t2

t1

(g ◦∆u)(s)ds,

(4.9)

where σ is some positive constant to be chosen later.
Therefore, we get from (4.5)-(4.9) that∫ t2

t1

K(t)ds

≤ C6

[
(E(t)− E(t+ 1))

2
m+2 + (E(t)− E(t+ 1))

m+1
m+2 sup

t≤s≤t+1
E(s)

1
2

+(E(t)− E(t+ 1))
1

m+2 sup
t≤s≤t+1

E(s)
1
2

]
+σ

∫ t2

t1

∫ t

0

g(t− s)‖∆u(t)‖2dsdt+

(
1

4σ
+ 1

)∫ t2

t1

(g ◦∆u)(s)ds.

(4.10)
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On the other hand, we obtain from (A1) and (4.3) that∫ t2

t1

(g ◦∆u)(s)ds ≤ − 1

η2

∫ t2

t1

(g′ ◦∆u)(s)ds ≤ 2

η2
(E(t)− E(t+ 1)). (4.11)

By (A1) and Lemma 4.2, we have∫ t2

t1

∫ t

0

g(t− s)‖∆u(t)‖2dsdt ≤ g(0)

lθ1η2

∫ t2

t1

K(t)dt. (4.12)

Choosing σ such that σg(0)
lθ1η2

= 1
2 , then we get from (4.10), (4.11) and (4.12) that∫ t2

t1

K(t)ds

≤ C7

[
(E(t)− E(t+ 1))

2
m+2 + (E(t)− E(t+ 1))

1
m+2 sup

t≤s≤t+1
E(s)

1
2

+(E(t)− E(t+ 1))
m+1
m+2 sup

t≤s≤t+1
E(s)

1
2 + (E(t)− E(t+ 1))

]
.

(4.13)

It follows from (2.3), (2.4) and Lemma 4.2 that

J(t) ≤ p

2(p+ 2)
(g ◦∆u)(t) +

p+ 2θ1

2(p+ 2)θ1
K(t). (4.14)

We have from (2.6) and (4.14) that

E(t) ≤ 1

2
‖ut‖2 +

p

2(p+ 2)
(g ◦∆u)(t) +

p+ 2θ1

2(p+ 2)θ1
K(t). (4.15)

By integrating (4.15) over [t1, t2], we obtain from (4.6), (4.11) and (4.13) that∫ t2

t1

E(t)ds

≤ 2C8[(E(t)− E(t+ 1))
2

m+2 + (E(t)− E(t+ 1))]

+C8[(E(t)− E(t+ 1))
m+1
m+2 + (E(t)− E(t+ 1))

1
m+2 ] sup

t≤s≤t+1
E(s)

1
2 .

(4.16)

Integrating both sides of (2.7) over [t, t2], we obtain from (4.3) and E(t2) ≤ 2
∫ t2
t1
E(s)ds that

E(t) ≤ 2

∫ t2

t1

E(s)ds+ (E(t)− E(t+ 1)). (4.17)

We have from (4.16) and (4.17) that

E(t) ≤ 2C8[(E(t)− E(t+ 1))
m+1
m+2 + (E(t)− E(t+ 1))

1
m+2 ]E(t)

1
2

+C9[(E(t)− E(t+ 1))
2

m+2 + (E(t)− E(t+ 1))].

(4.18)
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Therefore, we obtain from Young inequality that

E(t) ≤ C10[(E(t)− E(t+ 1))

+(E(t)− E(t+ 1))
2(m+1)
m+2 + 2(E(t)− E(t+ 1))

2
m+2 ].

(4.19)

When m = 0, we have
E(t) ≤ 4C10[(E(t)− E(t+ 1))]. (4.20)

Applying Lemma 4.1 to (4.20), we get

E(t) ≤ E(0)e−ϑ[t−1]+ ,

where ϑ = ln 4C10

4C10−1 .
When m > 0, we obtain from (4.19) that

E(t) ≤ C11[E(t)− E(t+ 1)]
2

m+2 . (4.21)

We have from (4.21) that

E(t)
m+2

2 ≤ C12[E(t)− E(t+ 1)]. (4.22)

Consequently, we obtain from (4.22) and Lemma 4.1 that

E(t) ≤
(
E(0)−

m
2 + ~[t− 1]+

)− 2
m

, (4.23)

where ~ = m
2C12

.
Thus, we complete the proof of Theorem 4.1.
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