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Abstract

Let p be a prime number, Qp the field of p-adic numbers, Qp a fixed algebraic

closure of Qp and Cp the completion of Qp with respect to the p-adic valuation. Let
Gp = Galcont(Cp/Qp) be the group of continuous automorphisms of Cp over Qp. We
investigate isometric Galois actions of the Galois group Gp on subsets of Cp.
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1 Introduction

Let p be a prime number, Qp the field of p-adic numbers, Qp a fixed algebraic closure of

Qp, and Cp the completion of Qp with respect to the unique extension to Qp of the p-adic

valuation on Qp. We denote by | · | the absolute value on Cp, normalized by |p| = 1
p .

Let Gp = Galcont(Cp/Qp) be the group of continuous automorphisms of Cp over Qp. By

restricting each automorphism to Qp, one obtains an isomorphism between Galcont(Cp/Qp)

and the Galois group Gal(Qp/Qp). Let K be a fixed finite field extension of Qp and K a
fixed algebraic closure of K with respect to the p-adic valuation. Denote by IK the ring
of integers of K. Let GK = Galcont(Cp/K) be the group of continuous automorphisms
of Cp over K, which is canonically isomorphic to the Galois group Gal(K/K), see [1], [2]
and [7]. Here and in what follows by a Galois orbit in Cp we mean a set of the form
OK(T ) = {σ(T ) : σ ∈ GK}, with T ∈ Cp. Some metric aspects of the natural action of the
Galois group Gp on Cp have been investigated in [14], [12], [11]. A metric symbol for pairs
of polynomials f(x), g(x) ∈ K[x] of the same (prime) degree was introduced and studied in
[13]. Roughly speaking, the symbol is 1 or −1 according as to whether the roots of f(x) are,
or are not, close enough to the roots of g(x), in a certain averaged way. In the present paper
we investigate what we call isometric actions of the Galois group GK on subsets of Cp. As
a matter of notation, if M is a subset of Cp, we denote by GKM the union of Galois orbits
of elements from M , that is, GKM = {σ(x) : σ ∈ GK and x ∈ M}. Given two subsets M1

and M2 of Cp, we say that the natural actions of the Galois group GK on M1 and M2 are
isometric provided that there exists a bijection Ψ : M1 →M2 such that

|σ(Ψ(x))− τ(Ψ(y))| = |σ(x)− τ(y)|, (1.1)

for all x, y ∈ M1 and all σ, τ ∈ GK . If such a map Ψ exists, we write M1 'GK
M2. Note

that by taking both σ and τ in (1.1) to be the identity, it follows that

|Ψ(x)−Ψ(y)| = |x− y|, (1.2)
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for all x, y ∈ M1. Thus in order for a bijection Ψ : M1 → M2 to establish an isometry
between the actions of the group GK on M1 and M2 it is necessary for Ψ to provide an
isometry between M1 and M2. Evidently this condition is not also sufficient in order to have
M1 'GK

M2. Let us consider the case when the sets M1 and M2 consist of one element each.
Say M1 = {T} and M2 = {U}. In this case there is only one map Ψ : M1 → M2, which
is given by Ψ(T ) = U , and this map automatically satisfies (1.2). Now, the condition (1.1)
reduces to

|σ(U)− τ(U)| = |σ(T )− τ(T )|, (1.3)

for all σ, τ ∈ GK . Therefore, in order to have {T} 'GK
{U} it is necessary for the Galois

orbits OK(T ) and OK(U) to be isometric. We remark that this condition is not also sufficient.
That is, relation (1.3) is stronger than the condition on the orbits OK(T ) and OK(U) to be
isometric. Besides this metric condition, relation (1.3) also forces another condition, which
is more algebraic in nature. To be specific, by (1.3) it follows that an automorphism σ ∈ GK

satisfies the equality σ(U) = U if and only if it satisfies the equality σ(T ) = T . Now the
elements σ ∈ GK which satisfy σ(T ) = T form a closed subgroup of GK , call it HK,T , and
similarly the elements σ ∈ GK which satisfy σ(U) = U form a closed subgroup HK,U of GK .
Relation (1.3) thus forces the equality HK,T = HK,U . On the other hand, by Galois theory
in Cp, as developed by Tate [10], Sen [9] and Ax [5], we know that the closed subgroups of
the Galois group GK are in one-to-one correspondence with the closed subfields of Cp which

contain K. The equality HK,T = HK,U then implies the equality K̃(T ) = K̃(U), where K̃(T )

and K̃(U) denote the topological closure of K(T ) and respectively of K(U) in Cp. In the

particular case when the elements T and U are algebraic over K, the equality K̃(T ) = K̃(U)
reduces to the equality K(T ) = K(U). Therefore, in order for two elements T,U ∈ K to
satisfy the relation {T} 'GK

{U}, besides having isometric Galois orbits the elements T and
U also need to generate the same field extension over K.

Taking into account all the above restrictions, the reader may naturally wonder whether
there are any nontrivial examples of elements T , U for which {T} 'GK

{U}, or other
examples of nontrivial isometric Galois actions. After some background material is presented
in Section 2, we provide some classes of isometric Galois actions in Section 3 below. It would
be interesting, and we leave this as a general question for the reader, to find other natural
classes of isometric Galois actions and investigate their properties.

2 Background material

In [13] a metric symbol
(
g
f

)
is defined for pairs of polynomials f(x), g(x) ∈ K[x] of prime

degree q by the following rule:

( g
f

)
=

{
1 if v(R(f, g)) > q

q−1v(∆(f))

−1 else
(2.1)

where ∆(f) denotes the discriminant of f , R(f, g) denotes the resultant of f and g, and v
denotes the p-adic valuation. Although the above definition is not symmetric in f and g this
metric symbol has some nice properties that we mention below.
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Theorem 1. ([13]) (i) (Irreducibility criterion): If f is irreducible and
(
g
f

)
= 1 then g is

also irreducible.
(ii) (Transitivity): If f is irreducible and

(
g
f

)
=
(
h
g

)
= 1 then

(
h
f

)
= 1.

(iii) (Reciprocity Law): If f and g are irreducible then( g
f

)
=
(f
g

)
.

A subset D ⊆ Cp is said to be GK-equivariant provided that σ(x) ∈ D for any x ∈ D
and any σ ∈ GK . An example is D = OK(x), where x ∈ Cp.

An analytic function f defined on a GK-equivariant subset D of Cp is called GK-
equivariant if f(σ(x)) = σ(f(x)), for any x ∈ D and any σ ∈ GK .

Proposition 1. ([4]) Let T be a transcendental element of Cp such that |T | < |p|. Then

ĨK [T ] =

{∑
n≥0

anT
n : an ∈ IK

}
.

3 Main results

Proposition 2. Let f ∈ K[x] be a monic irreducible polynomial of degree d and T ∈ K a
root of f . Then for any monic polynomial g ∈ K[x] of degree d whose coefficients are close
enough to those of f in the p−adic distance, there is a root U of g such that {T} 'GK

{U}.

Proof. Choose a polynomial f(x) ∈ K[x], irreducible over K, say

f(x) = xd + a1x
d−1 + · · ·+ ad,

and fix a root T of f(x). Next, choose a small real number ε > 0, select elements b1, b2, . . . , bd ∈
K such that |bj − aj | < ε for 1 ≤ j ≤ d, and consider the polynomial g(x) = xd + b1x

d−1 +
· · ·+ bd. Now, if ε is small enough, then there will be a root of g(x), call it U , which is closer
to T than any conjugate of T over K. By Krasner’s lemma it follows that K(T ) ⊆ K(U).
Since K(T ) has degree d over K, this shows that the polynomial g(x) is irreducible over K,
and that K(T ) = K(U). Also, for any two distinct conjugates of T , say σ(T ) and τ(T ), we
have

|σ(T )− σ(U)| = |τ(T )− τ(U)| = |T − U |
< |T − (σ−1τ)(T )| = |σ(T )− τ(T )|.

Since we work in an ultrametric space, it follows that

|σ(U)− τ(U)| = |σ(T )− τ(T )|.

Therefore the Galois orbits OK(T ) and OK(U) are isometric. Moreover, one sees that
{T} 'GK

{U}.
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Proposition 3. Let T be an element of Cp and γ =

(
a b
c d

)
an element of GL2(K) such

that |det(γ)| = |cT + d|2. Then OK(T ) 'GK
OK(γ(T )).

Proof. Let us define Ψ : OK(T )→ OK(γ(T )) by

Ψ(σ(T )) = γ(σ(T )) =
aσ(T ) + b

cσ(T ) + d
= σ(γ(T )),

for any σ ∈ GK . Clearly, Ψ is a bijection between OK(T ) and OK(γ(T )). In order to
establish (1.1), let x = σ1(T ) and y = σ2(T ) be arbitrary elements of OK(T ), σ1, σ2 ∈ GK .
Also, let σ, τ be arbitrary elements of GK . One has

|σ(Ψ(x))− τ(Ψ(y))| = |σ(γ(σ1(T )))− τ(γ(σ2(T )))|
= |γ(σσ1(T ))− γ(τσ2(T ))|.

Using the fact that |cσσ1(T ) +d| = |cT +d| = |cτσ2(T ) +d| one finds after a straightforward
computation that

|γ(σσ1(T ))− γ(τσ2(T ))| = |det(γ)|
|cT + d|2

· |σσ1(T )− τσ2(T )|

= |σσ1(T )− τσ2(T )| = |σ(x)− τ(y)|.

This completes the proof of the proposition.

Proposition 4. Let X be a compact subset of Cp without isolated points and let ψ : X → Cp

be differentiable. Then ψ is locally an isometry if and only if |ψ′(z)| = 1 for all z ∈ X .

Proof. All the points of X are accumulation points. Let us assume that ψ is locally an
isometry and let z be an arbitrary element of X . One has

ψ′(z) = lim
u→z
u∈X

ψ(u)− ψ(z)

u− z
(3.1)

and, by hypothesis, |ψ(u)− ψ(z)| = |u− z| locally so |ψ′(z)| = 1.
For the reverse implication, it is enough to see that for an arbitrary z ∈ X we have∣∣∣∣∣ψ′(z)− ψ(u)− ψ(z)

u− z

∣∣∣∣∣ < 1

for all u in a certain neighborhood of z. We deduce that for such u one has |ψ(u)− ψ(z)| =
|u− z|, so ψ is locally an isometry and the proof of the proposition is complete.

Remark 1. Proposition 3 shows that in some cases, X = OK(x), x ∈ Cp , the condition
|ψ′(x)| = 1 is sufficient for ψ to be an isometry. In that case ψ(x) = ax+b

cx+d so ψ′(x) = ad−bc
(cx+d)2

and |ψ′(x)| = 1.
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Theorem 2. Let f(x) and g(x) be monic polynomials of prime degree q with coefficients in
a finite extension K of Qp. If f is irreducible over K and

(
g
f

)
= 1 then Z(f) 'GK

Z(g),

where Z(f), respectively Z(g), denote the set of zeros of f , respectively g.

Proof. From Theorem 1 g too is irreducible over K. Let Z(f) = {α1, α2, . . . , αq} and Z(g) =
{β1, β2, . . . , βq} be all the distinct roots of f and respectively g. As in the proof of Theorem
2 from [11] we can arange the sets Z(f) and Z(g) such that

|αi − βi| = |αj − βj | = min{|αj − θ| : g(θ) = 0} (3.2)

where the minimum on the far right side of (3.2) is achieved for a unique root θ of g.
Moreover,

|αi − αj | = |βi − βj | = |αi − βj |, (3.3)

for any 1 ≤ i 6= j ≤ q. Let us define Ψ : Z(f) → Z(g), Ψ(αi) = βi, for any 1 ≤ i ≤ q. In
order to establish (1.1) it is enough to show that

|σ(Ψ(αi))− τ(Ψ(αj))| = |σ(αi)− τ(αj)| (3.4)

for any σ, τ ∈ GK and any 1 ≤ i, j ≤ q. If σ(αi) = αk and τ(αj) = αl then by the
construction from [11] σ(βi) = βk and τ(βj) = βl. Indeed, if σ(αi) = αk one has

|σ(αi)− σ(βi)| = |αi − βi| = |αk − βk| = |αk − σ(βi)|,

and by this we have σ(βi) = βk. Similarly if τ(αj) = αl then τ(βj) = βl. Since |αk − αl| =
|βk − βl|, by (3.3), one obtains (3.4), which completes the proof of the theorem.

Theorem 3. Let x be a transcendental element of Cp such that |x| < rp|p|, where rp = |p|
1

p−1 ,

and y ∈ ĨK [x], y =
∑

n≥0 anx
n, an ∈ IK for any n ≥ 0, that satisfies |a1| = 1. Let

ψ : OK(x) → OK(y) be defined by σ(x)  σ(y), σ ∈ GK . Then ψ is an isometry and,
moreover, OK(x) 'GK

OK(y).

Proof. First of all let us see that under our hypotheses, by Proposition 1 all the elements

y ∈ ĨK [x] are of the form y =
∑

n≥0 anx
n, where an ∈ IK for any n ≥ 0. It is clear that

Hx ⊆ Hy, so ψ is well defined and, moreover, ψ is surjective. Since x is transcendental all the
points of OK(x) are accumulation points. So, by the identity principle, ψ has a unique GK-
equivariant analytic continuation to B(0, 1), given by ψ(z) =

∑
n≥0 anz

n. By hypothesis

|x| < rp|p|, where rp = |p|
1

p−1 , so OK(x) ⊂ B(0, rp|p|). Because |a1| = 1 it is clear that
|ψ′(z)| = 1 for any z ∈ B(0, 1). Now, using the p-adic Rolle Theorem for series [8] one finds
that ψ is an isometry between OK(x) and OK(y). In order to establish (1.1) it is enough to
show that

|σ(ψ(x1))− τ(ψ(x2))| = |σ(x1)− τ(x2)| (3.5)
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for any σ, τ ∈ GK and any x1, x2 ∈ OK(x). Let x1 = σ1(x) and x2 = σ2(x), where
σ1, σ2 ∈ GK . Since ψ is GK-equivariant one has

|σ(ψ(x1))− τ(ψ(x2))| = |σ(ψ(σ1(x)))− τ(ψ(σ2(x)))|
= |ψ(σσ1(x))− ψ(τσ2(x))|
= |ψ′(c)| · |σσ1(x)− τσ2(x)|
= |σσ1(x)− τσ2(x)|
= |σ(x1)− τ(x2)|,

(3.6)

via the p-adic Rolle Theorem for series [8], where c ∈ B(0, |p|). So (3.5) holds true, which
means that OK(x) 'GK

OK(y), and the proof of the theorem is complete.

Theorem 4. Let x be a transcendental element of Cp and Ψ ∈ K(X), Ψ(X) = A(X)
B(X) where

A,B ∈ K[X] with deg Ψ = d ≥ 1. Denote y = Ψ(x) and let ψ : OK(x) → OK(y) be defined
by ψ(z) = Ψ(z), for any z ∈ OK(x). If there exists an r > 0 such that OK(x) ⊂ B(x, r) and
ψ has an analytic continuation to B(x, rr−1p ) with |ψ′(z)| = 1 for any z ∈ B(x, rr−1p ), then
ψ is an isometry between OK(x) and OK(y) and, moreover, OK(x) 'GK

OK(y).

Proof. By hypothesis [Qp(x) : Qp(y)] = d ≥ 1 so y is transcendental. Because Ψ ∈ K(X),
ψ(σ(x)) = σ(ψ(x)) and Hx ⊆ Hy one sees that ψ is well defined. Moreover, ψ is surjective
and GK-equivariant. Let u, v be arbitrary elements of OK(x). By the p-adic Rolle Theorem
for rational fractions [6] it follows that there exists c ∈ B(x, rr−1p ) such that ψ(u)− ψ(v) =
ψ′(c)(u−v). It is then clear that ψ is an isometry between OK(x) and OK(y). The remaining
part of the proof that OK(x) 'GK

OK(y) follows along the same lines as in the proof of
Theorem 3.
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