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Depth in a pathological case

by
DoRrIN PoOPEScU*

Abstract

Let I be a squarefree monomial ideal of a polynomial algebra over a field
minimally generated by fi,..., fr of degree d > 1, and a set E of monomials
of degree > d+ 1. Let J C I be a squarefree monomial ideal generated in
degree > d + 1. Suppose that all squarefree monomials of I\ (J U E) of
degree d + 1 are some least common multiples of f;. If J contains all least
common multiples of two of (f;) of degree d + 2 then depthg I/J < d+1
and Stanley’s Conjecture holds for I/J.
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Introduction

Let K be a field and S = K|[x1,...,2,] be the polynomial K-algebra in n vari-
ables. Let I 2 J be two monomial ideals of S and suppose that I is generated by
some monomials of degrees > d for some positive integer d. After a multigraded
isomorphism we may assume either that J = 0, or J is generated in degrees
>d+ 1.

Suppose that I C S is minimally generated by some monomials f1,..., f; of
degrees d, and a set F of monomials of degree > d + 1. Let B (resp. C) be the
set of squarefree monomials of degrees d + 1 (resp. d +2) of I\ J. Let w;; be
the least common multiple of f; and f;, ¢ < j and set W to be the set of all w;;.
By [4, Proposition 3.1] (see [7, Lemma 1.1]) we have depthg I/J > d. It is easy
to see that if d = 1, E = () and B C W then depthg I/J = d (see for instance
[7, Lemma 1.8] and [6, Lemma 3]). Attempts to extend this result were made in
[10, Proposition 1.3], [6, Lemma 4]. However [6, Example 1] (see here Example
1) shows that for d =2, E =0 and B C W it holds depthg I/J =d+1 = 3.
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It BN (f1,...,fr) CW we call I/J a pathological case. Tt is the purpose of
this paper to show the following theorem.

Theorem 1. If BN (f1,...,fr) CW and CNW = () then depthg I/J < d+ 1.

In particular, if CNW = () then the so called Stanley’s Conjecture holds in the
pathological case (see Corollary 1). But why is important this pathological case?
The methods used in [11], [6], [9] to show a weak form of Stanley’s Conjecture
when r < 4 (see [9, Conjecture 0.1]) could be applied only when BN (f1,..., fr) &
W, that is when I/J is not pathological. Thus the above theorem solves partially
one of the obstructions to prove this weak form. We believe that the condition
C NW = 0 could be removed from the above theorem. The proof of Theorem 1
relies on Lemmas 2, 3 and Examples 2, 3, 5 found after many computations with
the Computer Algebra System SINGULAR [3].

The above theorem hints a possible positive answer to the following question.

Question 1. Let i € [r—1]. Suppose that E = () and every squarefree monomial
from I\ J of degree d+1 is a least common multiple of i+ 1 monomials f;. Then
is it depthg I/J < d+i?

We owe thanks to A. Zarojanu and a Referee, who noticed some mistakes and
a gap in Section 2 of some previous versions of this paper.

1 Depth and Stanley depth

Suppose that I is minimally generated by some squarefree monomials f1,..., f,
of degree d for some d € N and a set E of some squarefree monomials of degree
> d+ 1. Let C3 be the set of all c € C N (f1,..., fr) having all degree (d + 1)
divisors from B\ E in W. In particular each monomial of Cj is the least common
multiple of at least three of the f;.

Next lemma is closed to [10, Lemma 1.1].

Lemma 1. Suppose that E = () and depthg I/(J,b) = d for some b € B. Then
depthg I/J < d+1.

Proof: If there exists no ¢ € C such that b|c then we have depthgI/J < d+1
by [10, Lemma 1.5]. Otherwise, in the exact sequence

0—(b)/JN®)—=1I/J—=1/(Jb) —0

the first term has depth > d+ 2 because for a multiple ¢ € C of b all the variables
of ¢ form a regular system. By hypothesis the last term has depth > d and so
the middle one has depth d too using the Depth Lemma. 0

We recall the following example from [6].
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Example 1. Let n = 5, r =5, d = 2, fi = z129, fo = 173, f3 = 124,
f4 = T2x3, f5 = I3T5 and I = (fl, ey .](.5)7 J = (1‘1562135,5811'41’5,I2$3I4,Ig$41’5).
It follows that B = {x1xox3, 12924, T12324, T1T3T5, T2X325} and so s = |B| =
r = 5. Note that B C W. A computation with SINGULAR when char K =0
gives depthg I/J = depthg S/J = 3 and depthg S/I = 2. Since depth depends
on the characteristic of the field it follows in general only that depthg S/J < 3,
depthg S/I < 2 using [1, Lemma 2.4]. In fact depthgI/J < d+ 1 = 3 using [12,
Proposition 2.4] because ¢ = |C] = 2 < r = 5. Note that choosing any b € B we
have depthg I/(J,b) = 2 because the corresponding s’ < r and we may apply [7,
Theorem 2.2]. But then depthg I/J < 3 by Lemma 1.

Example 2. In the above example set I' = (f1,...,f4), J/=JNI =

(12225, x12425, x22324). Note that we have an injection I'/J" — I/J and so
depthg I'/J" > 2 because otherwise we get depthg I/J = 2 which is impossi-
ble. Given B, W' for I'/J" we see that B’ ¢ W’ since zqozszs € B\ W/,
that is I’/J’ is not anymore in the pathological case even this was the case of
I/J. We have I/(J, f5) = I'/(J, x1x325, xaxsxs). Using SINGULAR when char
K = 0 we see that depthg I'/(J', x12325) = depthg I'/(J', z12325, T2w3T5) = 2,
depthg I' /(J', xox325) = 3. It follows that always

depthg I' /(J', x12325), depthg I’/ (J', x123%5, voxzxs) < 2

using [1, Lemma 2.4]. These inequalities are in fact equalities because I’ is
generated in degree 2. Thus we cannot apply Lemma 1 for I’, J/, b = zox375 but
we may apply this lemma for I', J', ¥ = zyz325 to get depthg I'/J" < 3.

Lemma 2. Suppose that v > 1 and depthg I/(J, ) = d. Then depthg I/J <
d+1.

Proof: Let BN (f,) = {b1,...,b,}. As I/(J, f.) has a squarefree, multigraded
free resolution we see that only the components of squarefree degrees of

Tors™ YK, I1/(J, fr)) = Ho—a(z;1/(J, fr))

are nonzero, the last module being the Koszul homology of I/(J, f.). Thus we
may find

r—1

z = Zyifie[n]\supp fi € and(x; I/(J7 fr))7

i=1

y; € K inducing a nonzero element in H,,_4(x;I/(J, f.)). Here we set supp f; =
{t € [n] : z¢|f;} and eqx = Ajcae; for a subset A C [n]. We have

P
9z = Z Pb(y)be[n]\suppb = Z Pbi (y)bie[n]\supp bi»
beB =1
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where P, are linear homogeneous polynomials in y. Note that P,(y) = 0 for all
b {b1,...,by}. Choose j € supp f, and consider

r—1

= Y il supp 1) € Knoa1(x;1/7).
i=1,fi&(x;)

In 0z; appear only terms of type uea, j ¢ A with [Al =n—-d—1and u =
I\ (augip@i- Thus terms of type biep,\suppb,s ¢ € [p] are not present in 0z;
because b; € (x;). It follows that 0z; = 0 and so z; is a cycle. Note that a cycle
of Kp_q-1(x;I/J) could contain also terms of type veys with [A'| =n—d—1
and v = [l ar®; € B, but z; is just a particular cycle.

Remains to show that we may find j such that z; is a nonzero cycle. Suppose
that y, # 0 for m € [r — 1] and choose j € supp f, \ supp fr,. It follows that
zj is a nonzero cycle because Y fme€n)\({z,}U supp f,,) 15 Present in z;. Thus
depthg I/J < d+ 1 by [2, Theorem 1.6.17]. 0

Remark 1. Applying the above lemma to Example 2 we see that depthg I/J < 3
because depthg I/(J, f5) = 2.

Let Ppy be the poset of all squarefree monomials of I\ J with the order
given by the divisibility. Let P be a partition of Py s in intervals [u,v] = {w €
Pp g+ ulw,wlv}, let us say Pp .y = U;[ug,v;], the union being disjoint. Define
sdepth P = min; degv; and the Stanley depth of I/J given by sdepthgI/J =
maxp sdepth P, where P runs in the set of all partitions of Pp\ s (see [4], [13]).
Stanley’s Conjecture says that sdepthg I/J > depthg I/J.

In Example 1 we have s =5 < ¢+ 3 = 7 and so it follows that depthg I/J <
d + 1 by [8, Theorem 1.3] (see also [6, Theorem 2]). Next example follows [9,
Example 1.6] and has s = ¢ + r, sdepthg I/J = d + 2 but depthg I/J = d.

Example 3. Letn = 12, r = 11, f1 = T12%1, fg = T12%2, f3 = T12%3, f4 = T12%4,
I5 = 1275, fo = w1276, fr = Tew7, fs = ToTs, fo = Tewo, f10 = TeT10, f11 =
11, J = (1'7, ey xll)(fla ey f5) + ((El, e ,1’5)(f7, ey f11) + fG(ZL'g, ey (Ell)7
I=(f1,-..,fi1). Wehave B ={w;; : 1 <i<j<b}U{wy :6<k<t<
11} U {wse : @ € [8],4 # 6}, that is s = |B| = 27. Let ¢1 = zgwia2, ¢a = Tewas,
€3 = TeW3q, C4 = TeWys5, C5 = TeW1s, C6 = T§We7, C7 = ToWrs, €8 = T1pW8Y, Cy =
ZL11W9 10, €10 = T7W10,11, €11 = T7W8 11, C/13 = T4W13, 0/14 = T5W1i4, 0'24 = TeW24,
Chs = Tgwas, Chs = Tewss. These are all monomials of C, that is ¢ = |C] = 16
and so s = ¢+7. The intervals [f;, ¢;], ¢ € [11] and [w1s, ¢]3], [wi4, ¢1a], [Wa4, Chal,
[was, chs, [wss, chs] induce a partition P on I/J with sdepth 4.

We claim that depthg S/J = 2. Indeed, let J' = (z7,...,211)(f1,..., f5) +
(Il, e 71‘5)(]077 ey fll) = (1‘12,$6)(1‘7, RPN ,xn)(zl, ‘e ,$5). By [5, Theorem 14]
we get depthg S/J' =2 =4d. Set J; = J' + (z1226%9), Jo = J1 + (z12T6710). We
have J = Jo + (z12x6211). In the exact sequences

0— (.me.T@Q?g)/(.’I?lg.’Eg.Tg) NnJ — S/J/ — S/Jl — 0,



Depth in a pathological case 191

0— (xlgmgxlo)/(xlgxgxlo) NnJ; — S/Jl — S/JQ — 0,

0— ($12$6$11)/(1‘12$6$11) NJs — S/J2 — S/J —0
the first terms have depth > 5. Applying the Depth Lemma by recurrence we
get our claim.

Now we see that depthg S/I = 6. Set I; = (fi,...,f;) for 6 < j < 11. We
have I = Iy, Is = z12(21,. .., 2¢) and depthg S/Is = 6. In the exact sequences

0= (fi+1)/(fi+1) N1 = S/J; = S/1j11 — 0,

6 < ] < 11 we have (fj.:,_l)ﬂlj = fj+1($12, Try.n. ,Jij) and so depths(fj+1)/(fj+1)ﬂ
I; =12 —(j—5) > 7 for 6 < j < 11. Applying the Depth Lemma by recurrence
we get depthg S/I;41 =6 for 6 < j < 11 which is enough.

Finally using the Depth Lemma in the exact sequence

0—>1I1/J—=S8/J—=S/IT—=0
it follows depthg I/J =2 =d.

The following lemma is the key in the proof of Theorem 1 and its proof is
given in the next section.

Lemma 3. Suppose that E =0, C C C3, CN'W = 0 and Theorem 1 holds for
r’" <r. Then depthg I/J < d+ 1.

Proposition 1. Suppose that C N (f1,...,fr) CCs, CNW =0 and Theorem 1
holds for v’ < r. Then depthgI/J < d+ 1.

Proof: Suppose that F # (), otherwise apply Lemma 3. Set I' = (f1,..., fr),
J' = JNI'. In the exact sequence

0—=1')] —=1/J—=TI/I,J)—0
the last term is isomorphic to something generated by F and so its depth is > d+1.

The first term satisfies the conditions of Lemma 3 which gives depthg I’/J" <
d + 1. By the Depth Lemma we get depthg I/J < d + 1 too. D

Proof of Theorem 1

Apply induction on r. If r < 5 then BN (f1,...,fr) C W implies |B N
(f1,---, fr)] < 2r and so sdepthg I/J < d+ 1 and even depthgI/J < d+ 1 by
[12, Proposition 2.4] (we may also apply [9, Theorem 0.3]). Suppose that r > 5.

Since all divisors of a monomial ¢ € C N (f1,..., fr) of degrees d 4+ 1 are in B,
they are also in W by our hypothesis. Thus C N (f1,..., fr) C C3 and we may
apply Proposition 1 under induction hypothesis. O

Corollary 1. Suppose that BN (f1,...,fr) C W and CNW = (. Then
depthg I/J < sdepthg I/J, that is the Stanley Conjecture holds for I1/J.

Proof: If sdepthg I/J = d then apply [7, Theorem 4.3], otherwise apply Theorem
1. O
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2 Proof of Lemma 3.

We may suppose that B C W because each monomial of B must divide a mono-
mial of C, otherwise we get depthg I/J < d+1 by [10, Lemma 1.5]. Then we may
suppose that B C U; supp f; and we may reduce to the case when [n] = U; supp f;
because then depthg I/.J = depthg(INS)/(JNS) for S = K[{x, : t € U; supp fi}].

On the other hand, we may suppose that for each i € [r] there exists ¢ € C
such that f;|c, otherwise we may apply again [10, Lemma 1.5]. Since ¢ € Cs, let
us say c is the least common multiple of f1, f2, f3 we see that at least,let us say,
wig € B. Then f; € (u1), i € [2] for some monomial u; = (f1 f2) /w12 of degree
d—1.

We may assume that f; € (uq) if and only if ¢ € [k;] for some 2 < ky < r. Set
U ={f1,.--, fr,}. We also assume that

{u; i ele]} ={u:u=gcd(fi fj),degu=d—1,i# j € [r]},

and define
Ui ={fj: fj € (wi),j € [r]}

for each i € [e]. Since each f; € U; divides a certain ¢ € C we see from our
construction that there exist f,, fi € U; such that wy,,wy € B. Note that if
|U;NU;| > 2 then we get u; = u; and so ¢ = j. Thus |[U;NU;| < 1foralli,j € [e],
i1 7.

Suppose that w;; € J for all i € [k;] and for all j > k1, let us say f; = uqa; for
i € [k1]. Set I' = (f1,..., fr,), J' =I'N J and S =K[{z;:ie[ki] U supp u }].
Then depthg I'/J" = depthg I' N S/J' NS = degui +depthg (1, ..., 2x,)S/(J":
up) N S = d. Thus depthg I/J = d by the Depth Lemma applied to the exact

sequence
0—=1')J —=1/J—1TI/T,J)—0,

since the last term has depth > d being generated by squarefree monomials of
degree > d. In particular, depthg I/J =d if e = 1. If e > 1 we may assume that
for each ¢ € [e] there exists j € [e] with U; N U; # 0.

Example 4. Back to Example 3 note that we may take u; = z12, us = g and
Ul = {fl;"'aff}}a U2 = {f67"'7f11}-
Lemma 4. Suppose that ¢ > 2 and f. € U.. Let I' be the ideal generated

by all fr € U\ {fr}. If depthg I/(J,I',f;) > d+ 1 and there exists t with
fr € (UZ}U) \ U. such that w,s € B\ I’ then depthg I/(J,I') = d + 1.

Proof: Using the Depth Lemma applied to the exact sequence
0= (f)/(fe) N (LT) = I/(JT') = I/(J T, fr) = 0

we see that it is enough to show that depthg(f,)/(fr) N (J,I') = d+ 1. By our
hypothesis the squarefree monomials from (f,) \ (J,I’) have the form w,, for
some t’ with f; € (Uf;llUi) \ U, and wy € B\ I'.
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Next we will describe the above set of monomials. If there exists no U; contain-
ing fi, fv then their contributions to (f.)/(fr) N (J,I’) consist in two different
monomials wy¢, wye. Otherwise, we must have f, = xpzpv, fi = Tpxmv and
fr = zpzpu for some different k, m,p € [n] and one monomial v of degree d — 2.
Thus w,+ = w,y and the contributions of f;, fy consist in just one monomial.
Let A be the set of all f;, € (Uf;llUi) \ U, such that w,; € B\ I' and define
an equivalence relation on A by f; ~ fu if fi, fy € U; for some i € [e — 1]. For
some f; from an equivalence class of A/ ~ we have w,y = z., f» for one v, € [n].
Let T' be the set of all these variables xz,, for which w,; ¢ (J,I"). For two x.,,
x,, corresponding to different classes we have wy = ., f; since fi, fy are
not in the same equivalence class. Thus w;y € J because otherwise wyy € C
which is impossible by our hypothesis. Let @ C KII'] be the ideal generated
by all squarefree quadratic monomials. The multiplication by f, gives a bijec-
tion between K[I']/Q and (f.)/(fr) N (J,I’) because each squarefree monomial
of (BN (fr))\ I has the form w,y = frx,, for some t, x,, being in I". Then
depthg(f)/(fr) N (J;I") = d + depthgry K[I']/Q = d + 1 since the variables of
fr form a regular sequence for f,.)/(f.) N (J,I') (in the squarefree frame). Note
that if A/ ~ has just one class of equivalence containing some f; with wy,. € B
then |I'| =1, @ = 0 and also it holds depthy ) K[I']/Q = 1. O

Remark 2. In the notations of the above lemma suppose that w,: € (J,I')
for all t with f, € (Uf;ll U;) \ Ue. Then there exists no squarefree monomial of
degree d + 1 in (f) \ (J,I') and so depthg(f)/(fr) N (J,I') = d. Tt follows that
depthg I/(J,I") = d too.

Lemma 5. Suppose that e > 2. If depthg I/(J, (U.)) < d+1 then depthg I/J <
d+1.

Proof: Suppose that Uc D {fr+t1,..., fr} for some k < r. Let I; be the ideal
generated by all f; € U\ {fix+1,- -, fr}. We claim that depthg I/(J,1I},) < d+1.
Apply induction on r — k, the case k = r — 1 being done in Lemma 4 and
Remark 2. Assume that r —k > 1 and note that I; | = (I}, fr+1). By induction
hypothesis we have depthg I/(J, I} ,) < d+ 1. If depthg I/(J,I; ;) = d then
we get depthg I/(J,1;) < d+ 1 by Lemma 2. If depthg I/(J, I}, ,) = d+ 1 we
get again depthg I/(J,I}) < d+ 1 by Lemma 4 and Remark 2. This proves our
claim.

Now choose r — k maxim, let us say Ue = {fx+1,..., fr}. Then I}, = 0 and so
we get depthg I/J < d+ 1. O

Example 5. Let n = 6, r = 8, d = 2, fi = z122, fo = w123, f3 = 124,
fa = max3, f5 = 2375, f6 = 2276, fr = T3T6, f3 = T4T6, and [ = (f17~-~7f8),

J = (3713321757 L1X3L6, L1L4L5; L1X4L6, L2L3L4, L2L5L6, L3TL4L5, L3L5L6, $4$5$6)-
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It follows that U1 = {fl,...,fg}, Ug = {fg,f4,f5,f7}, U3 = {fﬁ,f’?,fs}, U4 =
{f1, fa, f6}, Us = {f3, fa}, u1 = 21, ug = 3, uz = x6, ug = T2, us = r4. Let
S = Klz1,...,25], J € I C S be the corresponding ideals given in Example
1. For I' = (Us) we have I/(J,I') = IS/(J,2z¢I)S. Thus depthgI/(J,I') =
depthg I/J <3 =d+1by Example 1 and so using Lemma 5 we get depthg I/J <
3 too.

Proposition 2. If N;cqU; # 0 then depthg I/J < d + 1.

Proof: As we have seen depthg I/J = d if e = 1. Assume that e > 1 and let us
say fr € NigqUs. Set I' = (Ue). In1/(J,I") we have (e—1) disjoint U] = U;\{ f»},
i € [e—1]. Tt follows that depthg I/(J,I') = d and so depthgI/J < d+ 1 by
Lemma 5. 0

Proof of Lemma 3.

If NicUs # O then apply the above proposition. Otherwise, suppose that
fr € Ujif and only if 1 < j < k for some 1 < k < e. Set I' = (Uy,...,U.).
Applying again the above proposition we get depthgI/(J,I') < d + 1. Set
L; = U;»;U;. Since I' = (Lg) and depthgI/(J, L) < d+ 1 we see that
depthg I/(J, Ly+1) < d 4+ 1 by Lemma 5. Using by recurrence Lemma 5 we
get depthg I'/J = depthg I/(J, Let1) < d+ 1 since Ley1 = 0. O

It is not necessary to assume in Proposition 2 that CNW = () because anyway
this follows as shows the following lemma.

Lemma 6. If Nic[qU; # 0 then CNW = 0.

Proof: Clearly we may suppose that e > 1. Let f. € N;cqU;. Suppose that
wyy € C for some t € U;, t' € U;. Then ¢ # j and let us say fi = w;z1, fr = u;xo
and f, = u;x3 = ujze. It follows that u; = x4v, u; = x3v for some monomial
v and so f; = x1x4v, fpr = mox3v, fr. = vzszy. Note that fizo € B and so
must be of type wy for some t” € [r]. It follows that f, fir € Uy for some
k € [e]. By hypothesis f,. € Uy and so k = i because otherwise |Uy NU;| > 1
which is impossible. Since fixo € B we see that xo & supp u; and it follows that

fer = xaxgv. Therefore, wyyr = xox314v € B and so fy, fyr € U, for some p.
This is not possible because otherwise one of |U, NU;|, |U,NU;|, |U; NU;| is > 2.
Contradiction! 0

Added in Proof: Meanwhile, an example appeared in a paper of Duval et
al. (A non-partitionable Cohen-Macaulay simplicial complex), arXiv 1504.04279,
which shows that the Stanley Conjecture fails. However, our Question 1 is still
open.
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