Intersections and Unions of Critical Independent Sets in Bipartite Graphs by
 ${ }^{(1)}$ Vadim E. Levit, ${ }^{(2)}$ Eugen Mandrescu

Abstract

Let G be a simple graph with vertex set $V(G)$, and let $\operatorname{Ind}(G)$ denote the family of all independent sets of G. The number $d(X)=|X|-|N(X)|$ is the difference of $X \subseteq V(G)$, and a set $A \in \operatorname{Ind}(G)$ is critical whenever $d(A)=\max \{d(I): I \in \operatorname{Ind}(G)\}[10]$.

In this paper we establish various relations between intersections and unions of all critical independent sets of a bipartite graph in terms of its bipartition.

Key Words: Independent set, critical set, ker, core, diadem
2010 Mathematics Subject Classification: Primary 05C69,
Secondary 05C70

1 Introduction

Throughout this paper G is a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. If $X \subseteq V(G)$, then $G[X]$ is the subgraph of G induced by X. The neighborhood of $v \in V(G)$ is the set $N(v)=\{w: w \in V(G)$ and $v w \in E(G)\}$. The neighborhood of $A \subseteq V(G)$ is $N(A)=\{v \in V(G): N(v) \cap A \neq \emptyset\}$. A set $S \subseteq V(G)$ is independent if no two vertices from S are adjacent; by $\operatorname{Ind}(G)$ we mean the family of all the independent sets of G. Let $\Omega(G)$ be the family of all maximum independent sets, and $\alpha(G)=\max \{|S|: S \in \operatorname{Ind}(G)\}$. We denote $\operatorname{core}(G)=\bigcap\{S: S \in \Omega(G)\}[3]$, and corona $(G)=\bigcup\{S: S \in \Omega(G)\}$. Let $\mu(G)$ be the size of a maximum matching. For $X \subseteq V(G)$, the number $d(X)=|X|-|N(X)|$ is the difference of X. The critical difference $d(G)$ is $\max \{d(X): X \subseteq V(G)\}$. An independent set $A \subseteq V(G)$ with $d(A)=d(G)$ is a critical independent set [10].
Theorem 1. [1] Each critical independent set is included in some $S \in \Omega(G)$.
Recall that if $\alpha(G)+\mu(G)=|V(G)|$, then G is a König-Egerváry graph. As a well-known example, each bipartite graph is a König-Egerváry graph.

Theorem 2. (i) [2, 5] G is a König-Egerváry graph if and only if each of its maximum independent sets is critical.
(ii) $[7]|\operatorname{corona}(G)|+|\operatorname{core}(G)|=2 \alpha(G)$ holds for any König-Egerváry graph.

For a graph G, let $\operatorname{ker}(G)(\operatorname{diadem}(G))$ be the intersection (the union, respectively) of all critical independent sets of G.

Theorem 3. (i) [4] Every graph G has a unique minimal independent critical set, namely, $\operatorname{ker}(G)$, and $\operatorname{ker}(G) \subseteq \operatorname{core}(G)$.
(ii) [6] If G is a bipartite graph, then $\operatorname{ker}(G)=\operatorname{core}(G)$.

In this paper we demonstrate some properties of $\operatorname{ker}(G)$ and diadem (G), in König-Egerváry graphs, with emphasis on bipartite graphs.

2 Results

It is known that intersections and unions of critical sets are critical as well [4]. Consequently, diadem (G) and $\operatorname{ker}(G)$ are critical for every graph. The sets corona (G) and core (G) are critical for each König-Egerváry graph, but not for all graphs. Moreover, we have the following.

Theorem 4. If G is a König-Egerváry graph, then
(i) $\operatorname{diadem}(G)=\operatorname{corona}(G)$;
(ii) $|\operatorname{ker}(G)|+|\operatorname{diadem}(G)| \leq 2 \alpha(G)$.

Proof. (i) Every $S \in \Omega(G)$ is a critical set, by Theorem 2(i). Hence we deduce that corona $(G) \subseteq$ diadem (G). On the other hand, for every graph each critical independent set is included in a maximum independent set, in accordance with Theorem 1. Thus, we infer that diadem $(G) \subseteq$ corona (G). Consequently, the equality $\operatorname{diadem}(G)=\operatorname{corona}(G)$ holds.
(ii) It follows by combining Theorem 2(ii), part (i) and Theorem 3(i).

Following Ore [8, 9], the number $\delta(X)=d(X)=|X|-|N(X)|$ is the deficiency of X, where $X \subseteq A$ or $X \subseteq B$ and $G=(A, B, E)$ is a bipartite graph. Let $\delta_{0}(A)=\max \{\delta(X): X \subseteq A\}$ and $\delta_{0}(B)=\max \{\delta(Y): Y \subseteq B\}$. A set $X \subseteq A$ with $\delta(X)=\delta_{0}(A)$ is A-critical, while $Y \subseteq B$ with $\delta(B)=\delta_{0}(B)$ is B-critical. For a bipartite graph $G=(A, B, E)$ let us denote $\operatorname{ker}_{A}(G)=$ $\cap\{S: S$ is A-critical $\}$ and diadem $A(G)=\cup\{S: S$ is A-critical $\} ; \operatorname{ker}_{B}(G)$ and diadem ${ }_{B}(G)$ are defined similarly. It is convenient to define $d(\emptyset)=\delta(\emptyset)=0$.

Theorem 5. Let $G=(A, B, E)$ be a bipartite graph.
(i) $[8] \operatorname{ker}_{A}(G) \cap N\left(\operatorname{ker}_{B}(G)\right)=N\left(\operatorname{ker}_{A}(G)\right) \cap \operatorname{ker}_{B}(G)=\emptyset$;
(ii) [9] If Y is a B-critical set, then $\operatorname{ker}_{A}(G) \cap N(Y)=N\left(\operatorname{ker}_{A}(G)\right) \cap Y=\emptyset$.

As expected, there is a close relationship between critical independent sets and A-critical or B-critical sets.

Theorem 6. [6] For a bipartite graph $G=(A, B, E)$, the following are true:
(i) $\alpha(G)=|A|+\delta_{0}(B)=|B|+\delta_{0}(A)=\mu(G)+\delta_{0}(A)+\delta_{0}(B)=\mu(G)+d(G)$;
(ii) if X is A-critical and Y is B-critical, then $X \cup Y$ is a critical set;
(iii) if Z is a critical independent set, then $Z \cap A$ is an A-critical set and $Z \cap B$ is a B-critical set.

Now we are ready to describe both ker and diadem of a bipartite graph in terms of its bipartition.

Theorem 7. Let $G=(A, B, E)$ be a bipartite graph. Then the following assertions are true:
(i) $\operatorname{ker}_{A}(G) \cup \operatorname{ker}_{B}(G)=\operatorname{ker}(G)$;
(ii) $|\operatorname{ker}(G)|+|\operatorname{diadem}(G)|=2 \alpha(G)$;
(iii) $\left|\operatorname{ker}_{A}(G)\right|+\left|\operatorname{diadem}_{B}(G)\right|=\left|\operatorname{ker}_{B}(G)\right|+\left|\operatorname{diadem}_{A}(G)\right|=\alpha(G)$;
(iv) $\operatorname{diadem}_{A}(G) \cup \operatorname{diadem}_{B}(G)=\operatorname{diadem}(G)$.

Proof. (i) By Theorem 6(ii), $\operatorname{ker}_{A}(G) \cup \operatorname{ker}_{B}(G)$ is critical in G. Moreover, the set $\operatorname{ker}_{A}(G) \cup$ $\operatorname{ker}_{B}(G)$ is independent in accordance with Theorem $5(i)$. Assume that $\operatorname{ker}_{A}(G) \cup \operatorname{ker}_{B}(G)$ is not minimal. Therefore, the unique minimal d-critical set of G, say Z, is a proper subset of
$\operatorname{ker}_{A}(G) \cup \operatorname{ker}_{B}(G)$, by Theorem 3(i).
According to Theorem 6 (iii), $Z_{A}=Z \cap A$ is an A-critical set, which implies $\operatorname{ker}_{A}(G) \subseteq Z_{A}$, and similarly, $\operatorname{ker}_{B}(G) \subseteq Z_{B}$. Consequently, we get that $\operatorname{ker}_{A}(G) \cup \operatorname{ker}_{B}(G) \subseteq Z$, in contradiction with the fact that

$$
\operatorname{ker}_{A}(G) \cup \operatorname{ker}_{B}(G) \neq Z \subset \operatorname{ker}_{A}(G) \cup \operatorname{ker}_{B}(G)
$$

(ii), (iii), (iv) By Theorem 5(ii), we have

$$
\left|\operatorname{ker}_{A}(G)\right|-\delta_{0}(A)+\left|\operatorname{diadem}_{B}(G)\right|=\left|N\left(\operatorname{ker}_{A}(G)\right)\right|+\left|\operatorname{diadem}_{B}(G)\right| \leq|B|
$$

Thus, Theorem 6(i) implies $\left|\operatorname{ker}_{A}(G)\right|+\left|\operatorname{diadem}_{B}(G)\right| \leq|B|+\delta_{0}(A)=\alpha(G)$. Changing the roles of A and B, we obtain $\left|\operatorname{ker}_{B}(G)\right|+\left|\operatorname{diadem}_{A}(G)\right| \leq \alpha(G)$. By Theorem 6(iii), diadem $(G) \cap$ A is A-critical and $\operatorname{diadem}(G) \cap B$ is B-critical. Hence $\operatorname{diadem}(G) \cap A \subseteq \operatorname{diadem}_{A}(G)$ and $\operatorname{diadem}(G) \cap B \subseteq \operatorname{diadem}_{B}(G)$. It implies both the inclusion diadem $(G) \subseteq \operatorname{diadem}_{A}(G) \cup$ $\operatorname{diadem}_{B}(G)$, and the inequality $|\operatorname{diadem}(G)| \leq\left|\operatorname{diadem}_{A}(G)\right|+\left|\operatorname{diadem}_{B}(G)\right|$. Combining Theorem 3(ii), Theorem 4(i), (ii), and part (i) with the above inequalities, we deduce

$$
\begin{aligned}
& 2 \alpha(G) \geq\left|\operatorname{ker}_{A}(G)\right|+\left|\operatorname{ker}_{B}(G)\right|+\left|\operatorname{diadem}_{A}(G)\right|+\left|\operatorname{diadem}_{B}(G)\right| \geq \\
& \quad \geq|\operatorname{ker}(G)|+|\operatorname{diadem}(G)|=|\operatorname{core}(G)|+|\operatorname{corona}(G)|=2 \alpha(G) .
\end{aligned}
$$

Consequently, we infer that

$$
\begin{gathered}
\left|\operatorname{diadem}_{A}(G)\right|+\left|\operatorname{diadem}_{B}(G)\right|=|\operatorname{diadem}(G)|,|\operatorname{ker}(G)|+|\operatorname{diadem}(G)|=2 \alpha(G), \\
\left|\operatorname{ker}_{A}(G)\right|+\left|\operatorname{diadem}_{B}(G)\right|=\left|\operatorname{ker}_{B}(G)\right|+\left|\operatorname{diadem}_{A}(G)\right|=\alpha(G)
\end{gathered}
$$

Finally, based on the facts: $\operatorname{diadem}(G) \subseteq \operatorname{diadem}_{A}(G) \cup \operatorname{diadem}_{B}(G)$ and $\operatorname{diadem}_{A}(G) \cap$ $\operatorname{diadem}_{B}(G)=\emptyset$, we get $\operatorname{diadem}_{A}(G) \cup \operatorname{diadem}_{B}(G)=\operatorname{diadem}(G)$, as claimed.

According to Theorem $4(i)$, the equality $\operatorname{diadem}(G)=$ corona (G) holds for every KönigEgerváry graph. We propose the following.

Problem 1. Characterize graphs satisfying $\operatorname{diadem}(G)=\operatorname{corona}(G)$.

References

[1] S. Butenko, S. Trukhanov, Using critical sets to solve the maximum independent set problem, Operations Research Letters 35 (2007) 519-524.
[2] C. E. Larson, The critical independence number and an independence decomposition, European Journal of Combinatorics 32 (2011) 294-300.
[3] V. E. Levit, E. Mandrescu, Combinatorial properties of the family of maximum stable sets of a graph, Discrete Appl. Math. 117 (2002) 149-161.
[4] V. E. Levit, E. Mandrescu, Vertices belonging to all critical independent sets of a graph, SIAM J. on Discrete Math. 26 (2012) 399-403.
[5] V. E. Levit, E. Mandrescu, Critical independent sets and König-Egerváry graphs, Graphs and Combinatorics 28 (2012) 243-250.
[6] V. E. Levit, E. Mandrescu, Critical sets in bipartite graphs, Annals of Combinatorics 17 (2013) 543-548.
[7] V. E. Levit, E. Mandrescu, A set and collection lemma, The Electronic Journal of Combinatorics 21 (2014) \#P1.40.
[8] O. Ore, Graphs and matching theorems, Duke Mathematical Journal 22 (1955) 625-639.
[9] O. Ore, Theory of Graphs, AMS Colloquium Publications 38 (1962) AMS.
[10] C. Q. Zhang, Finding critical independent sets and critical vertex subsets are polynomial problems, SIAM J. on Discrete Math. 3 (1990) 431-438.

Received: 24.02.2015
Revised: 13.04 .2015
Accepted: 24.04.2015
${ }^{(1)}$ Department of Computer Science and Mathematics Ariel University

ISRAEL
E-mail: levitv@ariel.ac.il
${ }^{(2)}$ Department of Computer Science Holon Institute of Technology ISRAEL
E-mail: eugen_m@hit.ac.il

