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Abstract

In this note, we construct new examples of Lorentzian Sasaki-Einstein
(LSE) metrics on Smale manifolds M. It has already been established by
the author that such metrics exist on the so-called torsion free Smale
manifolds, i.e. the k-fold connected sum of S2 × S3 for all k. Now, we
show that LSE metrics exist on Smale manifolds for which H2(M,Z)tor
is nontrivial. In particular, we show that most simply-connected positive
Sasakian rational homology 5-spheres are also negative Sasakian (hence
LSE). Moreover, we show that for each pair of positive integers (n, s) with
n, s > 1, there exists a Lorentzian Sasaki-Einstein Smale manifold M such
that H2(M,Z)tors = (Z/n)2s. Finally, we are able to construct so-called
mixed Smale manifolds (connect sum of torsion free Smale manifolds with
rational homology spheres) which admit LSE metrics and have arbitrary
second Betti number. This gives infinitely many examples which do not
admit positive Sasakian structures. These results partially address open
problems formulated by C.Boyer and K.Galicki.
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1 Introduction

Let M be a compact, simply-connected, 5-manifold with w2(M) = 0. By a the-
orem of Smale [15], H2(M,Z) uniquely determines M. Following [5], let us call
such manifolds M Smale manifolds and divide them up into three classes: i.)
torsion free Smale manifolds with positive second Betti number, that is k-fold
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connected sums of S2 × S3 for some k ii.) rational homology spheres, including
S5 and iii.) mixed Smale manifolds, which are the connected sums of torsion
free Smale manifolds with rational homology spheres. There has been a flurry of
work (see [4] for sweeping survey) dedicated to determining which Smale mani-
folds admit so-called quasi-regular positive Sasakian structures. A quasi-regular
positive (negative) Sasakian manifold can be viewed as a principal circle orbi-
bundle over a complex algebraic orbifold (X,∆ =

∑
(1 − 1

mi
)Di) such that the

orbifold first Chern class is positive (negative). In [8], it was shown that positive
Sasakian structures exist on an arbitrary connected sum of torsion free Smale
manifolds. Then in [12] Kollár established a classification theorem for simply-
connected rational homology 5-spheres admitting positive Sasakian structures.
There are partial results for the mixed Smale manifolds. See [4] for a more com-
plete survey and [5] for more recent results.

Negative Sasakian geometry on Smale manifolds is not as developed. In [11],
it was shown that negative Sasakian structures exist on the k-fold connected sum
of S2 × S3 for all k. It was shown in [10] that the simply-connected rational ho-
mology 5-sphere Mk admits both positive and negative Sasakian structures for
k ≥ 5. Until now, negative Sasakian structures on other simply-connected pos-
itive Sasakian rational homology 5-spheres have not been constructed. It turns
out that a negative Sasakian structure can give rise to negative Sasaki η-Einstein
as well as Lorentzian Sasaki-Einstein metrics. Thus, negative Sasakian geome-
try is a strong tool in constructing such manifolds with these metric properties.
In fact, Boyer and Galicki formulated the following open problems on negative
Sasakian geometry in dimension five on pages 359− 360 in [4]:

a.) Determine which simply-connected rational homology 5-spheres admit nega-
tive Sasakian structures.
b.) Determine which torsion groups [torsion subgroups in H2(M,Z)] correspond
to Smale-Barden manifolds admitting negative Sasakian structures.

The more general Smale-Barden five-manifolds correspond to the non-spin case
and that will not be addressed in this paper. The principle aim of this note is to
make a significant first step towards solutions to the above problems. The main
theorem is:
Theorem 1
(1.) The following simply-connected positive Sasakian rational homology 5-spheres
admit a negative Sasakian structure:

Mm, 2M3, 3M3, 4M3, 2M4, 2M5

where m is a positive integer with m ≥ 5 and m 6= 30j for some positive inte-
ger j. Consequently, these manifolds admit both positive and negative Sasakian
structures.

(2.) For every pair of positive integers (n, s) with n, s > 1 there exists a Smale
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manifold M which admits a negative Sasakian structure such that H2(M,Z)tors =
(Z/n)2s.

(3.) There exists mixed Smale manifolds M which are negative Sasakian and
have arbitrary second Betti number but do not admit any positive Sasakian struc-
ture. Moreover, all the manifolds listed in (1.) - (3.) can be realized as a links
of an isolated hypersurface singularity at the origin and admit negative Saskaki
η-Einstein, hence Lorentzian Sasaki-Einstein metrics.

The only manifolds from the classification list of positive Sasakian simply
connected rational homology 5-spheres missing in the above theorem is nM2 and
Mm where m = 2, 3, 4. It is interesting to note that generally, it is not known for
which n the manifolds nM2 are Sasaki-Einstein of positive scalar curvature (See
[5] for some recent known values of n.)

It is worthwhile to contrast the second part of the above theorem with 5-
dimensional simply-connected positive Sasakian geometry. Let M be a positive
quasi-regular Sasakian manifold which is simply connected. Then the torsion
group in H2(M,Z) is constrained to be one of the following [12]:

(Z/m)2, (Z/5)4, (Z/4)4, (Z/3)4, (Z/3)6, (Z/3)8, (Z/2)2n (1.1)

for any n,m ∈ Z+.
Continuing the comparison with positive Sasaki-Einstein geometry of Smale

manifolds, there are no examples of Sasaki-Einstein structures on mixed Smale
manifolds with second Betti number larger than nine. The third part of our the-
orem illustrates that is far from the case in Lorentzian Sasaki-Einstein geometry.

The organization of the note is as follows. The second sections recalls some ba-
sic definitions of hypersurfaces in weighted projective spaces and Sasakian struc-
tures on links. Finally, the third section gives the proof of Theorem 1.

2 Preliminaries

The plan of the proof in Theorem 1, given in the next section, uses the Boyer-
Galicki method in producing examples of Sasakian manifolds. The idea is as
follows: First, construct a particular hypersurface in weighted projective space
which possesses a certain branch divisor. Then determine the diffeomorphism
type of the manifold that arises as the total space of the principal circle orbibundle
over this hypersurface by using theorems of Smale [15] and Kollár [12]. In this
section, we collect some useful definitions needed for the proof in the next section.

The weighted C∗-action, denoted by C(w), on Cn+1 is given by

(z0, . . . , zn) 7→ (λw0z0, . . . , λ
wnzn)

where w = (w0, . . . , wn) is a sequence of positive integers, λ ∈ C∗ and
gcd(w0, . . . , wn) = 1. So we have
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Definition 1. The quotient space (Cn+1\{0})/C∗(w) is defined as weighted pro-
jective space P(w).

We are interested in hypersurfaces in weighted projective space defined by
zero sets of particular polynomials.

Definition 2. Let f be a polynomial in C[z0, . . . , zn]. The polynomial is said to
be weighted homogeneous of degree d if for any λ ∈ C∗ we have

f(λw0z0, ..., λ
wnzn) = λdf(z0, ..., zn).

We say Zf is a weighted hypersruface of P(w) if the hypersurface Zf is the zero
locus of the weighted homogenous polynomial f.

The hypersurfaces Zf in weighted projective space in this article are all Kähler
orbifolds. These orbifolds will have branch divisors. Recall, a branch divisor 4
is a Q-divisor of the form 4 =

∑
i(1−

1
mi

)Di where Di are Weil divisors and mi

is the ramification index, which is the gcd of the orders of the local uniformizing
groups of the orbifold Zf at all points Di. We will denote the orbifold together
with this branch divisor as (Zf ,4).

We will use a well-known theorem of Boyer and Galicki (see for example
[1]) which asserts that one can construct a principle circle orbibundle over a
weighted hypersurface Zf and this total space is a link of an isolated hypersurface
singularity.

Definition 3. [13] The link Lf of an isolated hypersurface singularity at the
origin defined by the weighted homogenous polynomial of degree d is the smooth
n − 2 connected manifold of dimension 2n − 1 given by Lf = Cf ∩ S2n+1 where
Cf is the weighted affine cone and S2n+1 is viewed as the unit sphere in Cn+1.

A link of an isolated hypersurface singularity admits a Sasakian structure
(see [1] or [4]). Let us review the definition of a Sasakian manifold. A Sasakian
manifold is a smooth Riemannian manifold M2n+1 with some structure tensors
S = (ξ, η,Φ, g) that makes M2n+1 into a normal contact metric structure. (We
may sometimes refer to S as a Sasakian structure on the manifold.) The Reeb
vector field ξ is a Killing vector field. The Reeb vector field foliates M by one-
dimensional leaves. The 1-form η is a contact form and Φ is an endomorphism
of the tangent bundle such that Φ restricted to kerη = D is an integrable almost
complex structure. Moreover, if the leaves are compact, we say the Sasakian
manifold is quasi-regular. Furthermore, the Sasakian manifold is called Sasaki
η-Einstein if the metric g satisfies

Ricg = λg + νη ⊗ η,

where λ+ ν = 2n and we assume dim M > 3. If Ricg = λg for a constant λ, we
say the Sasakian manifold is Sasaki-Einstein. Finally, if the metric g is Einstein
and indefinite, we say the Sasakian structure is Lorentzian Sasaki-Einstein.

The last definition we need is a notion of negativity. This will allow us to use
theorems which ensure the constructed links Lf are Lorentzian Sasaki-Einstein.
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Definition 4. A link Lf of degree d is a negative Sasakian manifold if d−
∑
i wi >

0.

3 Proof of Theorem 1

To prove Theorem 1, the problem is reduced to constructing particular weighted
hypersurfaces which possess certain branch divisors. These branch divisors will
influence the type of topology on the links over the hypersurfaces.
Consider the following hypersurface in weighted projective space

Zf ⊂ P(2qp, 2αp, 2αq, α(p− 1))

where the hypersurface Zf is defined as the zero locus of the weighted homogenous
polynomial of degree d = 2qpα (assume q,p,α are all distinct)

f = zα0 + zq1 + zp2 + z2z
2q
3 .

(These polynomials are of Type II in the Yau-Yu list [16].) Furthermore, let us
assume gcd(q, 2αp(p − 1)) = 1 and (p, α) = 1. With these assumptions together
with the assumption that the gcd of all the weights is one, it follows that α, q are
odd and p is even. Therefore, we have gcd(α, 2qp) = 1 and so the link of Lf is
a simply-connected rational homology 5-sphere by Proposition 2.1 of [3] (or see
Theorem 9.3.17 in [4]). There are two curves in the branch divisor: C0 of degree
2qp corresponding to z0 = 0 and C1 of degree qpα corresponding to z3 = 0. More
precisely, C0 = zq1 + zp2 + z2z

2q
3 and C1 = zα0 + zq1 + zp2 with ramification indices

α and 2 respectively. Hence, on the hypersurface Zf , we have the branch divisor
∆ = α−1

α C0 + 1
2C1. A negative Sasakian structure exists on Lf as long as

2qp(α− 1) + α(1− 3p− 2q) > 0. (3.1)

To determine the topology of Lf , we can apply theorem 50 in [12]. In particular,
we must compute the genus of the curves C0 and C1. Recall the genus formula
(see for example [9]) which we shall use

2g(C) =
d2

w0w1w2
− d

∑
i<j

gcd(wi, wj)

wiwj
+
∑
i

gcd(d,wi)

wi
− 1. (3.2)

where C is a curve of degree in d in the weighted projective space P(w0, w1, w2)
By applying this formula (and using the gcd conditions defined above) to C0 ⊂
P(2p, 2q, p− 1) and C1 ⊂ P(qp, αp, αq), we find

2g(C0) =
(2qp)2

(2p)(p− 1)(2q)
−2qp

(
2

4qp
+

1

2p(p− 1)
+

1

2q(p− 1)

)
+

(
1

p− 1
+ 1

)
= q−1.

Similarly, we can calculate the genus of C1 ⊂ P(qp, αp, αq) and here we find

2g(C1) = 1− qpα
(

p

qαp2
+

α

α2pq
+

q

q2αp

)
+ 2 = 0.
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This shows that C1 is a rational curve which means that this curve will not
contribute to torsion in H2(Lf ,Z), by Theorem 5.7 in [12]. So we have that Lf
is a negative Sasakian rational homology 5 sphere and by Smale’s Theorem A in
[15], we have Lf is diffeomorphic to q−1

2 Mα and hence H2(Lf ,Z) = (Z/α)q−1.
Note that q is assumed to be odd.

By choosing the appropriate weights, we can obtain some of the positive
rational homology spheres in part 1 of Theorem 1 which, due to our construction
now admit negative Sasakian structures as well. We can get 2M3 by letting q = 5,
α = 3 and p = 4. Let q = 7, α = 3 and p = 4, getting the rational homology
sphere with torsion (Z/3)6. It should be noted that particular choices of p will
exhibit other negative Sasakian structures on a given rational homology sphere.
Again using the Type II polynomials as described in [16], we can obtain the other
rational homology spheres in the list. Since the computation is nearly identical to
the above, the remaining cases are the first three entries in Table 1 at the end of
this section. The condition that m 6= 30j ensures that Mm is positive Sasakian,
as established in [12].

For the second part of Theorem 1, we study the following orbifold in weighted
projective space cut out by the Brieskorn-Pham polynomial equation f = z20 +
z2l1 +zl2+z2nl3 = 0 of degree d = 2nl in the weighted projective space P(nl, n, 2n, 1).
The negative Sasakian condition is n(l − 3) > 1 so let l ≥ 4, n ≥ 2. Note that we
have a branch divisor for z3 = 0 with ramification index n so this generates the
curve C = z20 + z2l1 + zl2 ⊂ P(nl, n, 2n) = P(l, 1, 2) where this curve has degree
d = 2l. As before, we compute the genus of this curve H2(Lf ,Z) obtaining:

2g(Cf ) = l − gcd(l, 2).

Since l is an integer greater than or equal to 4, part two of the theorem is estab-
lished.

To establish the third part of the theorem, we need to construct a link for
which the second Betti number is arbitrary. To this end, we construct the orb-
ifold hypersurface f = zk+1

0 +zk+1
1 +zk+1

2 +z0z
n
3 in the weighted projective space

P(n, n, n, k) of degree n(k + 1). This was investigated in an unpublished part of
the author’s thesis [10]. Assume that gcd(n, k) = 1. To calculate the second Betti
number of the link, we use the formula devised by Milnor and Orlik [14]. Recall
that this involves computing

divisor∆(t) =
∏
i

(Λui

vi
− 1
)

= 1 +
∑

ajΛj

using the relation ΛaΛb = gcd(a, b)Λlcm(a,b). The symbol ui

vi
is the irreducible

representation of d
wi

, where d is the degree of the polynomial and wi are the
weights. The formula for the second Betti number of the link is

b2(Lf ) = 1 +
∑
i

ai.
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Applying this procedure to our example, we obtain

divisor∆(t) =
(
Λk+1−1

)3(1

k
Λn(k+1)−1

)
= k2Λn(k+1)−(k2−k+1)Λk+1+1 (3.3)

and therefore b2(Lf ) = k. The negative Sasakian condition is easily seen to be
n(k − 2) > 0.
Of course, there is a branch divisor for z3 = 0, with ramification index n, corre-
sponding to C = zk+1

0 + zk+1
1 + zk+1

2 ⊂ P(1, 1, 1) = P2 so using the usual genus
formula for curves, we find 2g(C) = k(k − 1). Then we compute H2(Lf ,Z) as
above and we find, then, that

H2(Lf ,Z) = Zk ⊕ (Z/n)k(k−1).

Hence, for each positive integer k ≥ 3 we may choose an n such that the resulting
torsion subgroup of H2(Lf ,Z) is not on the list in (1.1).

Now, since all of our examples are negative Sasakian links, by Theorem 17
and Corollary 24 in [6] they are negative Sasaki η-Einstein as well as Lorentzian
Sasaki-Einstein. The fact that our examples are spin follows from Corollary 11.8.5
of [4]. This concludes the proof.

Table 1 Negative Sasakian rational homology 5-Spheres

w = (w0, w1, w2, w3) Link Lf degree manifold

(15, 12, 4, 28) z40 + z51 + z152 + z2z
2
3 60 2M4

(42, 35, 15, 65) z50 + z61 + z142 + z2z
3
3 210 2M5

(68, 51, 6, 33) z30 + z41 + z342 + z2z
6
3 204 4M3

(p,m,m((p + 1)/4),m((p− 1)/2) zm0 + zp1 + z22z3 + z23z1 mp Mm,m > 4

The entry in the very bottom row was used in [2, 3] to establish Sasaki met-
rics of positive Ricci curvature on certain simply-connected rational homology
5-spheres and it was also realized in the author’s thesis [10] that one could use
those links to obtain the existence of negative Sasakian structures on certain ra-
tional homology spheres. An assumption is needed on m, p to make things work
out and that is for each m choose a prime p of the form p = 4l − 1 such that
(m, p) = 1. The negativity condition is easily seen to be (m− 4)(l − 1) > 3.

Remark 1. In positive Sasaki-Einstein geometry of Smale manifolds, an open
problem is the following [4]: Suppose k = b2(M) > 9. Then M admits a Sasaki-
Einstein structure if and only if H2(M,Z)tor = 0 i.e. M is diffeomorphic to a
k-fold connected sum of S2 × S3. Said differently, mixed Smale Sasaki-Einstein
5-manifolds with second Betti number bigger than 9 do not exist. By our Theorem
1, we see that such a statement is not true in the Lorentzian Sasaki-Einstein case.
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