Bull. Math. Soc. Sci. Math. Roumanie Tome 59(107) No. 1, 2016, 75–99

Stanley depth on five generated, squarefree, monomial ideals

by Dorin Popescu*

Abstract

Let $I \supseteq J$ be two squarefree monomial ideals of a polynomial algebra over a field generated in degree $\geq d$, resp. $\geq d+1$. Suppose that I is either generated by four squarefree monomials of degrees d and others of degrees $\geq d+1$, or by five special monomials of degrees d. If the Stanley depth of I/J is $\leq d+1$ then the usual depth of I/J is $\leq d+1$ too.

Key Words: Monomial Ideals, Depth, Stanley depth.2010 Mathematics Subject Classification: Primary: 13C15, Secondary: 13F20, 13F55, 13P10.

Introduction

Let K be a field and $S = K[x_1, \ldots, x_n]$ be the polynomial K-algebra in n variables. Let $I \supseteq J$ be two squarefree monomial ideals of S and suppose that I is generated by squarefree monomials of degrees $\geq d$ for some positive integer d. After a multigraded isomorphism we may assume either that J = 0, or J is generated in degrees $\geq d + 1$.

Let $P_{I\setminus J}$ be the poset of all squarefree monomials of $I \setminus J$ with the order given by the divisibility. Let P be a partition of $P_{I\setminus J}$ in intervals $[u, v] = \{w \in P_{I\setminus J} : u|w, w|v\}$, let us say $P_{I\setminus J} = \bigcup_i [u_i, v_i]$, the union being disjoint. Define sdepth $P = \min_i \deg v_i$ and the *Stanley depth* of I/J given by $\operatorname{sdepth}_S I/J = \max_P \operatorname{sdepth} P$, where P runs in the set of all partitions of $P_{I\setminus J}$ (see [3], [19]). Stanley's Conjecture says that $\operatorname{sdepth}_S I/J \ge \operatorname{depth}_S I/J$.

In spite of so many papers on this subject (see [3], [10], [17], [1], [4], [18], [11], [7], [2], [12], [16]) Stanley's Conjecture remains open after more than thirty years. Meanwhile, new concepts as for example the Hilbert depth (see [1], [20], [5]) proved to be helpful in this area (see for instance [18, Theorem 2.4]). Using

^{*}The support from grant ID-PCE-2011-1023 of Romanian Ministry of Education, Research and Innovation is gratefully acknowledged.

a Theorem of Uliczka [20] it was shown in [8] that for n = 6 the Hilbert depth of $S \oplus m$ is strictly bigger than the Hilbert depth of m, where m is the maximal graded ideal of S. Thus for n = 6 one could also expect sdepth_S $(S \oplus m) >$ sdepth_Sm, that is a negative answer for a Herzog's question. This was stated later by Ichim and Zarojanu [6].

Suppose that $I \subset S$ is minimally generated by some squarefree monomials f_1, \ldots, f_r of degrees d, and a set E of squarefree monomials of degree $\geq d + 1$. By [3, Proposition 3.1] (see [12, Lemma 1.1]) we have depth_S $I/J \geq d$. Thus if sdepth_S I/J = d then Stanley's Conjecture says that depth_S I/J = d. This is exactly what [12, Theorem 4.3]) states. Next step in studying Stanley's Conjecture is to prove the following weaker one.

Conjecture 1. Suppose that $I \subset S$ is minimally generated by some squarefree monomials f_1, \ldots, f_r of degrees d, and a set E of squarefree monomials of degree $\geq d+1$. If sdepth_S I/J = d+1 then depth_S $I/J \leq d+1$.

This conjecture is studied in [14], [15], [16] either when r = 1, or when $E = \emptyset$ and $r \leq 3$. Recently, these results were improved in the next theorem.

Theorem 1. (A. Popescu, D.Popescu [9, Theorem 0.6]) Let C be the set of the squarefree monomials of degree d + 2 of $I \setminus J$. Conjecture 1 holds in each of the following two cases:

- 1. $r \leq 3$,
- 2. r = 4, $E = \emptyset$ and there exists $c \in C$ such that supp $c \not\subset \bigcup_{i \in [4]} \text{supp } f_i$.

The purpose of this paper is to extend the above theorem in the following form.

Theorem 2. Let B be the set of the squarefree monomials of degree d+1 of $I \setminus J$. Conjecture 1 holds in each of the following two cases:

- 1. $r \le 4$,
- 2. r = 5, and there exists $t \notin \bigcup_{i \in [5]} \operatorname{supp} f_i$, $t \in [n]$ such that $(B \setminus E) \cap (x_t) \neq \emptyset$ and $E \subset (x_t)$.

The above theorem follows from Theorems 3, 4 (the case r = 4, $E = \emptyset$ is given already in Proposition 2). It is worth to mention that the idea of the proof of Proposition 2, and Theorem 1 started already in the proof of [16, Lemma 4.1] when r = 1. Here *path* is a more general notion, the reason being to suit better the exposition. However, the case r = 4, $E \neq \emptyset$ is more complicated (see Remark 8) and we have to study separately the special case when $f_i \in (v)$, $i \in [4]$ for some monomial v of degree d - 1 (see the proof of Theorem 3).

What can be done next? We believe that Conjecture 1 holds, but the proofs will become harder with increasing r. Perhaps for each $r \ge 5$ the proof could be done in more or less a common form but leaving some "pathological" cases which

should be done separately. Thus to get a proof of Conjecture 1 seems to be a difficult aim.

We owe thanks to a Referee, who noticed some mistakes in a previous version of this paper, especially in the proof of Lemma 3.

1 Depth and Stanley depth

Suppose that I is minimally generated by some squarefree monomials f_1, \ldots, f_r of degrees d for some $d \in \mathbb{N}$ and a set of squarefree monomials E of degree $\geq d + 1$. Let B (resp. C) be the set of the squarefree monomials of degrees d + 1 (resp. d + 2) of $I \setminus J$. Set s = |B|, q = |C|. Let w_{ij} be the least common multiple of f_i and f_j and set W to be the set of all w_{ij} . Let C_3 be the set of all $c \in C \cap (f_1, \ldots, f_r)$ having all divisors from $B \setminus E$ in W. In particular each monomial of C_3 is the least common multiple of three of the f_i . The converse is not true as shown by [9, Example 1.6]. Let C_2 be the set of all $c \in C$, which are the least common multiple of two f_i , that is $C_2 = C \cap W$. Then $C_{23} = C_2 \cup C_3$ is the set of all $c \in C$, which are the least common multiple of two or three f_i . We may have $C_2 \cap C_3 \neq \emptyset$ as shows the following example.

Example 1. Let $n \ge 4$, $f_i = x_i x_{i+1}$, $i \in [3]$, $f_4 = x_1 x_4$ and $I = (f_1, \ldots, f_4)$, J = 0. Note that $m = x_1 x_2 x_3 x_4$ is a least common multiple of every three monomials f_j and the divisors of m with degree 3 are $w_{12}, w_{23}, w_{34}, w_{14}$. Thus $m \in C_3$. But $m \in C_2$ because $m = w_{13} = w_{24}$.

We start with a lemma, which slightly extends [9, Theorem 2.1].

Lemma 1. Suppose that there exists $t \in [n]$, $t \notin \bigcup_{i \in [r]} \operatorname{supp} f_i$ such that $(B \setminus E) \cap (x_t) \neq \emptyset$ and $E \subset (x_t)$. If Conjecture 1 holds for r' < r and $\operatorname{sdepth}_S I/J = d+1$, then $\operatorname{depth}_S I/J \leq d+1$.

Proof: We follow the proof of [9, Theorem 2.1]. Apply induction on |E|, the case |E| = 0 being done in the quoted theorem. We may suppose that E contains only monomials of degrees d + 1 by [14, Lemma 1.6]. Since Conjecture 1 holds for r' < r we see that $C \not\subset (f_2, \ldots, f_r, E)$ implies depth_S $I/J \leq d + 1$ by [16, Lemma 1.1]. If Conjecture 1 holds for r and $E \setminus \{a\}$ with some $a \in E$ then $C \not\subset (f_1, \ldots, f_r, E \setminus \{a\})$ implies again depth_S $I/J \leq d + 1$ by the quoted lemma. Thus using the induction hypothesis on |E| we may assume that $C \subset (W) \cup ((E) \cap (f_1, \ldots, f_r)) \cup (\cup_{a,a' \in E, a \neq a'}(a) \cap (a'))$. Let $I_t = I \cap (x_t), J_t = J \cap (x_t), B_t = (B \setminus E) \cap (x_t) = \{x_t f_1, \ldots, x_t f_e\}$, for some $1 \leq e \leq r$. If sdepth_S $I_t/J_t \leq d + 1$ then depth_S $I_t/J_t \leq d + 1$ by [12, Theorem 4.3] because I_t is generated only by monomials of degree d + 1. Thus depth_S $I/J \leq depth_S I_t/J_t \leq d + 1$ by [9, Lemma 1.1].

Suppose that sdepth_S $I_t/J_t \ge d+2$. Then there exists a partition on I_t/J_t with sdepth d+2 having some disjoint intervals $[x_tf_i, c_i]$, $i \in [e]$ and $[a, c_a]$, $a \in E$. We may assume that c_i, c_a have degrees d+2. We have either $c_i \in (W)$, or $c_i \in ((E) \cap (f_1, \ldots, f_r)) \setminus (W)$. In the first case $c_i = x_t w_{ik_i}$ for some $1 \le k_i \le r$, $k_i \neq i$. Note that $x_t f_{k_i} \in B$ and so $k_i \leq e$. We consider the intervals $[f_i, c_i]$. These intervals contain $x_t f_i$ and possible a w_{ik_i} . If $w_{ik_i} = w_{jk_j}$ for $i \neq j$ then we get $c_i = c_j$ which is false. Thus these intervals are disjoint.

Let I' be the ideal generated by f_j for $e < j \le r$ and $B \setminus (E \cup (\cup_{i=1}^e [f_i, c_i]))$. Set $J' = I' \cap J$. Note that $I' \ne I$ because $e \ge 1$. As we showed already $c_i \notin I'$ for any $i \in [e]$. Also $c_a \notin I'$ because otherwise $c_a = x_t x_k f_j$ for some $e < j \le r$ and we get $x_t f_j \in B$, which is false. In the following exact sequence

$$0 \to I'/J' \to I/J \to I/(J+I') \to 0$$

the last term has a partition of sdepth d+2 given by the intervals $[f_i, c_i]$ for $1 \leq i \leq e$ and $[a, c_a]$ for $a \in E$. It follows that $I' \neq J'$ because $\operatorname{sdepth}_S I/J = d+1$. Then $\operatorname{sdepth}_S I'/J' \leq d+1$ using [17, Lemma 2.2] and so $\operatorname{depth}_S I'/J' \leq d+1$ by Conjecture 1 applied for r-e < r. But the last term of the above sequence has depth > d because x_t does not annihilate f_i for $i \in [e]$. With the Depth Lemma we get $\operatorname{depth}_S I/J \leq d+1$.

Next we give a variant of the above lemma.

Lemma 2. Suppose that r > 2, $E = \emptyset$, $C \subset (W)$ and there exists $t \in [n]$, $t \notin \bigcup_{i \in [r]} \text{supp } f_i$ such that $x_t w_{ij} \in C$ for some $1 \leq i < j \leq r$. If Conjecture 1 holds for $r' \leq r - 2$ and sdepth_S I/J = d + 1, then depth_S $I/J \leq d + 1$.

Proof: We follow the proof of the above lemma, skipping the first part since we have already $C \subset (W)$. Note that in our case $x_t f_i, x_t f_j \in B$ and so $e \geq 2$. Thus I' is generated by at most (r-2) monomials of degrees d and some others of degrees $\geq d + 1$. Therefore, Conjecture 1 holds for I'/J' and so the above proof works in our case.

For $r \leq 3$ the following lemma is part from the proof of [9, Lemma 3.2] but not in an explicit way. Here we try to formalize better the arguments in order to apply them when r = 4.

Lemma 3. Suppose that $r \leq 4$ and for each $i \in [r]$ there exists $c_i \in C \cap (f_i)$ such that the intervals $[f_i, c_i], i \in [r]$ are disjoint. Then depth_S $I/J \geq d + 1$.

Proof: The proof consists of an induction part dealing with the case $C \not\subset (W)$ followed by a case analysis covering the case $C \subset (W)$.

Case 1, $C \not\subset (W)$

Suppose that there exists $c \in C \setminus (W)$, let us say $c \in (f_1) \setminus (f_2, \ldots, f_r)$. Then $[f_1, c]$ is disjoint with respect to $[f_i, c_i]$, $1 < i \leq r$ and we may change c_1 by c, that is we may suppose that $c_1 \in (f_1) \setminus (f_2, \ldots, f_r)$. Let $B \cap [f_1, c_1] = \{b, b'\}$ and $L = (f_2, \ldots, f_r, B \setminus \{b, b', E\})$. In the following exact sequence

$$0 \to L/(J \cap L) \to I/J \to I/(J,L) \to 0$$

the first term has depth $\geq d + 1$ by induction hypothesis and the last term is isomorphic with $(f_1)/((J,L) \cap (f_1))$ and has depth $\geq d + 1$ because $b \notin (J,L)$. Thus depth_S $I/J \geq d + 1$ by the Depth Lemma.

Case 2, r = 2

In this case, note that one from c_1, c_2 is not in $(W) = (w_{12})$, that is we are in the above case. Indeed, if $c_1 \in (W)$ then either $c_1 = w_{12}$ and so c_2 cannot be in (W), or $c_1 = x_j w_{12}$ and then $w_{12} \in [f_1, c_1]$ cannot divide c_2 since the intervals are disjoint.

From now on assume that r > 2.

Case 3, $c_1 \in (w_{12})$, $f_i \not| c_1$ for i > 2 and $c_i \notin (w_{12})$ for $1 < i \le r$.

First suppose that $w_{12} \in B$. We have $c_1 = x_j w_{12}$ for some j and we see that $b = f_1 x_j \notin (f_2, \ldots, f_r)$. Set $T = (f_2, \ldots, f_r, B \setminus \{b, E\})$. In the following exact sequences

$$0 \to T/(J \cap T) \to I/J \to I/(J,T) \to 0$$

$$0 \to (w_{12})/(J \cap (w_{12})) \to T/(J \cap T) \to T/((J, w_{12}) \cap T) \to 0$$

the last terms have depth $\geq d + 1$ since $b \notin (J,T)$ and using the induction hypothesis in the second situation. As the first term of the second sequence has depth $\geq d + 1$ we get depth_S $T/(J \cap T) \geq d + 1$ and so depth_S $I/J \geq d + 1$ using the Depth Lemma in both exact sequences.

If $w_{12} \in C$ then both monomials b, b' from $B \cap [f_1, c_1]$ are not in (f_2, \ldots, f_r) and the above proof goes with b' instead w_{12} .

Case 4, r = 3.

By Case 1 we may suppose that $C \subset (W)$. Then w_{12}, w_{13}, w_{23} are different because otherwise only one c_i can be in (W). We may suppose that $c_1 \in (w_{12})$, $c_2 \in (w_{23}), c_3 \in (w_{13})$, because each c_i is a multiple of one w_{ij} which can be present just in one interval since these are disjoint. If $f_3|c_1$ then w_{13} is present in both intervals $[f_1, c_1], [f_3, c_3]$. If let us say $w_{12} \in C$, then $c_2, c_3 \notin (w_{12})$ because $c_3 \neq c_1 \neq c_2$. Thus we are in Case 3.

If $w_{12} \in B$ and $c_2, c_3 \notin (w_{12})$ then we are in Case 3. Otherwise, we may suppose that either $c_2 \in (w_{12})$, or $c_3 \in (w_{12})$. In the first case, we have w_{12} in both intervals $[f_1, c_1], [f_2, c_2]$, which is false. In the second case, we have also w_{23} present in both intervals $[f_2, c_2], [f_3, c_3]$, again false.

Case 5, r = 4, $c_1 \in (w_{12})$, $w_{12} \in B$, $f_i \not | c_1$ for $2 < i \le 4$, $c_3 \in (w_{12})$.

It follows that $c_3 \in (w_{23})$. Thus $c_2 \notin (w_{23})$, that is $f_3 \not| c_2$, because otherwise the intervals $[f_2, c_2]$, $[f_3, c_3]$ will contain w_{23} , which is false. If $c_2 \in (w_{12})$ then the intervals $[f_1, c_1]$, $[f_2, c_2]$ will contain w_{12} . It follows that $c_2 \in (w_{24})$. Note that $c_4 \notin (w_{24})$ because otherwise w_{24} belongs to $[f_2, c_2] \cap [f_4, c_4]$. If $c_3 \notin (w_{24})$ then we are in Case 3 with w_{24} instead w_{12} and c_2 instead c_1 .

Remains to see the case when $c_3 \in (f_1) \cap (f_2) \cap (f_3) \cap (f_4)$. Then $c_4 \notin (f_3)$ because otherwise w_{34} is in $[f_3, c_3] \cap [f_4, c_4]$. In the exact sequence

$$0 \to (f_3)/(J \cap (f_3)) \to I/J \to I/(J, f_3) \to 0$$

the last term has depth $\geq d+1$ by induction hypothesis. The first term has depth $\geq d+1$ since for example $w_{23} \notin J$. By the Depth Lemma we get depth_S $I/J \geq d+1$.

Case 6, r = 4, the general case.

Since $|W| \leq 6$ there exist an interval, let us say $[f_1, c_1]$, containing just one w_{ij} , let us say w_{12} . Thus no f_i , $2 < i \leq 4$ divides c_1 . If $w_{12} \in C$ then no c_i , i > 1 belongs to (w_{12}) because otherwise $c_i = c_1$. If $w_{12} \in B$ and one $c_i \in (w_{12})$, i > 1 then we must have i = 2 because otherwise we are in Case 5. But if $c_2 \in (w_{12})$ then w_{12} is present in both intervals $[f_1, c_1]$, $[f_2, c_2]$, which is false. Thus $c_i \notin (w_{12})$ for all $1 < i \leq 4$, that is Case 3.

Remark 1. When r > 4 the statement of the above lemma is not valid anymore, as shows the following example.

Example 2. Let n = 5, d = 1, $I = (x_1, \ldots, x_5)$,

$$J = (x_1 x_3 x_4, x_1 x_2 x_4, x_1 x_3 x_5, x_2 x_3 x_5, x_2 x_4 x_5).$$

Set $c_1 = x_1 x_2 x_3$, $c_2 = x_2 x_3 x_4$, $c_3 = x_3 x_4 x_5$, $c_4 = x_1 x_4 x_5$, $c_5 = x_1 x_2 x_5$. We have $C = \{c_1, \ldots, c_5\}$ and B = W. Thus s = 2r and sdepth_S I/J = 3 because we have a partition on I/J given by the intervals $[x_i, c_i]$, $i \in [5]$. But depth_S I/J = 1 because of the following exact sequence

$$0 \to I/J \to S/J \to S/I \to 0$$

where the last term has depth 0 and the middle ≥ 2 .

The proposition below is an extension of [9, Lemma 3.2], its proof is given in the next section.

Proposition 1. Suppose that the following conditions hold:

- 1. $r = 4, 8 \le s \le q + 4,$
- 2. $C \subset (\bigcup_{i,j \in [4], i \neq j} (f_i) \cap (f_j)) \cup ((E) \cap (f_1, \dots, f_4)) \cup (\bigcup_{a,a' \in E, a \neq a'} (a) \cap (a')),$
- 3. there exists $b \in (B \cap (f_1)) \setminus (f_2, f_3, f_4)$ such that sdepth_S $I_b/J_b \ge d+2$ for $I_b = (f_2, \ldots, f_r, B \setminus \{b\}), J_b = J \cap I_b,$
- 4. the least common multiple ω_1 of f_2, f_3, f_4 is not in $(C_3 \setminus W) \cap (E)$ (see Example 1).

Then either sdepth_S $I/J \ge d+2$, or there exists a nonzero ideal $I' \subsetneq I$ generated by a subset of $\{f_1, \ldots, f_4\} \cup B$ such that depth_S $I/(J, I') \ge d+1$ and either sdepth_S $I'/J' \le d+1$ for $J' = J \cap I'$ or depth_S $I'/J' \le d+1$.

Proposition 2. Conjecture 1 holds for r = 4 when the least common multiples ω_i of $f_1, \ldots, f_{i-1}, f_{i+1}, \ldots, f_4, i \in [4]$ are not in $(C_3 \setminus W) \cap (E)$. In particular, Conjecture 1 holds when r = 4 and $E = \emptyset$.

80

Proof: By Theorems [13, Theorem 1.3], [18, Theorem 2.4] (more precisely the particular forms given in [9, Theorems 0.3, 0.4]) we may suppose that $8 = 2r \le s \le q + 4$ and we may assume that E contains only monomials of degrees d + 1 by [14, Lemma 1.6]. We may assume that there exists $b \in B \cap (f_1, \ldots, f_4)$ which is not in W because otherwise $B \cap (f_1, \ldots, f_4) \subset B \cap W$ and therefore $|B \cap (f_1, \ldots, f_4)| \le |B \cap W| \le 6$. By [18, Theorem 2.4] this implies the depth $\le d + 1$ of the first term of the exact sequence

$$0 \to (f_1, \dots, f_r)/(J \cap (f_1, \dots, f_r)) \to I/J \to (E)/((J, f_1, \dots, f_r) \cap (E)) \to 0$$

and then the middle has depth $\leq d+1$ too using the Depth Lemma.

Renumbering f_i we may suppose that there exists $b \in (f_1) \setminus (f_2, \ldots, f_4)$. As in the proof of [9, Theorem 1.7] we may suppose that the first term of the exact sequence

$$0 \to I_b/J_b \to I/J \to I/(J, I_b) \to 0$$

has sdepth $\geq d+2$. Otherwise it has depth $\leq d+1$ by Theorem 1. Note that the last term is isomorphic with $(f_1)/((f_1) \cap (J, I_b))$ and it has depth $\geq d+1$ because $b \notin (J, I_b)$. Then the middle term of the above exact sequence has depth $\leq d+1$ by the Depth Lemma.

Thus we may assume that the condition (3) of Proposition 1 holds. Also we may apply [16, Lemma 1.1] and see that the condition (2) of Proposition 1 holds. Applying Proposition 1 we get either $\operatorname{sdepth}_S I/J \ge d+2$ contradicting our assumption, or there exists a nonzero ideal $I' \subsetneq I$ generated by a subset G of B, or by G and a subset of $\{f_1, \ldots, f_4\}$ such that $\operatorname{sdepth}_S I'/J' \le d+1$ for $J' = J \cap I'$ and $\operatorname{depth}_S I/(J, I') \ge d+1$. In the last case we see that $\operatorname{depth}_S I'/J' \le d+1$ by Theorem 1, or by induction on s, and so $\operatorname{depth}_S I/J \le d+1$ applying in the following exact sequence

$$0 \to I'/J' \to I/J \to I/(J,I') \to 0$$

the Depth Lemma.

2 Proof of Proposition 1

Since sdepth_S $I_b/J_b \ge d + 2$ by (3), there exists a partition P_b on I_b/J_b with sdepth d+2. We may choose P_b such that each interval starting with a squarefree monomial of degree d, d+1 ends with a monomial of C. In P_b we have three disjoint intervals $[f_2, c'_2], [f_3, c'_3], [f_4, c'_4]$. Suppose that $B \cap [f_i, c'_i] = \{u_i, u'_i\}, 1 < i \le 4$. For all $b' \in B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4\}$ we have an interval $[b', c_{b'}]$. We define $h: B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4\} \to C$ by $b' \longmapsto c_{b'}$. Then h is an injection and $|\operatorname{Im} h| = s - 7 \le q - 3$.

We follow the proofs of [9, Lemmas 3.1, 3.2]. A sequence a_1, \ldots, a_k is called a *path* from a_1 to a_k if the following statements hold:

- (i) $a_l \in B \setminus \{b, u_2, u'_2, \dots, u_4, u'_4\}, l \in [k],$
- (ii) $a_l \neq a_j$ for $1 \leq l < j \leq k$,

(iii) $a_{l+1} | h(a_l)$ for all $1 \le l < k$.

This path is weak if $h(a_j) \in (b, u_2, u'_2, \ldots, u_4, u'_4)$ for some $j \in [k]$. It is bad if $h(a_j) \in (b)$ for some $j \in [k]$ and it is maximal if all divisors from B of $h(a_k)$ are in $\{b, u_2, u'_2, \ldots, u_4, u'_4, a_1, \ldots, a_k\}$. We say that the above path starts with a_1 . Note that here the notion of path is more general than the notion of path used in [16] and [9].

By hypothesis $s \geq 8$ and there exists $a_1 \in B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4\}$. We construct below, as an example, a path with k > 1. By recurrence choose if possible a_{p+1} to be a divisor from $B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4, a_1, \ldots, a_p\}$ of $m_p = h(a_p), p \geq 1$. This construction ends at step p = e if all divisors from B of m_e are in $\{b, u_2, u'_2, \ldots, u_4, u'_4, a_1, \ldots, a_e\}$. This is a maximal path. If one $m_p \in (u_2, u'_2, \ldots, u_4, u'_4)$ then the constructed path is weak. If one $m_p \in (b)$ then this path is bad.

We start the proof with some helpful lemmas.

Lemma 4. P_b could be changed in order to have the following properties:

- 1. For all $1 < i < j \le 4$ with $u_i, u_j \notin W$ and $w_{ij} \in B \setminus \{u_2, u'_2, ..., u_4, u'_4\}$ it holds that $h(w_{ij}) \notin (u_i) \cap (u_j)$,
- 2. For each $1 \leq i < j \leq 4$ with $u_j \in W$, $u'_j \notin W$, $w_{ij} \in B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ it holds that $h(w_{ij}) \notin (u_j)$ and if $h(w_{ij}) \in (u'_j)$ then i > 1,
- 3. For each $1 \leq i < j \leq 4$ with $u_j, u'_j \notin W$ and $w_{ij} \in B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ it holds that $h(w_{ij}) \notin (u_j, u'_j)$.

Proof: Suppose that $w_{ij} \in B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ and $h(w_{ij}) \in (u_i)$ for some $2 \leq i \leq 4$ and $j \in [4], j \neq i$. We have $h(w_{ij}) = x_l w_{ij}$ for some $l \notin \operatorname{supp} w_{ij}$ and it follows that $u_i = x_l f_i$. Changing in P_b the intervals $[f_i, c'_i], [w_{ij}, h(w_{ij})]$ with $[f_i, h(w_{ij})], [u'_i, c'_i]$ we may assume that the new $u'_i = w_{ij}$. We will apply this procedure several times eventually obtaining a partition P_b with the above properties. In case (1) we change in this way u'_i by w_{ij} . Note that the number of elements among $\{u_2, u'_2, \ldots, u_4, u'_4\}$ which are from $B \cap W$ is either preserved or increases by one. Applying this procedure several time we get (1) fulfilled.

In case (3) the above procedure preserves among $\{u_2, u'_2, \ldots, u_4, u'_4\}$ the former elements which were from $B \cap W$ and includes a new one w_{ij} . After several steps we get fulfilled (3).

For case (2) if $u_j \in W$, $u'_j \notin W$ and $h(w_{ij}) \in (u_j)$ we change as above u'_j by w_{ij} . Note that the number of elements among $\{u_2, u'_2, \ldots, u_4, u'_4\}$ which are from $B \cap W$ increases by one. If $h(w_{ij}) \in (u'_j)$ then we may change in this way u_j by w_{ij} . We do this only if i = 1. Note that the number of elements among $\{u_2, u'_2, \ldots, u_4, u'_4\}$ which are from $B \cap W$ is preserved. Our procedure does not affect those c'_i with $u_i, u'_i \in W$ and does not affect the property (1). After several such procedures we get also (2) fulfilled. From now on we suppose that P_b has the properties mentioned in the above lemma. Moreover, we fix $a_1 \in B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4\}$ and let a_1, \ldots, a_p be a path which is not bad. For an $a' \in B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4\}$ set

 $T_{a'} = \{b' \in B : \text{there exists a path } a'_1 = a', \dots, a'_e \text{ not bad with } a'_e = b'\},\$

 $U_{a'} = h(T_{a'}), G_{a'} = B \setminus T_{a'}$. If $a' = a_1$ we write simply T_1 instead T_{a_1} and similarly U_1, G_1 .

Remark 2. Any divisor from B of a monomial of U_1 is in $T_1 \cup \{u_2, u'_2, \ldots, u_4, u'_4\}$.

Lemma 5. If no weak path and no bad path starts with a_1 then the conclusion of Proposition 1 holds.

Proof: Assume that $[r] \setminus \{j \in [r] : U_1 \cap (f_j) \neq \emptyset\} = \{k_1, \ldots, k_\nu\}$ for some $1 \leq k_1 < \ldots < k_\nu \leq 4, 0 \leq \nu \leq 4$. Set $k = (k_1, \ldots, k_\nu), I'_k = (f_{k_1}, \ldots, f_{k_\nu}, G_1), J'_k = I'_k \cap J$, and $I'_0 = (G_1), J'_0 = I'_0 \cap J$ for $\nu = 0$. Note that all divisors from B of a monomial $c \in U_1$ belong to T_1 , and $I'_0 \neq 0$ because $b \in I'_0$. Consider the following exact sequence

$$0 \to I'_k/J'_k \to I/J \to I/(J, I'_k) \to 0.$$

If $U_1 \cap (f_1, \ldots, f_4) = \emptyset$ then the last term of the above exact sequence given for $k = (1, \ldots, 4)$ has depth $\geq d + 1$ and sdepth $\geq d + 2$ because P_b can be restricted to $(T_1) \setminus (J, I'_k)$ since $h(b) \notin I'_k$, for all $b \in T_1$ (see Remark 2). If the first term has sdepth $\geq d + 2$ then by [17, Lemma 2.2] the middle term has sdepth $\geq d + 2$. Otherwise, take $I' = I'_k$.

If $U_1 \cap (f_1, f_2, f_3) = \emptyset$, but there exists $b_4 \in T_1 \cap (f_4)$, then set k = (1, 2, 3). In the following exact sequence

$$0 \to I'_k/J'_k \to I/J \to I/(J,I'_k) \to 0$$

the last term has sdepth $\geq d + 2$ since $h(b') \notin I'_k$ for all $b' \in T_1$ and we may substitute the interval $[b_4, h(b_4)]$ from the restriction of P_b by $[f_4, h(b_4)]$, the second monomial from $[f_4, h(b_4)] \cap B$ being also in T_1 . As above we get either sdepth_S $I/J \geq d + 2$, or sdepth_S $I'_k/J'_k \leq d + 1$, depth_S $I/(J, I'_k) \geq d + 1$.

Suppose that $U_1 \cap (f_j) \neq \emptyset$ if and only if $\nu < j \leq 4$, for some $0 \leq \nu \leq 4$ and set $k = (1, \ldots, \nu)$. We omit the subcases $0 < \nu < 3$, since they go as in [9, Lemma 3.2], and consider only the worst subcase $\nu = 0$. Let $b_j \in T_1 \cap (f_j)$, $j \in [4]$ and set $c_j = h(b_j)$. For $1 \leq l < j \leq 4$ we claim that we may choose $b_l \neq b_j$ and such that one from c_l, c_j is not in (w_{lj}) . Indeed, if $w_{lj} \notin B$ and $c_l, c_j \in (w_{lj})$ then necessarily $c_l = c_j$ and it follows $b_l = b_j = w_{lj}$, which is false. Suppose that $w_{lj} \in B$ and $c_j = x_p w_{lj}$. Then choose $b_l = x_p f_l \in T_1$. If $c_l = h(b_l) \in (w_{lj})$ then we get $c_l = c_j$ and so $b_l = b_j = w_{lj}$ which is impossible.

We show that we may choose $b_j \in T_1 \cap (f_j), j \in [4]$ such that the intervals $[f_j, c_j], j \in [4]$ are disjoint. Let C_2, C_3 be as in the beginning of the previous

section. Set $C'_2 = U_1 \cap C_2$, $C'_3 = U_1 \cap C_3$, $C'_{23} = C'_2 \cup C'_3$. Let $\tilde{c} \in C'_2$, let us say \tilde{c} is the least common multiple of f_1, f_2 . Then \tilde{c} has as divisors two multiples g_1, g_2 of f_1 and two multiples of f_2 . If $\hat{c} \in C'_2$ is also a multiple of g_1 , let us say \hat{c} is the least common multiple of f_1, f_3 then g_2 does not divide \hat{c} and the least common multiple of f_2, f_3 is not in C. Thus the divisors from $B \setminus E$ of \tilde{c} , \hat{c} are at least 7. Since the divisors from $B \setminus E$ of \tilde{c} , \hat{c} are in $T_1 \setminus E$ we see in this way that $|T_1 \setminus E| \geq |C'_2| + 3$. If $|C'_2| \neq 0$ then $|C'_3| \leq 1$ and so $|T_1 \setminus E| \geq |C'_{23}| + 2$. Assume that $|C'_2| = 0$. Then $|C'_3| \leq 4$. Let $\tilde{c} \in C'_3$ be the least common multiple of f_1, f_2, f_3 then w_{12}, w_{23}, w_{13} are the only divisors from $T_1 \setminus E$ of \tilde{c} (this could be not true when $|C'_2| \neq 0$ as shows Example 1). If $\hat{c} \in C'_3$ is the least common multiple of f_1, f_2, f_4 we have also w_{14}, w_{24} in $T_1 \setminus E$. Similarly, if $|C'_3| \geq 3$ we get also $w_{34} \in T_1 \setminus E$. Thus $|T_1 \setminus E| \geq |C'_3| + 2 = |C'_{23}| + 2$ also when $|C'_2| = 0$.

Then there exist two different $b_j \in T_1 \cap (f_j)$ such that $c_j = h(b_j) \notin C'_{23}$ for let us say j = 1, 2 and so each of the intervals $[f_j, c_j], j = 1, 2$ has at most one monomial from $T_1 \cap W$. Suppose the worst subcase when $[f_1, c_1]$ contains $w_{12} \in B$, and $[f_2, c_2]$ contains $w_{2j} \in B$ for some $j \neq 2$. First assume that $j \geq 3$, let us say j = 3. Then choose as above $b_3 \in T_1 \cap (f_3), b_4 \in T_1 \cap (f_4)$ such that $c_3 \notin (w_{23}), c_4 \notin (w_{34})$. Then $[f_3, c_3]$ has from $T_1 \cap W$ at most w_{13}, w_{34} and $[f_4, c_4]$ has from $T_1 \cap W$ at most w_{14}, w_{24} . Thus the corresponding intervals are disjoint.

Otherwise, j = 1 and we have $c_j = x_{p_j} w_{12}, j \in [2]$, for some $p_j \notin \operatorname{supp} w_{12}$, $p_1 \neq p_2$. Take $b'_1 = x_{p_2}f_1$, $b'_2 = x_{p_1}f_2$ and $v_1 = h(b'_1)$, $v_2 = h(b'_2)$. Then v_1, v_2 are not in C'_3 because otherwise b'_1 , respectively b'_2 is in W, which is false. Note that $v_2 \notin (w_{12})$, because otherwise $v_2 = x_{p_1} w_{12} = c_1$ which is false since $b_1 \neq b'_2$. Similarly $v_1 \notin (w_{12})$. If let us say $v_2 \notin C'_2$ then we may take $b_2 = b'_2$ and we see that for the new c_2 (namely v_2) the interval $[f_2, c_2]$ contains at most a monomial from W, which we assume to be w_{23} and we proceed as above. If $v_1, v_2 \in C'_2$, we may assume that $v_1 = w_{13} \in C$ and either $v_2 = w_{23} \in C$, or $v_2 = w_{24} \in C$. In the first case we choose b_3, b_4 such that $c_3 \notin (w_{34}), c_4 \notin (w_{24})$ and we see that $[f_3, c_3]$ has no monomial from W. Indeed, if $c_3 \in (w_{23})$ (the case $c_3 \in (w_{13})$ is similar) then $c_3 = v_2$, which is false since then $h(b'_2) = v_2 = c_3 = h(b_3)$ and so $b'_2 = b_3 \in (w_{23}), h$ being injective. Also $[f_4, c_4]$ has at most w_{14}, w_{34} . Thus taking $b_i = b'_i, c_i = v_i$ for $i \in [2]$ we have again the intervals $[f_j, c_j], j \in [4]$ disjoint. Similarly in the second case choose b_3, b_4 such that $c_3 \notin (w_{23}), c_4 \notin (w_{34})$ and we see that $[f_3, c_3]$ have at most w_{34} and $[f_4, c_4]$ have at most w_{14} , which is enough, because as above $c_3 \neq w_{13}$ and $c_4 \neq w_{24}$.

Next we replace the intervals $[b_j, c_j]$, $1 \le j \le 4$ from the restriction of P_b to $(T_1) \setminus (J, I'_0)$ with $[f_j, c_j]$, the second monomial from $[f_j, c_j] \cap B$ being also in T_1 . Note that $I/(J, I'_0)$ has depth $\ge d + 1$ by Lemma 3. Thus, as above we get either sdepth_S $I/J \ge d + 2$, or sdepth_S $I'_0/J'_0 \le d + 1$, depth_S $I/(J, I'_0) \ge d + 1$.

Lemma 6. Let a_1, \ldots, a_{e_1} be a bad path, $m_j = h(a_j)$, $j \in [e_1]$ and $m_{e_1} = bx_i$. Suppose that $m_{e_1} \notin (u_2, u'_2, \ldots, u_4, u'_4)$. Then one of the following statements holds:

- 1. sdepth_S $I/J \ge d+2$,
- 2. there exists $a_{e_1+1} \in (B \cap (f_1)) \setminus \{b, u_2, u'_2, \dots, u_4, u'_4\}$ dividing m_{e_1} such that every path $a_{e_1+1}, \dots, a_{e_2}$ satisfies $\{a_1, \dots, a_{e_1}\} \cap \{a_{e_1+1}, \dots, a_{e_2}\} = \emptyset$.

Proof: If $a_{e_1} = f_1x_i$ then changing in P_b the interval $[a_{e_1}, m_{e_1}]$ by $[f_1, m_{e_1}]$ we get a partition on I/J with sdepth d + 2. If $f_1x_i \in \{a_1, \ldots, a_{e_1-1}\}$, let us say $f_1x_i = a_v, 1 \leq v < e_1$ then we may replace in P_b the intervals $[a_k, m_k], v \leq k \leq e_1$ with the intervals $[a_v, m_{e_1}], [a_{k+1}, m_k], v \leq k \leq e_1 - 1$. Now we see that we have in P_b the interval $[a_v, m_v]$ (the new m_v is the old m_{e_1}) and switching it with the interval $[f_1, m_v]$ we get a partition with sdepth $\geq d + 2$ for I/J. Thus we may assume that $f_1x_i \notin \{a_1, \ldots, a_{e_1}\}$. Note that e_1 could be also 1 as in Example 3 when we take $a_1 = x_5x_6$, in this case we take $f_1x_i = x_1x_5$ and $\{x_1x_5, x_2x_5\}$ is a maximal path which is weak but not bad.

By hypothesis $m_{e_1} \notin (u_2, u'_2, \ldots, u_4, u'_4)$ and so $f_1x_i \notin \{u_2, u'_2, \ldots, u_4, u'_4\}$. Then set $a_{e_1+1} = f_1x_i$ and let $a_{e_1+1}, \ldots, a_{e_2}$ be a path starting with a_{e_1+1} and set $m_p = h(a_p), p > e_1$. If $a_p = a_v$ for $v \leq e_1, p > e_1$ then change in P_b the intervals $[a_k, m_k], v \leq k \leq p-1$ with the intervals $[a_v, m_{p-1}], [a_{k+1}, m_k], v \leq k \leq$ p-2. We have in the new P_b an interval $[f_1x_i, m_{e_1}]$ and switching it to $[f_1, m_{e_1}]$ we get a partition with sdepth $\geq d+2$ for I/J. Thus we may suppose that $a_{p+1} \notin \{b, u_2, u'_2, \ldots, u_4, u'_4, a_1, \ldots, a_p\}$ and so (2) holds. \Box

Example 3. Let n = 7, r = 4, d = 1, $f_i = x_i$ for $i \in [4]$, $E = \{x_5x_6, x_5x_7\}$, $I = (x_1, \ldots, x_4, E)$ and

 $J = (x_1x_7, x_2x_7, x_3x_7, x_4x_7, x_1x_2x_4, x_1x_2x_6, x_1x_3x_4, x_1x_3x_6, x_2x_3x_4, x_2x_4x_5, x_2x_5, x$

 $x_2x_5x_6, x_3x_5x_6, x_4x_5x_6).$

Then

 $B = \{x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_1x_6, x_2x_3, x_2x_4, x_2x_5, x_2x_6, \\ x_3x_4, x_3x_5, x_3x_6, x_4x_5, x_4x_6\} \cup E$

and

 $C = \{x_1x_2x_3, x_1x_2x_5, x_1x_3x_5, x_1x_4x_5, x_1x_4x_6, x_1x_5x_6, x_2x_3x_5, x_2x_3x_6, x_2x_4x_6, x_2x_3x_5, x_2x_3x_6, x_2x_4x_6, x_3x_5, x_3$

 $x_3x_4x_5, x_3x_4x_6, x_5x_6x_7$

We have q = 12 and s = q + r = 16. Take $b = x_1x_6$ and $I_b = (x_2, x_3, x_4, B \setminus \{b\}, E), J_b = I_b \cap J$. There exists a partition P_b with sdepth 3 on I_b/J_b given by the intervals $[x_2, x_1x_2x_3], [x_3, x_1x_3x_5], [x_4, x_1x_4x_6],$ $[x_1x_5, x_1x_2x_5], [x_2x_4, x_2x_4x_6], [x_2x_5, x_2x_3x_5], [x_2x_6, x_2x_3x_6], [x_3x_4, x_3x_4x_5],$ $[x_3x_6, x_3x_4x_6], [x_4x_5, x_1x_4x_5], [x_5x_6, x_1x_5x_6], [x_5x_7, x_5x_6x_7].$ We have $c'_2 = x_1x_2x_3, c'_3 = x_1x_3x_5, c'_4 = x_1x_4x_6$ and $u_2 = x_2x_3, u'_2 = x_1x_2, u_3 = x_3x_5, u'_3 = x_1x_3, u_4 = x_1x_4, u'_4 = x_4x_6$. Take $a_1 = x_2x_4, m_1 = x_2x_4x_6$. This is a weak path but not bad. It can be extended to a maximal one $x_2x_4, x_2x_6, x_3x_6, x_3x_4, x_4x_5, x_1x_5, x_2x_5$ which is not bad.

Bad paths are for example $\{x_5x_6\}$, $\{x_5x_7, x_5x_6\}$, $\{x_5x_7, x_5x_6, x_1x_5, x_2x_5\}$, the last one being maximal. Replacing in P_b the intervals $[x_4, x_1x_4x_6]$,

 $[x_2x_4, x_2x_4x_6]$ with $[x_4, x_2x_4x_6]$, $[x_1, x_1x_4x_6]$ we get a partition on I/J with sdepth 3.

Lemma 7. Let a_1, \ldots, a_{e_1} be a bad path, $m_j = h(a_j)$, $j \in [e_1]$ and $m_{e_1} = bx_i$. Suppose that $a_{e_1} \in E$ and $m_{e_1} \in (u_2, u'_2, \ldots, u_4, u'_4)$. Then one of the following statements holds:

- 1. there exists $a_{e_1+1} \in B \setminus (\{b, u_2, u'_2, \dots, u_4, u'_4\} \cup E)$ dividing m_{e_1} such that every path $a_{e_1+1}, \dots, a_{e_2}$ satisfies $\{a_1, \dots, a_{e_1}\} \cap \{a_{e_1+1}, \dots, a_{e_2}\} = \emptyset$,
- 2. there exist $j, 2 \leq j \leq 4$ and a new partition P_b of I_b/J_b for which T_1 is preserved such that $a_{e_1} \in (f_j)$ and $m_{e_1} \in (u_j, u'_j)$.

Proof: Assume that $m_{e_1} = x_i b$ for some i and let us say $m_{e_1} \in (u'_2)$. Then $f_1 x_i = u'_2 = w_{12}$ and so there exists another divisor \tilde{a} of m_{e_1} from $B \cap (f_2)$ different of w_{12} . If $\tilde{a} \in [f_2, c'_2]$ then we get $m_{e_1} = c'_2$, which is false. If \tilde{a} is not in $\{b, u_2, u'_2, \ldots, u_4, u'_4\}$ then set $a_{e_1+1} = \tilde{a}$. If let us say $\tilde{a} = u_3$ then $\tilde{a} = w_{23}$ and so m_{e_1} is the least common multiple of f_1, f_2, f_3 . Clearly, $m_{e_1} \notin C_3$ because otherwise $b \in W$, which is false. Then $m_{e_1} = w_{13} \in C$ and we may find, let us say another divisor \hat{a} of m_{e_1} from $B \cap (f_3)$ which is not u'_3 because $m_{e_1} \neq c'_3$. If \hat{a} is in $\{u_4, u'_4\}$ then we may find an a' in $B \cap (f_4)$ which is not in $\{u_4, u'_4\}$ because $m_{e_1} \neq c'_4$. Thus in general we may find an a'' in $B \cap (f_j)$ for some $2 \leq j \leq 4$ which is not in $\{b, u_2, u'_2, \ldots, u_4, u'_4\}$ and $m_{e_1} \in (u_j, u'_j)$. Set $a_{e_1+1} = a''$. Let $a_{e_1+1}, \ldots, a_{e_2}$ be a path. If we are not in the case (1) then $a_p = a_v$ for $v \leq e_1$, $p > e_1$ and change in P_b the intervals $[a_k, m_k], v \leq k \leq p - 1$ with the intervals $[a_v, m_{p-1}], [a_{k+1}, m_k], v \leq k \leq p-2$. Note that the new a_{e_1} is the old $a_{e_1+1} \in (f_j)$, that is the case (2).

Lemma 8. Suppose that sdepth_S $I/J \leq d + 1$. Then there exists a partition P_b of I_b/J_b such that for any $a_1 \in B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4\}$ and any bad path a_1, \ldots, a_{e_1} , $m_j = h(a_j)$, $j \in [e_1]$ with $m_{e_1} = bx_i$ the following statements holds:

- 1. $m_{e_1} \notin (u_2, u'_2, \dots, u_4, u'_4),$
- 2. there exists $a_{e_1+1} \in B \setminus (\{b, u_2, u'_2, \dots, u_4, u'_4\} \cup E)$ dividing m_{e_1} such that every path $a_{e_1+1}, \dots, a_{e_2}$ satisfies $\{a_1, \dots, a_{e_1}\} \cap \{a_{e_1+1}, \dots, a_{e_2}\} = \emptyset$.

Proof: If for any $a_1 \in B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4\}$ there exist no bad path starting with a_1 there exists nothing to show. If for any such a_1 for each bad path $a_1, \ldots, a_{e_1}, m_j = h(a_j), j \in [e_1]$ with $m_{e_1} \in (b)$ it holds $m_{e_1} \notin (u_2, u'_2, \ldots, u_4, u'_4)$ then then to get (2) apply Lemma 6. Now suppose that there exists a_1 and a bad path $a_1, \ldots, a_{e_1}, m_j = h(a_j), j \in [e_1]$ with let us say $m_{e_1} \in (b) \cap (u_2)$. If we are not in case (2) then by Lemma 7 we may change P_b such that T_1 is preserved,

 $a_{e_1} \in (f_j)$ and $m_{e_1} \in (u_j, u'_j)$ for some $2 \leq j \leq 4$. Assume that j = 2 and so $m_{e_1} \in (w_{12})$, let us say $u'_2 = w_{12}$. Replacing in P_b the intervals $[f_2, c'_2]$, $[a_{e_1}, m_{e_1}]$ with $[f_2, m_{e_1}]$, $[u_2, c'_2]$ the new c'_2 is the least common multiple of b and f_2 . Thus there exists no path a_1, \ldots, a_{e_1} with $h(a_{e_1}) \in (b) \cap (u_2, u'_2)$ because $h(a_{e_1}) \neq c'_2$. Applying this procedure several time we see that there exists no path a_1, \ldots, a_{e_1} with $h(a_{e_1}) \in (b) \cap (u_2, u'_2, \ldots, u_4, u'_4)$. Then we may apply Lemma 6 as above.

Example 4. Let n = 5, $I = (x_1, \ldots, x_4)$, $J = (x_2x_3x_4, x_2x_3x_5, x_2x_4x_5, x_3x_4x_5)$. So

$$C = \{x_1 x_2 x_3, x_1 x_2 x_4, x_1 x_2 x_5, x_1 x_3 x_4, x_1 x_3 x_5, x_1 x_4 x_5\},\$$

$$B = \{x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_2x_3, x_2x_4, x_2x_5, x_3x_4, x_3x_5, x_4x_5\}.$$

Then q = 6, s = 10 = q + r. Set $b = x_1x_5$, $a_1 = x_2x_5$, $a_2 = x_3x_5$, $a_4 = x_4x_5$, $m_1 = x_1x_2x_5$, $m_2 = x_1x_3x_5$, $m_3 = x_1x_4x_5$, $c'_2 = x_1x_2x_3$, $c'_3 = x_1x_3x_4$, $c'_4 = x_1x_2x_4$. We have on I_b/J_b the partition P_b given by the intervals $[x_i, c'_i]$, $2 \le i \le 4$ and $[a_j, m_j]$, $j \in [3]$. Clearly, P_b has sdepth 3 and $m_i = bx_i$, $2 \le i \le 4$. Using the above lemma we change in P_b the intervals $[a_{i-1}, m_{i-1}]$, $[x_i, c'_i]$ with $[f_i, m_{i-1}]$, $[x_ix_5, c'_i]$ for $2 \le i \le 4$. Now we see that all m from the new U_1 are not in $(b) \cap (u_2, u'_2, \ldots, u_4, u'_4)$.

We have sdepth_S $I/J \leq 2$. If sdepth_S I/J = 3 then there exists an interval $[x_1, c]$ with $c \in \{m_1, m_2, m_3\}$. If $c = m_i$ for some $2 \leq i \leq 4$ then for any interval $[x_i, c']$ it holds $[x_1, c] \cap [x_i, c'] = \{x_1x_i\}$, which is impossible. Also we have depth_S $I/J \leq 2$ by Lemma 12.

Remark 3. Suppose that $\operatorname{sdepth}_{S} I/J \leq d+1$. We change P_b as in Lemma 8. Moreover assume that there exists a bad path $a_{e_1+1}, \ldots, a_{e_2}$. Using the same lemma we find a_{e_2+1} such that for each path $a_{e_2+1}, \ldots, a_{e_3}$ one has

 $\{a_{e_1+1},\ldots,a_{e_2}\} \cap \{a_{e_{i_2}+1},\ldots,a_{e_3}\} = \emptyset$. The same argument gives also

 $\{a_1, \ldots, a_{e_1}\} \cap \{a_{e_{i_2}+1}, \ldots, a_{e_3}\} = \emptyset$. Thus we may find some disjoint sets of elements $\{a_{e_j+1}, \ldots, a_{e_{j+1}}\}, j \ge 0$, where $e_0 = 0$. It follows that after some steps we arrive in the case when for some l there exist no bad path starting with a_{l+1} .

Lemma 9. Suppose that sdepth_S $I/J \leq d+1$ and P_b is a partition of I_b/J_b given by Lemma 8. Assume that no bad path starts with $a_1, U_1 \cap (u_2) \neq \emptyset$ and there exists a divisor \tilde{a} in $(B \cap (f_2)) \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ of a monomial $m \in U_1 \cap (u_2)$. Then there exist a partition P_b and a (possible bad) path a_1, \ldots, a_p such that $T_{a_p} \cap \{a_1, \ldots, a_{p-1}\} = \emptyset$, u_2 and c'_i , i = 3, 4 are not changed in P_b , no bad path starts with a_p and one of the following statements holds:

- 1. $U_{a_n} \cap (u_2) = \emptyset$,
- 2. $U_{a_p} \cap (u_2) \neq \emptyset$ and there exists $b_2 \in T_{a_p} \cap (f_2)$ with $h(b_2) \in (u_2)$,
- 3. $U_{a_p} \cap (u_2) \neq \emptyset$ and every monomial of $U_{a_p} \cap (u_2)$ has all its divisors from $B \cap (f_2)$ contained in $\{u_2, u'_2, \ldots, u_4, u'_4\}$.

Moreover, if also $U_1 \cap (u'_2) \neq \emptyset$, then we may choose P_b and the path a_1, \ldots, a_p such that either $U_{a_p} \cap (u'_2) = \emptyset$ when there exists a bad path starting with a divisor from $B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ of c'_2 , or otherwise $u'_2 \in T_{a_p}$ and $c'_2 = h(u'_2)$.

Proof: Let a_1, \ldots, a_e be a weak path, $m_j = h(a_j), j \in [e]$ such that $m_e = m$. If $a_e = \tilde{a}$ then take $b_2 = a_e$. If $a_e \neq \tilde{a}$ but there exists $1 \leq v < e$ such that $a_v = \tilde{a}$. Then we may replace in P_b the intervals $[a_p, m_p], v \leq p \leq e$ with the intervals $[a_v, m_e], [a_{p+1}, m_p], v \leq p < e$. The old m_e becomes the new m_v , that is we reduce to the above case when v = e.

Now assume that there exist no such v but there exists a path $a_{e+1} = \tilde{a}, \ldots, a_l$ such that $m_l = h(a_l) \in (a_{v'})$ for some $v' \in [e]$. Then we replace in P_b the intervals $[a_j, m_j], v' \leq j \leq l$ with the intervals $[a_{v'}, m_l], [a_{j+1}, m_j], v' \leq j < l$. The new m_{e+1} is the old m_e but the new a_{e+1} is the old a_{e+1} and we may proceed as above.

Finally, suppose that no path starting with a_{e+1} contains an element from $\{a_1, \ldots, a_e\}$. Taking p = e+1 we see that $m \notin U_{a_p} \cap (u_2)$. If there exists another monomial m' like m then we repeat this procedure and after a while we may get (2), or (3).

Remains to see what happens when we have also $U_{a_p} \cap (u'_2) \neq \emptyset$. Assume that there exist no bad path starting with a divisor of c'_2 from $B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$. Then changing in P_b the intervals $[b_2, h(b_2], [f_2, c'_2]$ with $[f_2, h(b_2)], [u'_2, c'_2]$ we see that there exists a path a_1, \ldots, a_k , which is not bad, such that the old $u'_2 = a_k$. We may complete T_{a_p} such that $a_k \in T_{a_p}$ and all divisors from B of c'_2 which are not in $\{u_2, b_2, u_3, u'_3, u_4, u'_4\}$ belong to T_{a_p} . For this aim we complete T_{a_p} with the elements connected by a path with u'_2 (see Example 5).

Next suppose that there exists a bad path $a_k = u'_2, \ldots, a_l$ with $h(a_l) \in (b)$. We may assume that \tilde{P}_b is given by Lemma 8 and so there exist no multiple of b in $U_1 \cap (u_2, u'_2, u_3, u'_3, u_4, u'_4)$. Note that $u''_2 = b_2$ the new u'_2 considered above has no multiple in $U_1 \cap (b)$ because $b_2 \in U_1$. By Lemma 6 there exists $a_{l+1} \in B \setminus \{b, u_2, u''_2, u_3, u'_3, u_4, u'_4\}$ dividing $h(a_l)$ such that every path a_{l+1}, \ldots, a_{l_1} satisfies $\{a_1, \ldots, a_l\} \cap \{a_{l+1}, \ldots, a_{l_1}\} = \emptyset$. Using Remark 3 if necessary we have $T_{a_{p'}} \cap \{a_1, \ldots, a_{p'-1}\} = \emptyset$ for some p' > l, and the above situation will not appear, that is the old u'_2 will not divide anymore a monomial from $U_{a_{p'}} \cap (u_2, u''_2, u_3, u'_3, u_4, u'_4)$. It is also possible that u_2 will not divide a monomial from $U_{a_{p'}}$.

The following bad example is similar to [9, Example 3.3].

Example 5. Let n = 7, r = 4, d = 1, $f_i = x_i$ for $i \in [4]$, $E = \{x_5x_6, x_5x_7\}$, $I = (x_1, \ldots, x_4, E)$ and

 $J = (x_1x_7, x_2x_4, x_2x_6, x_2x_7, x_3x_6, x_3x_7, x_4x_6, x_4x_7, x_3x_4x_5).$

Then $B = \{x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_1x_6, x_2x_3, x_2x_5, x_3x_4, x_3x_5, x_4x_5\} \cup E$ and

 $C = \{x_1 x_2 x_3, x_1 x_2 x_5, x_1 x_3 x_4, x_1 x_3 x_5, x_1 x_4 x_5, x_1 x_5 x_6, x_2 x_3 x_5, x_5 x_6 x_7\}.$

We have q = 8 and s = q + r = 12. Take $b = x_1 x_6$ and

$$\begin{split} I_b &= (x_2, x_3, x_4, B \setminus \{b\}, E), \ J_b = I_b \cap J. & \text{There exists a partition } P_b \text{ with sdepth 3 on } I_b/J_b \text{ given by the intervals } [x_2, x_1x_2x_3], [x_3, x_1x_3x_4], [x_4, x_1x_4x_5], \\ [x_1x_5, x_1x_3x_5], [x_2x_5, x_1x_2x_5], [x_3x_5, x_2x_3x_5], [x_5x_6, x_1x_5x_6], [x_5x_7, x_5x_6x_7]. We \\ \text{have } c'_2 &= x_1x_2x_3, \ c'_3 &= x_1x_3x_4, \ c'_4 &= x_1x_4x_5 \text{ and } u_2 &= x_1x_2, \ u'_2 &= x_2x_3, \ u_3 &= x_3x_4, \ u'_3 &= x_1x_3, \ u_4 &= x_1x_4, \ u'_4 &= x_4x_5. \ \text{Take } a_1 &= x_1x_5, \ a_2 &= x_3x_5, \ a_3 &= x_2x_5. \\ \text{This gives a maximal weak path but not bad and defines } T_1 &= \{x_1x_5, x_3x_5, x_2x_5\}, \\ U_1 &= \{x_1x_3x_5, x_2x_3x_5, x_1x_2x_5\}. \end{split}$$

As in the above lemma we may change in P_b the intervals $[x_2, x_1x_2x_3]$, $[x_2x_5, x_1x_2x_5]$ with $[x_2, x_1x_2x_5]$, $[x_2x_3, x_1x_2x_3]$. Note that the old u'_2 is not anymore in $[f_2, c'_2]$ and divides $x_2x_3x_5 \in U_1$. Moreover, we have the path $\{a_1, x_1x_5, x_3x_5, x_2x_3\}$ and so we must take $T'_1 = (T_1 \cup \{x_2x_3\}) \setminus \{x_2x_5\}, U'_1 = (U_1 \cup \{x_1x_2x_3\}) \setminus \{x_1x_2x_5\}$ as it is hinted in the above proof. The new u_2, u'_2 are all divisors of $x_1x_2x_5$ - the new c'_2 , which are not in T'_1 . However, this change of P_b was not necessary because the new u_2, u'_2, u'_3 are all divisors from B of the old c'_2 (see Remark 7 and Example 6). The same thing is true for c'_3 and c'_4 has all divisors from B among $\{a_1, u_4, u'_4\}$.

Remark 4. Suppose that in Lemma 9 the partition \hat{P}_b satisfies also the property (1) mentioned in Lemma 4. If $\tilde{a} = w_{2i}$ for some i = 3, 4 then $m \notin (u_i, u'_i)$. In particular $b_2 \neq w_{23}, w_{24}$.

Lemma 10. Assume that $U_{a_p} \cap (u_2) \neq \emptyset$ and a monomial m of $U_{a_p} \cap (u_2)$ has all its divisors from $B \cap (f_2)$ contained in $\{u_2, u'_2, \ldots, u_4, u'_4\}$. Then one of the following statements holds:

1. *m* has a divisor $\tilde{a}_i \in (B \cap (f_i)) \setminus \{u_2, u'_2, \dots, u_4, u'_4\}$ for some i = 3, 4,

2. $m \in C_3 \setminus W$ and it is the least common multiple of f_2, f_3, f_4 .

Proof: There exists a divisor $\hat{a} \notin \{u_2, u'_2\}$ of m from $B \cap (f_2)$, otherwise $m = c'_2$. By our assumption we have let us say $\hat{a} = u_3 = w_{23}$. Then there exists a divisor $a' \neq u_3$ from $B \cap (f_3)$. If $a' \notin \{u_2, u'_2, \ldots, u_4, u'_4\}$ then we are in (1). Otherwise, $a' = u_4 = w_{34}$. If $m \in W$ then $m = w_{24} \in C_2$ and there exists a divisor of m from $(B \cap (f_4)) \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$, that is (1) holds. Thus we may suppose that $m \notin W$ and all its divisors from $B \setminus E$ are w_{23}, w_{34}, w_{24} , that is m is in (2).

Remark 5. Assume that in the above lemma m has the form given in Example 1. Then $m \notin \{c'_2, c'_3, c'_4\}$ and so necessarily w_{12}, w_{13}, w_{14} are divisors of m from $B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$, that is m is in case (1).

Lemma 11. Suppose that sdepth_S $I/J \leq d+1$ and \tilde{P}_b is a partition of I_b/J_b given by Lemma 8. Assume that \tilde{P}_b satisfies also the properties mentioned in Lemma 4 and no bad path starts with a_1 . Then there exist a partition P_b which satisfies the properties mentioned in Lemma 4 and a (possible bad) path a_1, \ldots, a_p such that $T_{a_p} \cap \{a_1, \ldots, a_{p-1}\} = \emptyset$, no bad path starts with a_p , and for every i = 2, 3, 4 such that there exists a divisor \tilde{a}_i in $(B \cap (f_i)) \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ of a monomial from $U_1 \cap (u_i)$, one of the following statements holds:

- 1. $U_{a_n} \cap (u_i) = \emptyset$,
- 2. $U_{a_n} \cap (u_i) \neq \emptyset$ and there exists $b_i \in T_{a_n} \cap (f_i)$ with $h(b_i) \in (u_i)$,
- 3. $U_{a_n} \cap (u_i) \neq \emptyset$ and every monomial of $U_{a_n} \cap (u_i)$ has all its divisors from $B \cap (f_i)$ contained in $\{u_2, u'_2, ..., u_4, u'_4\}$.

Moreover, these possible b_i are different and if for some i = 2, 3, 4 it holds also $U_1 \cap (u'_i) \neq \emptyset$, then we may choose P_b and the path a_1, \ldots, a_p such that either $U_{a_p} \cap (u'_i) = \emptyset$ when there exists a bad path starting with a divisor from $B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ of c'_i , or otherwise $u'_i \in T_{a_p}$ and $h(u'_i)$ is the old c'_i .

Proof: Suppose that there exists a divisor \tilde{a}_2 in $(B \cap (f_2)) \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ of a monomial from $U_1 \cap (u_2)$ with respect of \tilde{P}_b . Using Lemma 9 we find a partition P_b and a (possible bad) path a_1, \ldots, a_{p_1} such that $T_{a_{p_1}} \cap \{a_1, \ldots, a_{p_1-1}\} = \emptyset$, no bad path starts with a_{p_1} and one of the following statements holds:

 $j_2) \ U_{a_{p_1}} \cap (u_2) = \emptyset,$

 j'_2 $U_{a_{p_1}} \cap (u_2) \neq \emptyset$ and there exists $b_2 \in T_{a_{p_1}} \cap (f_2)$ with $h(b_2) \in (u_2)$,

 j_2'' $U_{a_{p_1}} \cap (u_2) \neq \emptyset$ and every monomial of $U_{a_{p_1}} \cap (u_2)$ has all its divisors from $B \cap (f_2)$ contained in $\{u_2, u'_2, \dots, u_4, u'_4\}$.

Moreover, if also $U_1 \cap (u'_2) \neq \emptyset$, then we may choose P_b and the path a_1, \ldots, a_{p_1} such that either $U_{a_{p_1}} \cap (u'_2) = \emptyset$ when there exists a bad path starting with a divisor from $B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ of c'_2 , or otherwise $u'_2 \in T_{a_{p_1}}$ and $c'_2 = h(u'_2)$. After a small change we may suppose that P_b satisfies the properties of Lemma 4 and so $b_2 \neq w_{23}, w_{24}$.

If $U_{a_{p_1}} \cap (u_3, u_4) = \emptyset$ then we are done. Now assume that there exists a divisor \tilde{a}_3 in $B \cap (f_3) \setminus \{u_2, u'_2, \dots, u_4, u'_4\}$ of a monomial $m \in U_{a_{p_1}} \cap (u_3)$, let us say $m = m_e$ for some path a_{p_1}, \ldots, a_e . If $a_e = \tilde{a}_3$, or $a_e \neq \tilde{a}_3$ but there exists a path $a_{e+1} = \tilde{a}_3, \ldots, a_k$ with $a_k = a_v$ for some $v \leq e$ then we change P_b as in the proof of Lemma 9 to replace c'_3 by m. Clearly, c'_2, c'_3 satisfy (2) for i = 2, 3. Otherwise, if $a_e \neq \tilde{a}_3$ but there exists no path $a_{e+1} = \tilde{a}_3, \ldots, a_k$ with $a_k = a_v$ for some $v \leq e$, apply again the quoted lemma with c'_3 . We get a (possible bad) path a_{p_1}, \ldots, a_{p_2} with $p_2 > p_1$ such that $T_{a_{p_2}} \cap \{a_1, \ldots, a_{p_2-1}\} = \emptyset$, no bad path starts with a_{p_2} and one of the following statements holds:

 $j_3) \ U_{a_{p_2}} \cap (u_3) = \emptyset,$

 j'_3 $U_{a_{p_2}} \cap (u_3) \neq \emptyset$ and there exists $b_3 \in T_{a_{p_2}} \cap (f_3)$ with $h(b_3) \in (u_3)$, $j''_3 \cup U_{a_{p_2}} \cap (u_3) \neq \emptyset$ and every monomial $m \in U_{a_{p_2}} \cap (u_3)$ has all its divisors from $B \cap (\overline{f}_3)$ contained in $\{u_2, u'_2, \ldots, u_4, u'_4\}$.

If we also have $U_1 \cap (u'_3) \neq \emptyset$ then it holds a similar statement as in case i = 2. Note that $b_2 \neq b_3$ since $b_2 \neq w_{23}$ by Remark 4 and so $h(b_2) \neq h(b_3)$. Very likely meanwhile the corresponding statements of j_2 , j'_2 , j''_2 do not hold anymore because we could have $b_2 \notin T_{a_{p_2}}$. If there exists another \tilde{a}_2 we apply again Lemma 9 with c'_2 obtaining a new partition P_b and a path a_{p_2}, \ldots, a_{p_3} for

which this situation is repaired. If now c'_3 does not satisfy (2) then the procedure could continue with c'_3 and so on. However, after a while we must get a path $a_1, \ldots, a_{p_{23}}$ such that $T_{a_{p_{23}}} \cap \{a_1, \ldots, a_{p_{23}-1}\} = \emptyset$, no bad path starts with $a_{p_{23}}$ and for every i = 2, 3 one of the following statements holds:

 $j_{23}) \ U_{a_{p_{23}}} \cap (u_i) = \emptyset,$

 $\begin{array}{l} j_{23}^{(j)} \cup u_{p_{23}} \cap (u_i) \neq \emptyset \text{ there exist } b_i \in T_{a_{p_{23}}} \cap (f_i) \text{ with } h(b_i) \in (u_i), \\ j_{23}^{(j)} \cup u_{p_{23}} \cap (u_i) \neq \emptyset \text{ and every monomial } m \in U_{a_{p_{23}}} \cap (u_i) \text{ has all its divisors from } B \cap (f_i) \text{ contained in } \{u_2, u_2^{\prime}, \dots, u_4, u_4^{\prime}\}. \end{array}$

We end the proof applying the same procedure with c_4^\prime together with $c_2^\prime,\,c_3^\prime$ and if necessary Lemma 4.

Remark 6. Using the properties (2), (3) mentioned in Lemma 4 we may have $b_i = w_{1i}$, for some $2 \le i \le 4$ only if $u_i, u'_i \in W$. Thus, let us say $b_2 = w_{12}$ only if $\{u_2, u_2'\} = \{w_{23}, w_{24}\}$. Then $\{u_i, u_i'\} \not\subset W$ for i = 3, 4 and so $b_3 \neq w_{13}, b_4 \neq w_{14}, d_4 \neq w_{14}, d_{14} \neq w_{14}, d$ in case b_3, b_4 are given by Lemma 11. Therefore at most one from b_i could be w_{1i} .

The idea of the proof of Proposition 1 fails in a special case hinted by Example 4. This case is solved directly by the following lemma.

Lemma 12. Suppose that $b = x_j f_1$ and $(B \setminus E) \subset W \cup \{x_j f_1, x_j f_2, x_j f_3, x_j f_4\}$ for some $j \notin \operatorname{supp} f_1$. Then $\operatorname{depth}_S I/J \leq d+1$.

Proof: If $|B \setminus E| < 2r = 8$ then depth_S $I''/J'' \leq 2$ by [18, Theorem 2.4]. Assume that $|B \setminus E| \ge 8$. Our hypothesis gives $|B \cap W| \ge 4$. First assume that $5 \le 1$ $|B \cap W| \leq 6$ and we get that let us say $f_i = vx_i, 1 \leq i \leq 4$ for some monomial v of degree d - 1 (see the proof of [16, Lemma 3.2]). Then

$$\operatorname{depth}_{S} I/J = \operatorname{deg} v + \operatorname{depth}_{S'}((I:v) \cap S')/((J:v) \cap S'),$$

 $S' = K[\{x_i : i \in ([n] \setminus \text{supp } v)\}]$ and it is enough to show the case v = 1, that is d = 1.

We may assume that $f_i = x_i, i \in [4]$ and j = 5 since $b \notin W$. It follows that $(B \setminus E) \subset W \cup \{b, x_2x_5, x_3x_5, x_4x_5\}$. Set $I'' = (x_1, \dots, x_4), J'' = J \cap I''$. Note that $J \supset (x_1, \ldots, x_5)(x_6, \ldots, x_n)$ and so depth_S $I''/J'' = depth_{S''}(I'' \cap S'')/(J'' \cap S'')$ for $S'' = K[x_1, \dots, x_5].$

Then $J'' \cap S''$ is generated by at most two monomials and so depth_{S''} $S''/(J'' \cap$ $S'' \geq 3$. Since depth_{S''} $S''/(I'' \cap S'') = 1$ it follows that depth_S I''/J'' = $\operatorname{depth}_{S''}(I'' \cap S'')/(J'' \cap S'') = 2$. Therefore $\operatorname{depth}_{S} I/J \leq 2$ either when $E = \emptyset$ or by the Depth Lemma since I/(J, I'') is generated by monomials of E which have degrees 2.

Now assume that $|B \cap W| = 4$, let us say $B \cap W = \{w_{14}, w_{23}, w_{24}, w_{34}\}$. Then we may suppose that $f_i = vx_ix_6$, $2 \le i \le 4$ and $f_1 = vx_1x_4$ for some monomial v of degree d-2. As above we may assume that v = 1 and n = 6. If j = 6 then $b = w_{14}$ which is impossible. If let us say j = 2 then $(B \setminus E) \subset$ $W \cup \{b, x_2x_3x_6, x_2x_4x_6\}$ and so $|B \setminus E| < 8$, which is false.

Thus $j \notin \{1, \ldots, 4, 6\}$ and we may assume that j = 5. It follows that $J \subset (x_1x_2x_6, x_1x_3x_6, x_1x_2x_4, x_1x_3x_4)$, the inclusion being strict only if $|B \setminus E| < 8$ which is not the case. Thus $J = (x_1x_2x_6, x_1x_3x_6, x_1x_2x_4, x_1x_3x_4)$ and a computation with SINGULAR shows that depth_S I/J = 3 in this case.

Next we put together the above lemmas to get the proof of Proposition 1. Assume that $\operatorname{sdepth}_S I/J \leq d+1$. We may suppose always that P_b satisfies the properties mentioned in Lemma 4. Applying Lemma 8 and Remark 3 and changing a_1 if necessary we may suppose that no bad path starts from a_1 . By Lemma 11 changing a_1 by a_p we may suppose that for every i = 2, 3, 4 one of the following statements holds

1) $U_1 \cap (u_i) = \emptyset$,

2) $U_1 \cap (u_i) \neq \emptyset$ and there exists $b_i \in T_1 \cap (f_i)$ with $h(b_i) \in (u_i)$,

3) $U_1 \cap (u_i) \neq \emptyset$ and every monomial of $U_1 \cap (u_i)$ has all its divisors from $B \cap (f_i)$ contained in $\{u_2, u'_2, \ldots, u_4, u'_4\}$.

Mainly we study case 3) the other two cases are easier as we will see later. Suppose that $U_1 \cap (u_2) \neq \emptyset$ and every monomial of $U_1 \cap (u_2)$ has all its divisors from $B \cap (f_2)$ contained in $\{u_2, u'_2, \ldots, u_4, u'_4\}$. Let $m \in U_1 \cap (u_2)$, let us say $m = h(a_e)$ for some path a_1, \ldots, a_e . be as in case 3). We may suppose that $U_1 \cap (u'_2) = \emptyset$ because otherwise we may assume as in Lemma 9 that all divisors of c'_2 are in the enlarged T'_1 of T_1 and so c'_2 is preserved. As in the proof of Lemma 10 one of the following statements holds:

1') $U_1 \cap (u_2) = \{m\}, m \in (u_2) \cap (u_3), u_3 = w_{23}, m \notin (u_4, u'_4)$ and there exists $\tilde{a}_3 \in T_1 \cap (f_3)$ dividing m with $\tilde{a}_3 = a_e$,

2') $U_1 \cap (u_2) = \{m\}, m \in (u_2) \cap (u_3), u_3 = w_{23}, m \notin (u_4, u'_4)$ and there exists $\tilde{a}_3 \in T_1 \cap (f_3)$ dividing m with $\tilde{a}_3 \neq a_e$,

3') $U_1 \cap (u_2) = \{m\}, m \in (u_2) \cap (u_4), u_4 = w_{24}, m \notin (u_3, u'_3)$ and there exists $\tilde{a}_4 \in T_1 \cap (f_4)$ dividing m with $\tilde{a}_4 = a_e$,

4') $U_1 \cap (u_2) = \{m\}, m \in (u_2) \cap (u_4), u_4 = w_{24}, m \notin (u_3, u'_3)$ and there exists $\tilde{a}_4 \in T_1 \cap (f_4)$ dividing m with $\tilde{a}_4 \neq a_e$,

5') $m = w_{24} \in (u_2) \cap (u_3) \cap (u_4), u_3 = w_{23}, u_4 = w_{34}$ and there exists $\tilde{a}_4 \in T_1 \cap (f_4)$ dividing m with $h(\tilde{a}_4) = m$,

6') $m = w_{24} \in (u_2) \cap (u_3) \cap (u_4), u_3 = w_{23}, u_4 = w_{34}$ and there exists $\tilde{a}_4 \in T_1 \cap (f_4)$ dividing m with $h(\tilde{a}_4) \neq m$,

7') $m = \omega_1 \in C_3, u_2 = w_{24}, u_3 = w_{23}.$

In subcase 1') change in P_b the intervals $[f_3, c'_3]$, $[\tilde{a}_3, m]$ with $[f_3, m]$, $[u'_3, c'_3]$. The new $T''_1 = T_1 \setminus \{\tilde{a}_3\}$ corresponds to $U''_1 = U_1 \setminus \{m\}$ which has empty intersection with (u_2) by our assumption. If T''_1 is not empty then we may go on with T''_1 instead T_1 , the advantage being that now we have no problem with u_2 . If $T''_1 = \emptyset$ then e = 1 and the path a_1 is maximal. Since $m \notin (u_4, u'_4)$ we must have $u_2 = x_k f_2$ for some k (we can also have $w_{12} = x_k f_2$) and so $m = x_k w_{23}$, $\tilde{a}_3 = x_k f_3$. If $E \neq \emptyset$ then we may change a_1 by a monomial of E. Assume that $E = \emptyset$. If $c'_3 = x_t w_{23}$ for some t then $x_t f_2 \in B$ since it divides c'_3 . If t = k then $m = c'_3$. Thus $t \neq k$, $x_t f_2 \notin \{b, u_2, u'_2, \dots, u_4, u'_4\}$ and we may change a_1 by $x_t f_2$ and the new T''_1 will be not empty. If $c'_3 \in C_2$ we may find also a divisor $b' \in B \setminus \{b, u_2, u'_2, \ldots, u_4, u'_4\}$ dividing c'_3 and changing a_1 by b' we will get the new T''_1 not empty. Remains to assume that $c'_3 \in C_3$. Then $u'_3 = w_{34}$ and $b'' = w_{24}$ is either in $\{u'_2, u_4, u'_4\}$, or we may change a_1 by b'' as above. Suppose that $u'_2 = w_{24}$. Then $x_k f_4 \in B$. If $x_k f_4 \notin \{b, u_2, u'_2, \ldots, u_4, u'_4\}$ we may change a_1 by $x_k f_4$. Otherwise, let us say $u_4 = x_k f_4$ and $c'_4 = x_k w_{14}$. We get $x_k f_1 \in B \setminus \{u_2, u'_2, \ldots, u_4, u'_4\}$ and if $b \neq x_k f_1$ then we may change as above a_1 by $x_k f_1$. If $b = x_k f_1$ then note that $B \supset \{w_{23}, w_{24}. w_{34}, w_{14}, b, x_k f_2, x_k f_3, x_k f_4\}$. If there exists a monomial $b' \in B \setminus (W \cup \{b, x_k f_2, x_k f_3, x_k f_4\})$ then change a_1 by b'. Otherwise $B \subset W \cup \{b, x_k f_2, x_k f_3, x_k f_4\}$ and we apply Lemma 12.

Therefore in this subcase changing P_b (u_3 is preserved and the new u'_3 is b_3) and passing from T_1 to T''_1 there exist no problem with u_2 . As in Lemma 9 we may suppose that only one from $U''_1 \cap (u_3)$, $U''_1 \cap (u'_3)$ is nonempty because otherwise we preserve the new c'_3 , that is m. If let us say $U''_1 \cap (u_3) = \{m'\}$, and all divisors of m' from $B \cap (f_3)$ are contained in $\{u_3, u'_3, u_4, u'_4\}$ then $m' \in (u_3) \cap (u_4)$, $u_4 = w_{34}$ and there exists $\tilde{a}_4 \in T''_1 \cap (f_4)$ dividing m'. If $h(\tilde{a}_4) = m'$ then as above change in P_b the intervals $[f_4, c'_4]$, $[\tilde{a}_4, m']$ with $[f_4, m']$, $[u'_4, c'_4]$. Clearly $\tilde{T}_1 = T''_1 \setminus \{\tilde{a}_4\}$ has empty intersection with (u_3) and similarly to above we may suppose that $\tilde{T}_1 \neq \emptyset$. In this way we arrive to the situation when we will not meet case 3) for $2 \leq i \leq 4$.

In subcase 2') we have $a_e \in E$ and $a_{e+1} = \tilde{a}_3 \in T_1$. Take $T_{a_{e+1}}$ instead T_1 . If a_e will not appear anymore in $T_{a_{e+1}}$ then $U_{a_{e+1}} \cap (u_2) = \emptyset$ and the problem is solved. Otherwise, if $a_v = a_e$ for some v > e + 1 then change in P_b the intervals $[a_i, h(a_i)], e \leq i \leq v$ with $[a_{i+1}, h(a_i)], e \leq i < v, [a_e, m_v]$ we see that the new a_e is the old a_{e+1} , that is we reduced to the subcase 1'). Subcases 3'), 4') are similar to 1'), 2').

Change in subcase 5') (as in subcase 1')) the intervals $[f_4, c'_4]$, $[\tilde{a}_4, m]$ of P_b with $[f_4, m]$, $[u'_4, c'_4]$. The new $T''_1 = T_1 \setminus \{\tilde{a}_4\}$ corresponds to $U''_1 = U_1 \setminus \{m\}$ which has empty intersection with (u_2) by our assumption. The proof continues as in 1'). Similarly, 6') goes as 2').

In subcase 7') if $\omega_1 \in W$ (see Example 1) then it has 4 divisors from $B \setminus E$ and so one of them is not in $\{u_2, u'_2, \ldots, u_4, u'_4\}$ and we may proceed as in subcases 5'), 6'). So we may assume that $\omega_1 \notin W$. Then either $u_4 = w_{34}$ and then $a_e \in E$ which is false by our assumption, or $w_{34} \in T_1$. Set $a_{e+1} = w_{34}$. We proceed as in 2') taking $T_{a_{e+1}}$ if $a_e \notin T_{a_{e+1}}$ or otherwise changing P_b we reduce to the situation when $h(a_{e+1}) = m$. Then change in P_b the intervals $[f_4, c'_4]$, $[a_{e+1}, m]$ with $[f_4, m]$, $[u'_4, c'_4]$ and as usual the new $U''_1 = U_1 \setminus \{m\}$ has empty intersection with (u_2) .

Thus we may assume that for all $2 \leq i \leq 4$ we are in cases 1), 2). When we are in case 2) there exists $b_i \in T_1 \cap (f_i)$ with $h(b_i) \in (u_i)$ and we may consider the intervals $[f_i, c'_i]$, which are disjoint since b_i are different by Lemma 11. Moreover, they contain at most one monomial from w_{12}, w_{13}, w_{14} by Remark 6, which is useful next. Remains to study those i with $U_1 \cap (f_i) \neq \emptyset$ but $U_1 \cap (u_i, u'_i) = \emptyset$. If $U_1 \cap (u_2, u'_2, \ldots, u_4, u'_4) = \emptyset$ then we apply Lemma 5. Suppose that $U_1 \cap (f_2) \neq \emptyset$

and $U_1 \cap (u_2, u'_2) = \emptyset$ but we found already b_3 and possible b_4 as in 2). If $h(b_3) \notin (f_2)$ then choosing $b' \in B \cap (f_2)$ we see that the intervals $[f_2, h(b')]$, $[f_3, h(b_3)]$ are disjoint. A similar result holds if there exists b_4 and $h(b_4) \notin (f_2)$.

Assume that $h(b_3) \in (f_2)$. Then we may suppose that $u_3 = w_{23}$ and $h(b_3) = x_k w_{23}$ for some $k \in [n] \setminus \sup w_{23}$. We claim that $b'' = x_k f_2 \notin \{u_2, u'_2, \dots, u_4, u'_4\}$. It is clear that $b'' \notin \{u_2, u'_2, u_3, u'_3\}$. If $b'' \in \{u_4, u'_4\}$ then $b'' = w_{24} = u_4$, let us say. Thus $h(b_3) \in (u_3, u_4)$ but $h(b_3) \notin (u_2, u'_2)$. This means that the monomial $h(b_3) \in U_1 \cap (u_4)$ is in the situation 3) (similarly to 1')) which is not possible as we assumed. This shows our claim.

Therefore, $b'' \in T_1 \cap (f_2)$ because it divides $h(b_3)$. If $h(b'') \in (f_3)$ then $h(b'') = kw_{23} = h(b_3)$ which is impossible. If $h(b'') \in (f_4)$ then $h(b'') = x_tw_{24}$ for some t. As we saw above $b'' \neq w_{24}$ and so t = k. If b_4 is not done by 2) then it is enough to note that the intervals $[f_2, h(b'')]$, $[f_3, h(b_3)]$ are disjoint. Assume that b_4 is given already from 2) and $u_4 = w_{24}$. Then $\tilde{b} = x_k f_4 \neq u'_4$ because otherwise $h(b'') = h(b_4)$. We see that $\tilde{b} \notin \{u_2, u'_2, \ldots, u_4, u'_4\}$ and so \tilde{b} is in $T_1 \cap (f_4)$. But $h(\tilde{b}) \notin (u_4)$ because it is different of $h(b_4)$. Then the intervals $[f_2, h(b'')]$, $[b_3, h(b_3)]$, $[f_4, h(\tilde{b})]$ are disjoint. As in Lemma 5 we find if necessary an interval $[f_1, c]$ disjoint of the rest.

Suppose as in Lemma 5 that $[r] \setminus \{j \in [r] : U_1 \cap (f_j) \neq \emptyset\} = \{k_1, \ldots, k_\nu\}$ for some $1 \leq k_1 < \ldots < k_\nu \leq 4, \ 0 \leq \nu \leq 4$. Set $I' = (f_{k_1}, \ldots, f_{k_\nu}, G_1), \ J' = I' \cap J$, With the help of the above disjoint intervals, P_b induces on I/(I', J) a partition P'_b with sdepth d + 2. It follows that $\operatorname{sdepth}_S I'/J' \leq d + 1$ using [17, Lemma 2.2]. By Lemma 3 we get $\operatorname{depth}_S I/(J, I') \leq d + 1$ and we are done. \Box

Remark 7. Note that in P'_b , all divisors from B of the new c'_i are in $T_1 \cup \{u_2, u'_2, \ldots, u_4, u'_4\}$. If one old c'_i has already this property then we may keep it.

Remark 8. If $\omega_1 \in (C_3 \setminus W) \cap (E)$ then we may have indeed a problem. For example, if $u_2 = w_{24}$, $u_3 = w_{23}$, $u_4 = w_{34}$, $\omega_1 = h(a_1)$ for some $a_1 \in E$ but $\omega_1 \notin h(E \setminus \{a_1\})$ then the path a_1 is maximal, $T_1 = \{a_1\}$ and our theory fails to solve this case if we cannot change P_b in order to have $\{u_2, u_3, u_4\} \neq \{w_{24}, w_{23}, w_{34}\}$.

Example 6. We continue Example 5. If we take as in the above proof $I' = (b, x_5x_6, x_5x_7)$ and $J' = I' \cap J$ we have the disjoint intervals $[x_i, c'_i], 2 \leq i \leq 4$ and to conclude that h induces a partition on I/(I', J), which has sdepth 3 we need an interval $[x_1, c'_1]$ disjoint of the other ones. But this is hard because there are too many w_{1i} among $\{u_2, u'_2, \ldots, u_4, u'_4\}$. We must change one c'_i with one $m \in (U_1 \cap (x_i)) \setminus (x_1)$. The only possibility is to take $m_2 = x_2x_3x_5$. Since $m \in (u'_2) \setminus (u_3, u'_3, u_4, u'_4)$ we may change somehow c'_2 with m. This is not easy since $m_2 = h(a_2), a_2 = x_3x_5 \notin (x_2)$. As in Lemma 9 note that $a_1|m_3 = h(a_3)$ and replacing in P_b the intervals $[a_i, m_i], i \in [3], m_1 = h(a_1)$ with the intervals $[a_1, m_3], [a_2, m_1], [a_3, m_2]$ we see that x_2x_5 - the new a_2 , belongs to (x_2) . Thus we may change in P_b the intervals $[x_2, c'_2], [x_2x_5, m_2]$ with $[x_2, m_2], [u_2, c'_2]$. The new T_1 is $T'_1 = (T_1 \cup \{x_1x_2\}) \setminus \{x_2x_5\}$. Note that all divisors from $B \cap (x_2)$ of the new c'_2 which are different from the new u_2, u'_2 are contained in the new T_1 . As

above $[x_i, c'_i]$ are disjoint intervals and changing in P_b the intervals $[x_1x_2, x_1x_2x_3]$, $[x_1x_5, x_1x_2x_5]$ with $[x_1, x_1x_2x_5]$ we get a partition with sdepth 3 on I/(I', J).

3 Main results

We start with an elementary lemma closed to Lemma 12.

Lemma 13. Let r be arbitrarily chosen, $r' \leq r$, $t \in [n] \setminus \bigcup_{i=1}^{r'} \text{supp } f_i$ and $I' = (f_1, \ldots, f_{r'}), J' = J \cap I'$. Suppose that all $w_{ij}, 1 \leq i < j \leq r'$ are in B and different. Then the following statements hold

- 1. there exists a monomial v of degree d-1 such that $f_i \in (v)$ for all $i \in [r']$,
- 2. if $x_k(f_1, \ldots, f_{r'}) \subset J$ for all $k \in [n] \setminus (\{t\} \cup (\bigcup_{i=1}^{r'} \operatorname{supp} f_i))$ then $\operatorname{depth}_S I'/J' \leq d+1$.

Proof: As in the proof of [16, Lemma 3.2] we may suppose that $f_i = vx_i$ for $i \in [r]$ and some monomial v of degree d - 1, that is (1) holds. It follows that

$$\operatorname{depth}_{S} I'/J' = d - 1 + \operatorname{depth}_{S''}(x_1, \dots, x_{r'})S'' = d + 1$$

where $S'' = K[x_1, ..., x_{r'}, x_t].$

Theorem 3. Conjecture 1 holds for $r \leq 4$, the case $r \leq 3$ being given in Theorem 1.

Proof: Suppose that sdepth_S I/J = d + 1 and $E \neq \emptyset$, the case $E = \emptyset$ is given in Proposition 2. The proofs of Proposition 1 and Proposition 2 show that we get depth_S $I/J \leq d + 1$, that is Conjecture 1 holds, when we may choose $b_i \in (B \cap (f_i)) \setminus W$ such that $\omega_i \notin (C_3 \setminus W) \cap (E)$. Suppose that we choose $b_1 \in (B \cap (f_1)) \setminus W$ but $\omega_1 \in (C_3 \setminus W) \cap (E)$. In the last part of the proof of Proposition 1 (see 7') and also Remark 8) a problem appears when $m = \omega_1 \in T_1$ and let us say $u_2 = w_{24}$, $u_3 = w_{23}$, $u_4 = w_{34}$. As in the proof of [16, Lemma 3.2] we may assume that $f_i = vx_i$ for $2 \leq i \leq 4$ and some monomial v of degree d-1. If let us say $x_t f_2 \in B$ for some $t \notin \bigcup_{i=2}^4$ supp f_i then either $tf_2 = w_{12}$, or $tf_2 \notin W$. In the first case we may suppose, as in the proof of Lemma 12, that one of the following statements hold:

1) $f_i = vx_i, i \in [4]$ for some monomial v of degree d - 1,

2) $f_i = px_ix_5, 2 \le i \le 4, f_1 = px_1x_2$ for some monomial p of degree d-2.

In both cases we see that if $B \cap (f_2, f_3, f_4) \subset W$ then we have $x_k(f_2, \ldots, f_4) \subset J$ for all $k \in [n] \setminus (\{1\} \cup (\cup_{i=2}^4 \operatorname{supp} f_i))$. By Lemma 13 we get depth_S $I'/J' \leq d+1$ for $I' = (f_2, f_3, f_4), J' = J \cap I'$ which gives depth_S $I/J \leq d+1$ since depth_S $I/(J, I') \geq d+1$, b being not in (J, I'). Thus $B \cap (f_2, f_3, f_4) \notin W$ and we may choose, let us say $b_2 \in (B \cap (f_2)) \setminus W$ and again we may get depth_S $I/J \leq d+1$ if $\omega_2 \notin (C_3 \setminus W) \cap (E)$.

Thus we may assume that $\omega_1, \omega_2 \in (C_3 \setminus W) \cap (E)$. In particular $B \cap W$ consists in at least 5 different monomials and so we may suppose that 1) above holds and

 $u'_2 = vx_2x_{k_2}, u'_3 = vx_3x_{k_3}, u'_4 = vx_4x_{k_4}$ for some $k_i \in ([n] \setminus \{2, 3, 4\} \cup \text{supp } v)$. If $k_2 = k_3 = k_4 = 1$ then $c'_2 = \omega_3, c'_3 = \omega_4, c'_4 = \omega_2$, that is all ω_i are in $C_3 \setminus W$. If let us say $k_3 > 4$ then $b'' = x_{k_3}f_3 \notin W$ and we are ready if $\omega_3 \notin (C_3 \setminus W) \cap (E)$. Thus we may assume that $\omega_3 \in (C_3 \setminus W) \cap (E)$. Consequently in all cases we may assume that 3 from ω_i are in $C_3 \setminus W$. In particular $|B \cap W| = 6$. If $B \cap (f_i) \subset W$ for some i = 3, 4 then $(J : f_i)$ is generated by x_j with $j \notin (\{1, \ldots, 4\} \cup \text{supp } v)$. It follows that in the exact sequence

$$0 \to (f_i)/J \cap (f_i) \to I/J \to I/(J, f_i) \to 0$$

the first term has depth deg v+4 = d+3 and sdepth $\geq d+2$. By [17, Lemma 2.2] we get sdepth_S $I/(J, f_i) \leq d+1$ and so the last term in the above sequence has depth $\leq d+1$ by Theorem 1. Using the Depth Lemma we get depth_S $I/J \leq d+1$ too.

Therefore, we may find $b_i \in (B \cap (f_i)) \setminus W$, i = 3, 4 and as above we may suppose that $\omega_i \in (C_3 \setminus W) \cap (E)$, let us say $\omega_i \in (\tilde{a}_i)$ for some $\tilde{a}_i \in E$. We consider three cases depending on k_i .

Case 1, when $k_i = 1$ and $k_j > 4$ for some $i, j = 2, 3, 4, i \neq j$.

Assume that $k_2 = 1$, that is $c'_2 = \omega_3$ and $k_4 > 1$. Then $a_1 = vx_1x_4 \notin \{u_2, u'_2, \ldots, u_4, u'_4\}$ is a divisor of c'_2 . Start the usual proof with a_1 and if $\omega_1 \notin U_1$ then we get depth_S $I/J \leq d+1$. Suppose that there exists a (possible bad) path $a_1, \ldots, a_e, m_i = h(a_i)$ such that $m_e = \omega_1$. Changing in P_b the intervals $[a_i, m_i], i \in [e], [f_2, c'_2], [f_3, c'_3]$ with $[a_{i+1}, m_i], i \in [e-1], [f_1, c'_2], [f_2, m_e], [u'_3, c'_3]$ we see that the new $\tilde{c}'_i, i = 1, 2, 4$ contain two from ω_i . Choose a new a_1 and start to build U_1 . This time any monomial from U_1 has at least one divisor from $B \setminus E$ which is not in $\cup_{j=1,2,4}[f_j, \tilde{c}'_j]$ so the usual proof goes.

Case 2, $k_2, k_3, k_4 > 4$.

Then $a_1 = vx_1x_4 \notin \{u_2, u'_2, \ldots, u_4, u'_4\}$. Let $m_1 = h(a_1) = a_1x_k$ for some k. If $k = k_4$ then changing in P_b the intervals $[f_4, c'_4]$, $[a_1, m_1]$ with $[f_4, m_1]$, $[u_4, c'_4]$ we see that $u_4 = w_{34}$ does not divide the new c'_4 and so we have no problem with ω_1 .

Suppose that $k \neq k_4$ and k > 4 then $a_2 = vx_4x_k \notin \{u_2, u'_2, \ldots, u_4, u'_4\}$. If there exists no path a_2, \ldots, a_e , $m_i = h(a_i)$ with $m_e = \omega_1$ then we proceed as usual. Otherwise, let a_2, \ldots, a_e , $m_i = h(a_i)$ be a (possible bad) path with $m_e = \omega_1$. Changing in P_b the intervals $[a_i, m_i]$, $i \in [e]$, $[f_3, c'_3]$, $[f_4, c'_4]$ with $[a_{i+2}, m_{i+1}]$, $i \in [e-2]$, $[f_3, m_e]$, $[f_4, m_1]$, $[u'_3, c'_3]$, $[u'_4, c'_4]$ we see that any monomial from C has at least one divisor from $B \setminus E$ which is not in $\cup_{j=2,3,4} [f_j, \tilde{c}'_j]$ so the usual proof goes, where \tilde{c}'_j denotes the new c'_j for j = 3, 4 and $\tilde{c}'_2 = c'_2$.

Remains to study the case when $k \neq k_4$ and k = 2 or k = 3. Assume that k = 2, that is $m_1 = \omega_3$. Similarly we may assume that $a_2 = vx_1x_2$, $m_2 = h(a_2) = a_2x_3 = \omega_4$ and $a_3 = vx_1x_3$, $m_3 = h(a_3) = a_3x_4 = \omega_2$. If there exists no path $a_3, \ldots, a_e, m_i = h(a_i)$ with $m_e = \omega_1$ then we proceed as usual. Otherwise, let $a_3, \ldots, a_e, m_i = h(a_i)$ be a (possible bad) path with $m_e = \omega_1$. Changing in P_b the intervals $[a_i, m_i], i \in [e], [f_j, c'_i], j = 2, 3, 4$ with $[a_{i+3}, m_{i+2}]$, $i \in [e-3], [f_1, m_1], [f_3, m_2], [f_4, \omega_1], [u'_2, c'_2], [u'_3, c'_3], [u'_4, c'_4]$ we arrive in a case similar to the next one.

Case 3, $k_2 = k_3 = k_4 = 1$.

Thus $c'_2 = \omega_3 \in (a_1)$ for $a_1 = \tilde{a}_3$. If there exists a path $a_1, \ldots, a_e, m_i = h(a_i)$ with $m_e = \omega_1$ then changing in P_b the intervals $[a_i, m_i], i \in [e], [f_2, c'_2], [f_3, c'_3]$ with $[a_{i+1}, m_i], i \in [e-1], [a_1, c'_2], [f_1, c'_3], [f_2, \omega_1]$ we get the new $\tilde{c}'_1 = \omega_4, \tilde{c}'_2 = \omega_1$ and $\tilde{c}'_4 = c'_4 = \omega_2$. Thus we may change the three c'_i to be any three monomials from ω_i .

Assume that the above path is bad, let us say $m_p \in (b)$ for p < e and as in Lemma 8 we may suppose that $a_{p+1} \notin E$, $T_{a_{p+1}} \cap \{a_1, \ldots, a_p\} = \emptyset$ and there exists no bad path starting with a_{p+1} . Changing P_b as above we see that the new \tilde{c}'_i are $\omega_1, \omega_2, \omega_4$ and the $\omega_3 \notin U'_{a_{p+1}}$, where $U'_{a_{p+1}}$ corresponds to $T'_{a_{p+1}} = T_{a_{p+1}} \setminus \{a_{p+1}\}$. Set $b' = a_{p+1}$. In fact changing in the new P_b the intervals $[b', m_p]$ with $[b, m_p]$ we get a partition $P_{b'}$ on $I_{b'}/J_{b'}$, where $I_{b'}J_{b'}$ are defined as usually but we could have $b' \in W$. There exists no bad path in $P_{b'}$ because otherwise this induces one in P_b . We may proceed as before since all monomials from $U'_{b'}$ has at least one divisor from $B \setminus E$ which is not in $\cup_{j=1,2,4} [f_j, \tilde{c}'_j]$. Similarly, we do for any $a_1 \in E$ dividing one from c'_2, c'_3, c'_4 and remains to assume that there exists no bad path starting with a divisor from E of any c'_i , i = 2, 3, 4.

Now suppose that $a_1 = b_3$ and consider T_1, U_1 as usual and we may suppose that we are still in Case 3 but with $(\tilde{c}'_j), j = 1, 3, 4$. If there exists no bad path starting with a_1 and $m_1 = h(a_1) \in (W)$, let us say $m_1 \in (w_{13})$ then changing in P_b the intervals $[a_1, m_1], [f_1, \tilde{c}'_1]$ with $[f_1, m_1], [\tilde{u}_1, \tilde{c}'_1], \tilde{u}_1 = w_{12}$ we arrive in a case similar to Case 1. If $m_1 \notin (W)$ then assume that in P_b there exist the intervals $[f_1, \omega_2], [f_2, \omega_4], [f_4, \omega_1]$. Then $[f_3, m_1]$ is disjoint of these intervals. Enlarge T_1 to \tilde{T}_1 adding all monomials from B connected by a path which is not bad, with the divisors from E of $(\omega_j), j = 1, 2, 4$. Thus taking $I' = (B \setminus (\tilde{T}_1 \cup W)), J' = J \cap I'$ we get sdepth $SI/(J, I') \geq d + 2$ which is enough as usual.

If there exists a bad path a_1, \ldots, a_e , $m_i = h(a_i)$, $m_e = \omega_1$, $m_p \in (b)$, p < ethen as above we may assume that $a_{p+1} \notin E$, $T_{a_{p+1}} \cap \{a_1, \ldots, a_p\} = \emptyset$ and there exists no bad path starting with a_{p+1} . Moreover, we may choose $a_{p+2} \notin E$ when e > p + 1 because $m_{p+1} \neq \omega_1$. Taking as above $b' = a_{p+1}$ and the partition $P_{b'}$ given on $I_{b'}/J_{b'}$ we see that $T_{a_{p+2}} \cap (f_1, \ldots, f_4) \neq \emptyset$ and we reduce to the above situation with $T_{a_{p+2}}$ instead T_1 . If $p \ge e - 1$ then $\omega_1 \notin U_{a_{p+2}}$ and so there exists no problem. \Box

Theorem 4. Conjecture 1 holds for r = 5 if there exists $t \in [n]$ such that $t \notin \bigcup_{i \in [5]} \operatorname{supp} f_i$, $(B \setminus E) \cap (x_t) \neq \emptyset$ and $E \subset (x_t)$.

Proof: Apply Lemma 1, since Conjecture 1 holds for $r \leq 4$ by Theorem 3.

Example 7. Let n = 8, $E = \{x_6x_7, x_7x_8\}$, $I = (x_1, x_2, x_3, x_4, x_5, E)$, $J = (x_1x_6, x_1x_8, x_2x_8, x_3x_6, x_3x_8, x_4x_6, x_4x_7, x_4x_8, x_5x_6, x_5x_7, x_5x_8)$. We see that we have

 $B = \{x_1x_2, x_1x_3, x_1x_4, x_1x_5, x_1x_7, x_2x_3, x_2x_4, x_2x_5, x_2x_6, \\ x_2x_7, x_3x_4, x_3x_5, x_3x_7, x_4x_5\} \cup \{E\},$

 $C = \{x_1x_2x_3, x_1x_2x_4, x_1x_2x_5, x_1x_2x_7, x_1x_3x_4, x_1x_3x_5, x_1x_3x_7, x_1x_4x_5, x_2x_3x_4, x_1x_3x_5, x_1x_5, x_1x_5, x_1x_5, x_1x_5, x_1x_5, x_1x_5, x_1x_5, x_1$

 $x_2x_3x_5, x_2x_3x_7, x_2x_4x_5, x_2x_6x_7, x_3x_4x_5, x_6x_7x_8$

and so r = 5, q = 15, $s = 16 \le q+r$. We have sdepth_S I/J = 2, because otherwise the monomial x_2x_6 could enter either in $[x_2, x_2x_6x_7]$, or in $[x_2x_6, x_2x_6x_7]$ and in both cases remain the monomials of E to enter in an interval ending with $x_6x_7x_8$, which is impossible. Then depth_S $I/J \le 2$ by the above theorem since $E \subset (x_7)$ and for instance $x_1x_7 \in (B \setminus E) \cap (x_7)$.

Added in Proof: Meanwhile, an example appeared in a paper of Duval et al. (A non-partitionable Cohen-Macaulay simplicial complex), arXiv 1504.04279, which shows in particular that Conjecture 1 is false even when r = 5 but there exists no t as in Theorem 2. This says that our result is tight.

References

- [1] W. BRUNS, C. KRATTENTHALER, J. ULICZKA, Stanley decompositions and Hilbert depth in the Koszul complex, J. Commutative Alg., 2 (2010), 327-357.
- [2] M. CIMPOEAS, The Stanley conjecture on monomial almost complete intersection ideals, Bull. Math. Soc. Sci. Math. Roumanie, 55(103) (2012), 35-39.
- [3] J. HERZOG, M. VLADOIU, X. ZHENG, How to compute the Stanley depth of a monomial ideal, J. Algebra, 322 (2009), 3151-3169.
- [4] J. HERZOG, D. POPESCU, M. VLADOIU, Stanley depth and size of a monomial ideal, Proc. Amer. Math. Soc., 140 (2012), 493-504.
- [5] B. ICHIM, J. J. MOYANO-FERNÁNDEZ, How to compute the multigraded Hilbert depth of a module, Math. Nachr. 287, No. 11-12, 1274-1287 (2014), arXiv:AC/1209.0084.
- [6] B. ICHIM, A. ZAROJANU, An algorithm for computing the multigraded Hilbert depth of a module, Experimental Mathematics, 23:3, (2014), 322-331, arXiv:AC/1304.7215v2.
- [7] M. ISHAQ, Values and bounds of the Stanley depth, Carpathian J. Math. 27 (2011), 217-224.
- [8] A. Popescu, An algorithm to compute the Hilbert depth, J. Symb. Comput., 66, (2015), 1-7, arXiv:AC/1307.6084.
- [9] A. POPESCU, D. POPESCU, Four generated, squarefree, monomial ideals, 2013, in "Bridging Algebra, Geometry, and Topology", Editors Denis Ibadula, Willem Veys, Springer Proceed. in Math., and Statistics, 96, 2014, 231-248, arXiv:AC/1309.4986v5.

98

- [10] D. POPESCU, Stanley depth of multigraded modules, J. Algebra **312** (10) (2009) 2782-2797.
- [11] D. POPESCU, Graph and depth of a square free monomial ideal, Proceedings of AMS, 140 (2012), 3813-3822.
- [12] D. POPESCU, Depth of factors of square free monomial ideals, Proceedings of AMS 142 (2014), 1965-1972, arXiv:AC/1110.1963.
- D. POPESCU, Upper bounds of depth of monomial ideals, J. Commutative Algebra, 5, 2013, 323-327, arXiv:AC/1206.3977.
- [14] D. POPESCU, A. ZAROJANU, Depth of some square free monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie, 56(104), 2013,117-124.
- [15] D. POPESCU, A. ZAROJANU, Depth of some special monomial ideals, Bull. Math. Soc. Sci. Math. Roumanie, 56(104), 2013, 365-368.
- [16] D. POPESCU, A. ZAROJANU, Three generated, squarefree, monomial ideals, to appear in Bull. Math. Soc. Sci. Math. Roumanie, 58(106) (2015), no 3, 359-368, arXiv:AC/1307.8292v6.
- [17] A. RAUF, Depth and Stanley depth of multigraded modules, Comm. Algebra, 38 (2010),773-784.
- [18] Y.H. SHEN, Lexsegment ideals of Hilbert depth 1, (2012), arXiv:AC/1208.1822v1.
- [19] R. P. STANLEY, Linear Diophantine equations and local cohomology, Invent. Math. 68 (1982) 175-193.
- [20] J. ULICZKA, Remarks on Hilbert series of graded modules over polynomial rings, Manuscripta Math., 132 (2010), 159-168.

Received: 16.02.2015 Accepted: 12.04.2015

> Simion Stoilow Institute of Mathematics of Romanian Academy, Research unit 5, P.O.Box 1-764, Bucharest 014700, Romania E-mail: dorin.popescu@imar.ro