Depth in a pathological case

by Dorin Popescu*

Abstract

Let I be a squarefree monomial ideal of a polynomial algebra over a field minimally generated by f_1,\ldots,f_r of degree $d\geq 1$, and a set E of monomials of degree $\geq d+1$. Let $J\subsetneq I$ be a squarefree monomial ideal generated in degree $\geq d+1$. Suppose that all squarefree monomials of $I\setminus (J\cup E)$ of degree d+1 are some least common multiples of f_i . If J contains all least common multiples of two of (f_i) of degree d+2 then depth I0 depth I1 and Stanley's Conjecture holds for I1.

Key Words: Monomial Ideals, Depth, Stanley depth. **2010 Mathematics Subject Classification**: Primary 13C15; Secondary 13F20, 13F55, 13P10.

Introduction

Let K be a field and $S = K[x_1, \ldots, x_n]$ be the polynomial K-algebra in n variables. Let $I \supseteq J$ be two monomial ideals of S and suppose that I is generated by some monomials of degrees $\ge d$ for some positive integer d. After a multigraded isomorphism we may assume either that J = 0, or J is generated in degrees $\ge d+1$.

Suppose that $I \subset S$ is minimally generated by some monomials f_1, \ldots, f_r of degrees d, and a set E of monomials of degrees 2d+1. Let d (resp. d) be the set of squarefree monomials of degrees d+1 (resp. d+2) of d (set d). Let d be the least common multiple of d and d be the set of all d and d be the set of all d be the set of d be the set of all d be the set of all d be the set of d between d between

^{*}The support from grant ID-PCE-2011-1023 of Romanian Ministry of Education, Research and Innovation is gratefully acknowledged.

If $B \cap (f_1, \ldots, f_r) \subset W$ we call I/J a pathological case. It is the purpose of this paper to show the following theorem.

Theorem 1. If $B \cap (f_1, \ldots, f_r) \subset W$ and $C \cap W = \emptyset$ then depth_S $I/J \leq d+1$.

In particular, if $C \cap W = \emptyset$ then the so called Stanley's Conjecture holds in the pathological case (see Corollary 1). But why is important this pathological case? The methods used in [11], [6], [9] to show a weak form of Stanley's Conjecture when $r \leq 4$ (see [9, Conjecture 0.1]) could be applied only when $B \cap (f_1, \ldots, f_r) \not\subset W$, that is when I/J is not pathological. Thus the above theorem solves partially one of the obstructions to prove this weak form. We believe that the condition $C \cap W = \emptyset$ could be removed from the above theorem. The proof of Theorem 1 relies on Lemmas 2, 3 and Examples 2, 3, 5 found after many computations with the Computer Algebra System SINGULAR [3].

The above theorem hints a possible positive answer to the following question.

Question 1. Let $i \in [r-1]$. Suppose that $E = \emptyset$ and every squarefree monomial from $I \setminus J$ of degree d+i is a least common multiple of i+1 monomials f_j . Then is it depth_S $I/J \le d+i$?

We owe thanks to A. Zarojanu and a Referee, who noticed some mistakes and a gap in Section 2 of some previous versions of this paper.

1 Depth and Stanley depth

Suppose that I is minimally generated by some squarefree monomials f_1, \ldots, f_r of degree d for some $d \in \mathbb{N}$ and a set E of some squarefree monomials of degree $\geq d+1$. Let C_3 be the set of all $c \in C \cap (f_1, \ldots, f_r)$ having all degree (d+1) divisors from $B \setminus E$ in W. In particular each monomial of C_3 is the least common multiple of at least three of the f_i .

Next lemma is closed to [10, Lemma 1.1].

Lemma 1. Suppose that $E=\emptyset$ and $\operatorname{depth}_S I/(J,b)=d$ for some $b\in B$. Then $\operatorname{depth}_S I/J\le d+1$.

Proof: If there exists no $c \in C$ such that b|c then we have $\operatorname{depth}_S I/J \leq d+1$ by [10, Lemma 1.5]. Otherwise, in the exact sequence

$$0 \to (b)/J \cap (b) \to I/J \to I/(J,b) \to 0$$

the first term has depth $\geq d+2$ because for a multiple $c \in C$ of b all the variables of c form a regular system. By hypothesis the last term has depth $\geq d$ and so the middle one has depth d too using the Depth Lemma.

We recall the following example from [6].

Example 1. Let $n=5,\ r=5,\ d=2,\ f_1=x_1x_2,\ f_2=x_1x_3,\ f_3=x_1x_4,\ f_4=x_2x_3,\ f_5=x_3x_5$ and $I=(f_1,\ldots,f_5),\ J=(x_1x_2x_5,x_1x_4x_5,x_2x_3x_4,x_3x_4x_5).$ It follows that $B=\{x_1x_2x_3,x_1x_2x_4,x_1x_3x_4,x_1x_3x_5,x_2x_3x_5\}$ and so s=|B|=r=5. Note that $B\subset W.$ A computation with SINGULAR when char K=0 gives $\operatorname{depth}_S I/J=\operatorname{depth}_S S/J=3$ and $\operatorname{depth}_S S/I=2.$ Since depth depends on the characteristic of the field it follows in general only that $\operatorname{depth}_S S/J\le 3$, $\operatorname{depth}_S S/I\le 2$ using [1, Lemma 2.4]. In fact $\operatorname{depth}_S I/J\le d+1=3$ using [12, Proposition 2.4] because q=|C|=2< r=5. Note that choosing any $b\in B$ we have $\operatorname{depth}_S I/(J,b)=2$ because the corresponding s'< r and we may apply [7, Theorem 2.2]. But then $\operatorname{depth}_S I/J\le 3$ by Lemma 1.

Example 2. In the above example set $I'=(f_1,\ldots,f_4),\ J'=J\cap I'=(x_1x_2x_5,x_1x_4x_5,x_2x_3x_4).$ Note that we have an injection $I'/J'\to I/J$ and so depth_S I'/J'>2 because otherwise we get depth_S I/J=2 which is impossible. Given B',W' for I'/J' we see that $B'\not\subset W'$ since $x_2x_3x_5\in B'\setminus W'$, that is I'/J' is not anymore in the pathological case even this was the case of I/J. We have $I/(J,f_5)\cong I'/(J',x_1x_3x_5,x_2x_3x_5).$ Using SINGULAR when char K=0 we see that depth_S $I'/(J',x_1x_3x_5)=\mathrm{depth}_S I'/(J',x_1x_3x_5,x_2x_3x_5)=2$, depth_S $I'/(J',x_2x_3x_5)=3$. It follows that always

$$\operatorname{depth}_{S} I'/(J', x_1x_3x_5), \operatorname{depth}_{S} I'/(J', x_1x_3x_5, x_2x_3x_5) \leq 2$$

using [1, Lemma 2.4]. These inequalities are in fact equalities because I' is generated in degree 2. Thus we cannot apply Lemma 1 for I', J', $b = x_2x_3x_5$ but we may apply this lemma for I', J', $b' = x_1x_3x_5$ to get depth_s $I'/J' \leq 3$.

Lemma 2. Suppose that r > 1 and depth_S $I/(J, f_r) = d$. Then depth_S $I/J \le d + 1$.

Proof: Let $B \cap (f_r) = \{b_1, \dots, b_p\}$. As $I/(J, f_r)$ has a squarefree, multigraded free resolution we see that only the components of squarefree degrees of

$$\operatorname{Tor}_S^{n-d}(K, I/(J, f_r)) \cong H_{n-d}(x; I/(J, f_r))$$

are nonzero, the last module being the Koszul homology of $I/(J, f_r)$. Thus we may find

$$z = \sum_{i=1}^{r-1} y_i f_i e_{[n] \setminus \text{supp } f_i} \in K_{n-d}(x; I/(J, f_r)),$$

 $y_i \in K$ inducing a nonzero element in $H_{n-d}(x; I/(J, f_r))$. Here we set supp $f_i = \{t \in [n] : x_t | f_i\}$ and $e_A = \wedge_{i \in A} e_i$ for a subset $A \subset [n]$. We have

$$\partial z = \sum_{b \in B} P_b(y) b e_{[n] \setminus \text{supp } b} = \sum_{i=1}^p P_{b_i}(y) b_i e_{[n] \setminus \text{supp } b_i},$$

where P_b are linear homogeneous polynomials in y. Note that $P_b(y) = 0$ for all $b \notin \{b_1, \ldots, b_p\}$. Choose $j \in \text{supp } f_r$ and consider

$$z_j = \sum_{i=1, f_i \notin (x_j)}^{r-1} y_i f_i e_{[n] \setminus (\{x_j\} \cup \text{ supp } f_i)} \in K_{n-d-1}(x; I/J).$$

In ∂z_j appear only terms of type ue_A , $j \notin A$ with |A| = n - d - 1 and $u = \prod_{i \in [n] \setminus (A \cup \{j\})} x_i$. Thus terms of type $b_i e_{[n] \setminus \text{supp } b_i}$, $i \in [p]$ are not present in ∂z_j because $b_i \in (x_j)$. It follows that $\partial z_j = 0$ and so z_j is a cycle. Note that a cycle of $K_{n-d-1}(x;I/J)$ could contain also terms of type $ve_{A'}$ with |A'| = n - d - 1 and $v = \prod_{i \in [n] \setminus A'} x_i \in B$, but z_j is just a particular cycle.

Remains to show that we may find j such that z_j is a nonzero cycle. Suppose that $y_m \neq 0$ for $m \in [r-1]$ and choose $j \in \operatorname{supp} f_r \setminus \operatorname{supp} f_m$. It follows that z_j is a nonzero cycle because $y_m f_m e_{[n] \setminus (\{x_j\} \cup \operatorname{supp} f_m)}$ is present in z_j . Thus $\operatorname{depth}_S I/J \leq d+1$ by [2, Theorem 1.6.17].

Remark 1. Applying the above lemma to Example 2 we see that depth_S $I/J \le 3$ because depth_S $I/(J, f_5) = 2$.

Let $P_{I \setminus J}$ be the poset of all squarefree monomials of $I \setminus J$ with the order given by the divisibility. Let P be a partition of $P_{I \setminus J}$ in intervals $[u,v] = \{w \in P_{I \setminus J} : u | w, w | v\}$, let us say $P_{I \setminus J} = \cup_i [u_i, v_i]$, the union being disjoint. Define sdepth $P = \min_i \deg v_i$ and the *Stanley depth* of I/J given by sdepth_S $I/J = \max_P \operatorname{sdepth} P$, where P runs in the set of all partitions of $P_{I \setminus J}$ (see [4], [13]). Stanley's Conjecture says that $\operatorname{sdepth}_S I/J \geq \operatorname{depth}_S I/J$.

In Example 1 we have s=5 < q+3=7 and so it follows that $\operatorname{depth}_S I/J \le d+1$ by [8, Theorem 1.3] (see also [6, Theorem 2]). Next example follows [9, Example 1.6] and has s=q+r, $\operatorname{sdepth}_S I/J=d+2$ but $\operatorname{depth}_S I/J=d$.

Example 3. Let $n=12, r=11, f_1=x_{12}x_1, f_2=x_{12}x_2, f_3=x_{12}x_3, f_4=x_{12}x_4, f_5=x_{12}x_5, f_6=x_{12}x_6, f_7=x_6x_7, f_8=x_6x_8, f_9=x_6x_9, f_{10}=x_6x_{10}, f_{11}=x_6x_{11}, J=(x_7,\ldots,x_{11})(f_1,\ldots,f_5)+(x_1,\ldots,x_5)(f_7,\ldots,f_{11})+f_6(x_9,\ldots,x_{11}), I=(f_1,\ldots,f_{11}).$ We have $B=\{w_{ij}:1\leq i< j\leq 5\}\cup\{w_{kt}:6< k< t\leq 11\}\cup\{w_{i6}:i\in[8],i\neq 6\},$ that is s=|B|=27. Let $c_1=x_6w_{12}, c_2=x_6w_{23}, c_3=x_6w_{34}, c_4=x_6w_{45}, c_5=x_6w_{15}, c_6=x_8w_{67}, c_7=x_9w_{78}, c_8=x_{10}w_{89}, c_9=x_{11}w_{9,10}, c_{10}=x_7w_{10,11}, c_{11}=x_7w_{8,11}, c_{13}'=x_4w_{13}, c_{14}'=x_5w_{14}, c_{24}'=x_6w_{24}, c_{25}'=x_3w_{25}, c_{35}'=x_6w_{35}.$ These are all monomials of C, that is q=|C|=16 and so s=q+r. The intervals $[f_i,c_i], i\in[11]$ and $[w_{13},c_{13}'], [w_{14},c_{14}'], [w_{24},c_{24}'], [w_{25},c_{25}'], [w_{35},c_{35}']$ induce a partition P on I/J with sdepth 4.

We claim that depth_S S/J = 2. Indeed, let $J' = (x_7, \ldots, x_{11})(f_1, \ldots, f_5) + (x_1, \ldots, x_5)(f_7, \ldots, f_{11}) = (x_{12}, x_6)(x_7, \ldots, x_{11})(x_1, \ldots, x_5)$. By [5, Theorem 1.4] we get depth_S S/J' = 2 = d. Set $J_1 = J' + (x_{12}x_6x_9)$, $J_2 = J_1 + (x_{12}x_6x_{10})$. We have $J = J_2 + (x_{12}x_6x_{11})$. In the exact sequences

$$0 \to (x_{12}x_6x_9)/(x_{12}x_6x_9) \cap J' \to S/J' \to S/J_1 \to 0,$$

$$0 \to (x_{12}x_6x_{10})/(x_{12}x_6x_{10}) \cap J_1 \to S/J_1 \to S/J_2 \to 0, 0 \to (x_{12}x_6x_{11})/(x_{12}x_6x_{11}) \cap J_2 \to S/J_2 \to S/J \to 0$$

the first terms have depth \geq 5. Applying the Depth Lemma by recurrence we get our claim.

Now we see that depth_S S/I = 6. Set $I_j = (f_1, ..., f_j)$ for $6 \le j \le 11$. We have $I = I_{11}$, $I_6 = x_{12}(x_1, ..., x_6)$ and depth_S $S/I_6 = 6$. In the exact sequences

$$0 \to (f_{i+1})/(f_{i+1}) \cap I_i \to S/J_i \to S/I_{i+1} \to 0$$
,

 $6 \leq j < 11$ we have $(f_{j+1}) \cap I_j = f_{j+1}(x_{12}, x_7, \dots, x_j)$ and so $\operatorname{depth}_S(f_{j+1})/(f_{j+1}) \cap I_j = 12 - (j-5) \geq 7$ for $6 \leq j < 11$. Applying the Depth Lemma by recurrence we get $\operatorname{depth}_S S/I_{j+1} = 6$ for $6 \leq j < 11$ which is enough.

Finally using the Depth Lemma in the exact sequence

$$0 \to I/J \to S/J \to S/I \to 0$$

it follows depth_S I/J = 2 = d.

The following lemma is the key in the proof of Theorem 1 and its proof is given in the next section.

Lemma 3. Suppose that $E = \emptyset$, $C \subset C_3$, $C \cap W = \emptyset$ and Theorem 1 holds for r' < r. Then depth_S $I/J \le d+1$.

Proposition 1. Suppose that $C \cap (f_1, \ldots, f_r) \subset C_3$, $C \cap W = \emptyset$ and Theorem 1 holds for r' < r. Then depth_S $I/J \le d+1$.

Proof: Suppose that $E \neq \emptyset$, otherwise apply Lemma 3. Set $I' = (f_1, \ldots, f_r)$, $J' = J \cap I'$. In the exact sequence

$$0 \to I'/J' \to I/J \to I/(I',J) \to 0$$

the last term is isomorphic to something generated by E and so its depth is $\geq d+1$. The first term satisfies the conditions of Lemma 3 which gives depth_S $I'/J' \leq d+1$. By the Depth Lemma we get depth_S $I/J \leq d+1$ too.

Proof of Theorem 1

Apply induction on r. If r < 5 then $B \cap (f_1, \ldots, f_r) \subset W$ implies $|B \cap (f_1, \ldots, f_r)| < 2r$ and so $\operatorname{sdepth}_S I/J \leq d+1$ and even $\operatorname{depth}_S I/J \leq d+1$ by [12, Proposition 2.4] (we may also apply [9, Theorem 0.3]). Suppose that $r \geq 5$. Since all divisors of a monomial $c \in C \cap (f_1, \ldots, f_r)$ of degrees d+1 are in B, they are also in W by our hypothesis. Thus $C \cap (f_1, \ldots, f_r) \subset C_3$ and we may apply Proposition 1 under induction hypothesis.

Corollary 1. Suppose that $B \cap (f_1, ..., f_r) \subset W$ and $C \cap W = \emptyset$. Then $\operatorname{depth}_S I/J \leq \operatorname{sdepth}_S I/J$, that is the Stanley Conjecture holds for I/J.

Proof: If sdepth_S I/J=d then apply [7, Theorem 4.3], otherwise apply Theorem 1.

2 Proof of Lemma 3.

We may suppose that $B \subset W$ because each monomial of B must divide a monomial of C, otherwise we get $\operatorname{depth}_S I/J \leq d+1$ by [10, Lemma 1.5]. Then we may suppose that $B \subset \cup_i \operatorname{supp} f_i$ and we may reduce to the case when $[n] = \cup_i \operatorname{supp} f_i$ because then $\operatorname{depth}_S I/J = \operatorname{depth}_{\tilde{S}}(I \cap \tilde{S})/(J \cap \tilde{S})$ for $\tilde{S} = K[\{x_t : t \in \cup_i \operatorname{supp} f_i\}]$.

On the other hand, we may suppose that for each $i \in [r]$ there exists $c \in C$ such that $f_i|c$, otherwise we may apply again [10, Lemma 1.5]. Since $c \in C_3$, let us say c is the least common multiple of f_1, f_2, f_3 we see that at least, let us say, $w_{12} \in B$. Then $f_i \in (u_1)$, $i \in [2]$ for some monomial $u_1 = (f_1 f_2)/w_{12}$ of degree d-1.

We may assume that $f_i \in (u_1)$ if and only if $i \in [k_1]$ for some $2 \le k_1 \le r$. Set $U_1 = \{f_1, \ldots, f_{k_1}\}$. We also assume that

$$\{u_i : i \in [e]\} = \{u : u = gcd(f_i, f_j), \deg u = d - 1, i \neq j \in [r]\},\$$

and define

$$U_i = \{f_j : f_j \in (u_i), j \in [r]\}$$

for each $i \in [e]$. Since each $f_t \in U_i$ divides a certain $c \in C$ we see from our construction that there exist $f_p, f_l \in U_i$ such that $w_{tp}, w_{tl} \in B$. Note that if $|U_i \cap U_j| \geq 2$ then we get $u_i = u_j$ and so i = j. Thus $|U_i \cap U_j| \leq 1$ for all $i, j \in [e]$, $i \neq j$.

Suppose that $w_{ij} \in J$ for all $i \in [k_1]$ and for all $j > k_1$, let us say $f_i = u_1 x_i$ for $i \in [k_1]$. Set $I' = (f_1, \ldots, f_{k_1})$, $J' = I' \cap J$ and $\hat{S} = K[\{x_i : i \in [k_1] \cup \sup u_1\}]$. Then $\operatorname{depth}_S I'/J' = \operatorname{depth}_{\hat{S}} I' \cap \hat{S}/J' \cap \hat{S} = \operatorname{deg} u_1 + \operatorname{depth}_{\hat{S}} (x_1, \ldots, x_{k_1}) \hat{S}/(J' : u_1) \cap \hat{S} = d$. Thus $\operatorname{depth}_S I/J = d$ by the Depth Lemma applied to the exact sequence

$$0 \to I'/J' \to I/J \to I/(I',J) \to 0$$
,

since the last term has depth $\geq d$ being generated by squarefree monomials of degree $\geq d$. In particular, depth_S I/J=d if e=1. If e>1 we may assume that for each $i\in [e]$ there exists $j\in [e]$ with $U_i\cap U_j\neq\emptyset$.

Example 4. Back to Example 3 note that we may take $u_1 = x_{12}$, $u_2 = x_6$ and $U_1 = \{f_1, \ldots, f_6\}$, $U_2 = \{f_6, \ldots, f_{11}\}$.

Lemma 4. Suppose that $e \geq 2$ and $f_r \in U_e$. Let I' be the ideal generated by all $f_k \in U_e \setminus \{f_r\}$. If $\operatorname{depth}_S I/(J, I', f_r) \geq d+1$ and there exists t with $f_t \in (\bigcup_{i=1}^{e-1} U_i) \setminus U_e$ such that $w_{rt} \in B \setminus I'$ then $\operatorname{depth}_S I/(J, I') = d+1$.

Proof: Using the Depth Lemma applied to the exact sequence

$$0 \to (f_r)/(f_r) \cap (J, I') \to I/(J, I') \to I/(J, I', f_r) \to 0$$

we see that it is enough to show that $\operatorname{depth}_S(f_r)/(f_r) \cap (J, I') = d+1$. By our hypothesis the squarefree monomials from $(f_r) \setminus (J, I')$ have the form $w_{rt'}$ for some t' with $f_{t'} \in (\bigcup_{i=1}^{e-1} U_i) \setminus U_e$ and $w_{rt'} \in B \setminus I'$.

Next we will describe the above set of monomials. If there exists no U_l containing f_t , $f_{t'}$ then their contributions to $(f_r)/(f_r) \cap (J,I')$ consist in two different monomials w_{rt} , $w_{rt'}$. Otherwise, we must have $f_r = x_k x_p v$, $f_t = x_k x_m v$ and $f_{t'} = x_p x_m v$ for some different $k, m, p \in [n]$ and one monomial v of degree d-2. Thus $w_{rt} = w_{rt'}$ and the contributions of f_t , $f_{t'}$ consist in just one monomial. Let A be the set of all $f_k \in (\bigcup_{i=1}^{e-1} U_i) \setminus U_e$ such that $w_{rk} \in B \setminus I'$ and define an equivalence relation on A by $f_t \sim f_{t'}$ if $f_t, f_{t'} \in U_i$ for some $i \in [e-1]$. For some f_t from an equivalence class of A/\sim we have $w_{rt}=x_{\gamma_t}f_r$ for one $\gamma_t\in[n]$. Let Γ be the set of all these variables x_{γ_t} for which $w_{rt} \notin (J, I')$. For two x_{γ_t} , $x_{\gamma_{t'}}$ corresponding to different classes we have $w_{tt'} = x_{\gamma_t} x_{\gamma_{t'}} f_r$ since f_t , $f_{t'}$ are not in the same equivalence class. Thus $w_{tt'} \in J$ because otherwise $w_{tt'} \in C$ which is impossible by our hypothesis. Let $Q \subset K[\Gamma]$ be the ideal generated by all squarefree quadratic monomials. The multiplication by f_r gives a bijection between $K[\Gamma]/Q$ and $(f_r)/(f_r) \cap (J,I')$ because each squarefree monomial of $(B \cap (f_r)) \setminus I'$ has the form $w_{rt} = f_r x_{\gamma_t}$ for some t, x_{γ_t} being in Γ . Then $\operatorname{depth}_{S}(f_{r})/(f_{r})\cap(J,I')=d+\operatorname{depth}_{K[\Gamma]}K[\Gamma]/Q=d+1$ since the variables of f_r form a regular sequence for $f_r/(f_r) \cap (J,I')$ (in the squarefree frame). Note that if A/\sim has just one class of equivalence containing some f_t with $w_{tr}\in B$ then $|\Gamma| = 1$, Q = 0 and also it holds $\operatorname{depth}_{K[\Gamma]} K[\Gamma]/Q = 1$.

Remark 2. In the notations of the above lemma suppose that $w_{rt} \in (J, I')$ for all t with $f_t \in (\bigcup_{i=1}^{e-1} U_i) \setminus U_e$. Then there exists no squarefree monomial of degree d+1 in $(f_r) \setminus (J, I')$ and so $\operatorname{depth}_S(f_r)/(f_r) \cap (J, I') = d$. It follows that $\operatorname{depth}_S I/(J, I') = d$ too.

Lemma 5. Suppose that $e \ge 2$. If depth_S $I/(J,(U_e)) \le d+1$ then depth_S $I/J \le d+1$.

Proof: Suppose that $U_e \supset \{f_{k+1}, \ldots, f_r\}$ for some $k \leq r$. Let I_k' be the ideal generated by all $f_t \in U_e \setminus \{f_{k+1}, \ldots, f_r\}$. We claim that $\operatorname{depth}_S I/(J, I_k') \leq d+1$. Apply induction on r-k, the case k=r-1 being done in Lemma 4 and Remark 2. Assume that r-k>1 and note that $I_{k+1}'=(I_k', f_{k+1})$. By induction hypothesis we have $\operatorname{depth}_S I/(J, I_{k+1}') \leq d+1$. If $\operatorname{depth}_S I/(J, I_{k+1}') = d$ then we get $\operatorname{depth}_S I/(J, I_k') \leq d+1$ by Lemma 2. If $\operatorname{depth}_S I/(J, I_{k+1}') = d+1$ we get again $\operatorname{depth}_S I/(J, I_k') \leq d+1$ by Lemma 4 and Remark 2. This proves our claim

Now choose r-k maxim, let us say $U_e=\{f_{k+1},\ldots,f_r\}$. Then $I_k'=0$ and so we get depth_S $I/J\leq d+1$.

Example 5. Let n = 6, r = 8, d = 2, $f_1 = x_1x_2$, $f_2 = x_1x_3$, $f_3 = x_1x_4$, $f_4 = x_2x_3$, $f_5 = x_3x_5$, $f_6 = x_2x_6$, $f_7 = x_3x_6$, $f_8 = x_4x_6$, and $I = (f_1, ..., f_8)$,

 $J = (x_1 x_2 x_5, x_1 x_3 x_6, x_1 x_4 x_5, x_1 x_4 x_6, x_2 x_3 x_4, x_2 x_5 x_6, x_3 x_4 x_5, x_3 x_5 x_6, x_4 x_5 x_6).$

It follows that $U_1 = \{f_1, \dots, f_3\}$, $U_2 = \{f_2, f_4, f_5, f_7\}$, $U_3 = \{f_6, f_7, f_8\}$, $U_4 = \{f_1, f_4, f_6\}$, $U_5 = \{f_3, f_8\}$, $u_1 = x_1$, $u_2 = x_3$, $u_3 = x_6$, $u_4 = x_2$, $u_5 = x_4$. Let $\tilde{S} = K[x_1, \dots, x_5]$, $\tilde{J} \subset \tilde{I} \subset \tilde{S}$ be the corresponding ideals given in Example 1. For $I' = (U_3)$ we have $I/(J, I') \cong \tilde{I}S/(\tilde{J}, x_6\tilde{I})S$. Thus depth_S $I/(J, I') = \text{depth}_{\tilde{S}} \tilde{I}/\tilde{J} \leq 3 = d+1$ by Example 1 and so using Lemma 5 we get depth_S $I/J \leq 3$ too.

Proposition 2. If $\cap_{i \in [e]} U_i \neq \emptyset$ then depth_S $I/J \leq d+1$.

Proof: As we have seen depth_S I/J=d if e=1. Assume that e>1 and let us say $f_r\in \cap_{i\in [e]}U_i$. Set $I'=(U_e)$. In I/(J,I') we have (e-1) disjoint $U_i'=U_i\setminus \{f_r\}$, $i\in [e-1]$. It follows that depth_S I/(J,I')=d and so depth_S $I/J\leq d+1$ by Lemma 5.

Proof of Lemma 3.

If $\bigcap_{i \in [e]} U_i \neq \emptyset$ then apply the above proposition. Otherwise, suppose that $f_r \in U_j$ if and only if $1 \leq j < k$ for some $1 < k \leq e$. Set $I' = (U_k, \dots, U_e)$. Applying again the above proposition we get $\operatorname{depth}_S I/(J, I') \leq d+1$. Set $L_i = \bigcup_{j \geq i} U_j$. Since $I' = (L_k)$ and $\operatorname{depth}_S I/(J, L_k) \leq d+1$ we see that $\operatorname{depth}_S I/(J, L_{k+1}) \leq d+1$ by Lemma 5. Using by recurrence Lemma 5 we get $\operatorname{depth}_S I/J = \operatorname{depth}_S I/(J, L_{e+1}) \leq d+1$ since $L_{e+1} = \emptyset$.

It is not necessary to assume in Proposition 2 that $C \cap W = \emptyset$ because anyway this follows as shows the following lemma.

Lemma 6. If $\cap_{i \in [e]} U_i \neq \emptyset$ then $C \cap W = \emptyset$.

Proof: Clearly we may suppose that e > 1. Let $f_r \in \cap_{i \in [e]} U_i$. Suppose that $w_{tt'} \in C$ for some $t \in U_i$, $t' \in U_j$. Then $i \neq j$ and let us say $f_t = u_i x_1$, $f_{t'} = u_j x_2$ and $f_r = u_i x_3 = u_j x_4$. It follows that $u_i = x_4 v$, $u_j = x_3 v$ for some monomial v and so $f_t = x_1 x_4 v$, $f_{t'} = x_2 x_3 v$, $f_r = v x_3 x_4$. Note that $f_t x_2 \in B$ and so must be of type $w_{tt''}$ for some $t'' \in [r]$. It follows that $f_t, f_{t''} \in U_k$ for some $k \in [e]$. By hypothesis $f_r \in U_k$ and so k = i because otherwise $|U_k \cap U_i| > 1$ which is impossible. Since $f_t x_2 \in B$ we see that $x_2 \notin \text{supp } u_i$ and it follows that $f_{t''} = x_2 x_4 v$. Therefore, $w_{t't''} = x_2 x_3 x_4 v \in B$ and so $f_{t'}, f_{t''} \in U_p$ for some p. This is not possible because otherwise one of $|U_p \cap U_i|, |U_p \cap U_j|, |U_i \cap U_j|$ is ≥ 2 . Contradiction!

Added in Proof: Meanwhile, an example appeared in a paper of Duval et al. (A non-partitionable Cohen-Macaulay simplicial complex), arXiv 1504.04279, which shows that the Stanley Conjecture fails. However, our Question 1 is still open.

References

- A. ASLAM, V. ENE, Simplicial complexes with rigid depth, Arch. Math. 99 (2012), 315-325.
- [2] W. Bruns, J. Herzog, Cohen-Macaulay rings, Revised edition, Cambridge University Press, (1998).
- [3] W. DECKER, G.-M. GREUEL, G. PFISTER, H. SCHÖNEMANN, Singular 3-1-6, A computer algebra system for polynomial computations, http://www.singular.uni-kl.de (2012).
- [4] J. Herzog, M. Vladoiu, X. Zheng, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169.
- [5] A. POPESCU, Special Stanley Decompositions, Bull. Math. Soc. Sc. Math. Roumanie, 53(101), no 4 (2010), 363-372, arXiv:AC/1008.3680.
- [6] A. POPESCU, D. POPESCU, Four generated, squarefree, monomial ideals, in "Bridging Algebra, Geometry, and Topology", Editors Denis Ibadula, Willem Veys, Springer Proceed. in Math., and Statistics, 96, 2014, 231-248, arXiv:AC/1309.4986v5.
- [7] D. POPESCU, Depth of factors of square free monomial ideals, Proceedings of AMS 142 (2014), 1965-1972, arXiv:AC/1110.1963.
- [8] D. POPESCU, Upper bounds of depth of monomial ideals, J. Commutative Algebra, 5, 2013, 323-327, arXiv:AC/1206.3977.
- [9] D. POPESCU, Stanley depth on five generated, squarefree, monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie, 59(107), (2016), no 1, 75-99, arXiv:AC/1312.0923v5.
- [10] D. POPESCU, A. ZAROJANU, Depth of some square free monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie, 56(104), 2013,117-124.
- [11] D. POPESCU, A. ZAROJANU, Three generated, squarefree, monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie, 58(106), (2015), no 3, 359-368, arXiv:AC/1307.8292v6.
- [12] Y.H. Shen, Lexsegment ideals of Hilbert depth 1, (2012), arxiv:AC/1208.1822v1.
- [13] R. P. STANLEY, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982) 175-193.

Received: 20.01.2015 Accepted: 28.05.2015

> Simion Stoilow Institute of Mathematics of Romanian Academy, Research unit 5, P.O.Box 1-764, Bucharest 014700, Romania. E-mail: dorin.popescu@imar.ro