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Abstract

Let I 2 J be two squarefree monomial ideals of a polynomial algebra
over a field generated in degree > d, resp. > d+1 . Suppose that I is either
generated by four squarefree monomials of degrees d and others of degrees
> d+ 1, or by five special monomials of degrees d. If the Stanley depth of
1/J is < d+ 1 then the usual depth of I/J is < d+ 1 too.
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Introduction

Let K be a field and S = K|[x1,...,2,] be the polynomial K-algebra in n vari-
ables. Let I 2 J be two squarefree monomial ideals of S and suppose that I
is generated by squarefree monomials of degrees > d for some positive integer
d. After a multigraded isomorphism we may assume either that J = 0, or J is
generated in degrees > d + 1.

Let Ppj be the poset of all squarefree monomials of I\ J with the order
given by the divisibility. Let P be a partition of Py s in intervals [u,v] = {w €
Ppj : ulw,wlv}, let us say Pp; = U;[u;,v;], the union being disjoint. Define
sdepth P = min; degv; and the Stanley depth of I/J given by sdepthgI/J =
maxp sdepth P, where P runs in the set of all partitions of Py ; (see [3], [19]).
Stanley’s Conjecture says that sdepthg I/J > depthg I/J.

In spite of so many papers on this subject (see [3], [10], [17], [1], [4], [18],
[11], [7], [2], [12], [16]) Stanley’s Conjecture remains open after more than thirty
years. Meanwhile, new concepts as for example the Hilbert depth (see [1], [20],
[5]) proved to be helpful in this area (see for instance [18, Theorem 2.4]). Using
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a Theorem of Uliczka [20] it was shown in [8] that for n = 6 the Hilbert depth
of S @ m is strictly bigger than the Hilbert depth of m, where m is the maximal
graded ideal of S. Thus for n = 6 one could also expect sdepthg(S & m) >
sdepthg m, that is a negative answer for a Herzog’s question. This was stated
later by Ichim and Zarojanu [6].

Suppose that I C S is minimally generated by some squarefree monomials
fi,..., fr of degrees d, and a set E of squarefree monomials of degree > d + 1.
By [3, Proposition 3.1] (see [12, Lemma 1.1]) we have depthg I/J > d. Thus if
sdepthg I/J = d then Stanley’s Conjecture says that depthg I/J = d. This is ex-
actly what [12, Theorem 4.3]) states. Next step in studying Stanley’s Conjecture
is to prove the following weaker one.

Conjecture 1. Suppose that I C S is minimally generated by some squarefree
monomials f1, ..., fr of degrees d, and a set E of squarefree monomials of degree
>d+1. Ifsdepthg I/J =d+1 then depthg I/J < d—+ 1.

This conjecture is studied in [14], [15], [16] either when r = 1, or when E = ()
and r < 3. Recently, these results were improved in the next theorem.

Theorem 1. (A. Popescu, D.Popescu [9, Theorem 0.6]) Let C' be the set of the
squarefree monomials of degree d + 2 of I'\ J. Conjecture 1 holds in each of the
following two cases:

1. r <3,
2. r=4, E =0 and there exists c € C such that supp ¢ ¢ U;c[4) supp f;.

The purpose of this paper is to extend the above theorem in the following
form.

Theorem 2. Let B be the set of the squarefree monomials of degree d+1 of I\ J.
Conjecture 1 holds in each of the following two cases:

1. r <4,

2. r =5, and there exists t ¢ U;c[s)supp fi, t € [n] such that (B\ E)N(x;) # 0
and E C (z).

The above theorem follows from Theorems 3, 4 (the case r = 4, £ = ) is
given already in Proposition 2). It is worth to mention that the idea of the proof
of Proposition 2, and Theorem 1 started already in the proof of [16, Lemma 4.1]
when r = 1. Here path is a more general notion, the reason being to suit better
the exposition. However, the case 7 = 4, E # () is more complicated (see Remark
8) and we have to study separately the special case when f; € (v), i € [4] for
some monomial v of degree d — 1 (see the proof of Theorem 3).

What can be done next? We believe that Conjecture 1 holds, but the proofs
will become harder with increasing r. Perhaps for each r > 5 the proof could be
done in more or less a common form but leaving some ”pathological” cases which
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should be done separately. Thus to get a proof of Conjecture 1 seems to be a
difficult aim.

We owe thanks to a Referee, who noticed some mistakes in a previous version
of this paper, especially in the proof of Lemma 3.

1 Depth and Stanley depth

Suppose that I is minimally generated by some squarefree monomials fi, ..., f,
of degrees d for some d € N and a set of squarefree monomials E of degree
> d+ 1. Let B (resp. C) be the set of the squarefree monomials of degrees
d+1 (vesp. d+2)of I\ J. Set s =|B|, ¢ =|C|. Let w;; be the least common
multiple of f; and f; and set W to be the set of all w;;. Let C'3 be the set of
all ce CN(f1,...,[fr) having all divisors from B\ E in W. In particular each
monomial of Cj is the least common multiple of three of the f;. The converse is
not true as shown by [9, Example 1.6]. Let Cy be the set of all ¢ € C, which are
the least common multiple of two f;, that is Co = CNW. Then Cy3 = Cy U Cy
is the set of all ¢ € C, which are the least common multiple of two or three f;.
We may have Cy N C3 # () as shows the following example.

Example 1. Let n > 4, f; = z;xi41, @ € [3], fa = 2124 and I = (f1,..., fa),
J = 0. Note that m = zjzox3x4 is a least common multiple of every three
monomials f; and the divisors of m with degree 3 are w12, w23, w34, wi4. Thus
m € C3. But m € Cy because m = wi3 = way.

We start with a lemma, which slightly extends [9, Theorem 2.1].

Lemma 1. Suppose that there exists t € [n], t & Uy supp fi such that (B\ E)N
(x¢) #0 and E C (x¢). If Conjecture 1 holds for v’ < r and sdepthg I/J =d+1,
then depthg I/J < d+ 1.

Proof: We follow the proof of [9, Theorem 2.1]. Apply induction on |E|, the
case |E| = 0 being done in the quoted theorem. We may suppose that F contains
only monomials of degrees d + 1 by [14, Lemma 1.6]. Since Conjecture 1 holds
for ' < r we see that C ¢ (fa,..., fr, E) implies depthg I/J < d + 1 by [16,
Lemma 1.1]. If Conjecture 1 holds for » and E \ {a} with some a € E then
C ¢ (fi,..., fr, E\{a}) implies again depthg I/J < d+ 1 by the quoted lemma.
Thus using the induction hypothesis on |E| we may assume that C C (W) U
((E) N (fla c '7.f7“)) U (Ua,a/EE,a;ﬁa/(a) N (a,))- Let It =1In ($t)7 Jt =JnNn (xt)a
B, = (B\E)N(z) = {xf1,. .., 2 fe}, forsome 1l < e < r. Ifsdepthg I/ J; < d+1
then depthg I;/J; < d + 1 by [12, Theorem 4.3] because I; is generated only by
monomials of degree d + 1. Thus depthgI/J < depthgl;/J; < d+ 1 by [9,
Lemma 1.1].

Suppose that sdepthg I;/J; > d + 2. Then there exists a partition on I;/J;
with sdepth d + 2 having some disjoint intervals [x:f;, ¢;], ¢ € [e] and [a,¢4],
a € E. We may assume that ¢;, ¢, have degrees d + 2. We have either ¢; € (W),
ore; € (E)N(f1,..., fr))\(W). In the first case ¢; = zyw;g, for some 1 < k; < r,
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k; # i. Note that z;fr, € B and so k; < e. We consider the intervals [f;, ¢;].
These intervals contain z; f; and possible a w;y,. If w;, = Wik, for i # j then we
get ¢; = ¢; which is false. Thus these intervals are disjoint.

Let I’ be the ideal generated by f; for e < j <r and B\ (E U (US_;[fi,c))).
Set J' = I' N J. Note that I’ # I because e > 1 . As we showed already ¢; & I’
for any ¢ € [e]. Also ¢, ¢ I’ because otherwise ¢, = zyx f; for some e < j < r
and we get x,f; € B, which is false. In the following exact sequence

01" =1/]J—=1/(J+1I")—=0

the last term has a partition of sdepth d 4 2 given by the intervals [f;, ¢;] for 1 <
i <eand [a,c,] for a € E. It follows that I’ # J' because sdepthg I/J = d + 1.
Then sdepthg I’ /J" < d+1 using [17, Lemma 2.2] and so depthg I’/J" < d+1 by
Conjecture 1 applied for 7 — e < r. But the last term of the above sequence has
depth > d because z; does not annihilate f; for i € [¢]. With the Depth Lemma
we get depthg I/J < d+ 1. O

Next we give a variant of the above lemma.

Lemma 2. Suppose that r > 2, E = 0, C C (W) and there ezists t € [n],
t & Uie[r)supp fi such that xiw;; € C for some 1 < i < j < r. If Conjecture 1
holds for v’ <r —2 and sdepthg I/J = d + 1, then depthg I/J < d+ 1.

Proof: We follow the proof of the above lemma, skipping the first part since we
have already C' C (W). Note that in our case z,f;, z¢f; € B and so e > 2. Thus
I’ is generated by at most (r — 2) monomials of degrees d and some others of
degrees > d + 1. Therefore, Conjecture 1 holds for I’/J’ and so the above proof
works in our case. O

For r < 3 the following lemma is part from the proof of [9, Lemma 3.2] but
not in an explicit way. Here we try to formalize better the arguments in order to
apply them when r = 4.

Lemma 3. Suppose that r < 4 and for each i € [r] there exists ¢; € CN(f;) such
that the intervals [f;, ¢;], i € [r] are disjoint. Then depthg I/J > d+ 1.

Proof: The proof consists of an induction part dealing with the case C ¢ (W)
followed by a case analysis covering the case C' C (W).

Case 1,C ¢ (W)

Suppose that there exists c € C'\ (W), let us say ¢ € (f1) \ (f2,..., fr). Then
[f1,¢] is disjoint with respect to [fi,¢], 1 < @ < r and we may change ¢; by ¢,
that is we may suppose that ¢; € (f1)\ (f2,..., fr). Let BN [f1,c1] = {b,V'} and
L= (fs,..., [, B\ {b,V,E}). In the following exact sequence

0—-L/(JNL)—=1I/J—=1/(J,L)—=0
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the first term has depth > d 4+ 1 by induction hypothesis and the last term is
isomorphic with (f1)/((J,L) N (f1)) and has depth > d + 1 because b ¢ (J, L).
Thus depthg I/J > d + 1 by the Depth Lemma.

Case 2, r=2

In this case, note that one from ¢y, ¢z is not in (W) = (w12), that is we are in
the above case. Indeed, if ¢; € (W) then either ¢; = wi2 and so ¢y cannot be in
(W), or ¢1 = zjwiz and then wip € [f1,¢1] cannot divide ¢ since the intervals
are disjoint.

From now on assume that r» > 2.

Case 3,c1 € (wlg), fi /fcl for i > 2 and ¢; € (’wlg) for 1 <i<r.

First suppose that w12 € B. We have ¢; = x;wi2 for some j and we see that
b= fiz; & (fa,..., fr). Set T = (fa,..., fr, B\ {b,E}). In the following exact

sequences

0—->T/JNT)—=1I/J—1I/(J,T)—0
0— (wlg)/(Jﬂ(wlg)) —>T/(JHT) —>T/((J,w12) ﬁT) —0

the last terms have depth > d + 1 since b ¢ (J,T) and using the induction
hypothesis in the second situation. As the first term of the second sequence has
depth > d+ 1 we get depthg T/(JNT) > d+ 1 and so depthg I/J > d+ 1 using
the Depth Lemma in both exact sequences.

If wia € C then both monomials b, from B N [f1,c1] are not in (fa,..., fr)
and the above proof goes with b’ instead wyo.

Case 4, r = 3.

By Case 1 we may suppose that C' C (W). Then wig, w13, we3 are different
because otherwise only one ¢; can be in (W). We may suppose that ¢; € (w12),
c2 € (wa3), c3 € (wi3), because each ¢; is a multiple of one w;; which can be
present just in one interval since these are disjoint. If f3|c; then wi3 is present in
both intervals [f1, c1], [f3,¢c3]. If let us say w1z € C, then ca,c3 & (w12) because
¢3 # ¢1 # ¢o. Thus we are in Case 3.

If wio € B and co,c3 € (wi12) then we are in Case 3. Otherwise, we may
suppose that either ¢y € (wi2), or ¢ € (wi2). In the first case, we have wiy in
both intervals [f1, ¢1], [f2, ¢2], which is false. In the second case, we have also wag
present in both intervals [fa, co], [f3, c3], again false.

Case 5, r =4, ¢; € (wy2), w12 € B, f; fey for 2 <i <4, c3 € (wy2).

Tt follows that c¢3 € (wa3). Thus co & (wa3), that is f5 fee, because otherwise
the intervals [fa, ca], [f3,c3] will contain wsys, which is false. If co € (wy2) then
the intervals [f1,c1], [fa, ce] will contain wya. It follows that ca € (way). Note
that ¢4 & (we4) because otherwise way belongs to [f2, ca] N [f1,ca]. I ¢35 & (waq)
then we are in Case 3 with w4 instead wis and ¢y instead ¢;.

Remains to see the case when ¢z € (f1) N (f2) N (f3) N (fa). Then ¢4 & (f3)
because otherwise wsy is in [f3, c3] N [fa, c4]. In the exact sequence

0= (f3)/(JN(fs) = 1/J = 1/(J, f3) =0
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the last term has depth > d+1 by induction hypothesis. The first term has depth
> d + 1 since for example wy3 ¢ J. By the Depth Lemma we get depthg I/J >
d+1.

Case 6, r = 4, the general case.

Since |W| < 6 there exist an interval, let us say [f1,c1], containing just one
wij, let us say wi2. Thus no f;, 2 < ¢ < 4 divides ¢;. If wi2 € C then no ¢,
1 > 1 belongs to (wi2) because otherwise ¢; = ¢1. If w13 € B and one ¢; € (w1a),
7 > 1 then we must have i = 2 because otherwise we are in Case 5. But if
¢y € (wy2) then wiy is present in both intervals [fi,c1], [f2,ca], which is false.
Thus ¢; € (wi2) for all 1 < ¢ < 4, that is Case 3. O

Remark 1. When r > 4 the statement of the above lemma is not valid anymore,
as shows the following example.

Example 2. Let n=5,d=1,1= (z1,...,25),
J = (m1x3w47 T1X2X4,X1X3T5,T2T3T5, $2:L‘4$5).

Set ¢ = x1T2T3, Co = ToX3Ty, C3 = T3T4T5, C4 = T1T4T5, C5 = T1X2T5. We have
C=A{c1,...,c5} and B =W. Thus s = 2r and sdepthg I /J = 3 because we have
a partition on I/J given by the intervals [z;,¢;], ¢ € [5]. But depthgI/J =1
because of the following exact sequence

0—=1/J—S5/J—S8/I—0

where the last term has depth 0 and the middle > 2.

The proposition below is an extension of [9, Lemma 3.2], its proof is given in
the next section.

Proposition 1. Suppose that the following conditions hold:
1. r=4,8<s<q+4,
2. C C (Ujjep,ing (fi) N (F5) UUE) N (f1,-- -5 f4)) U (Uaarepaza (a) N (a')),

3. there exists b € (BN (f1)) \ (f2, f3, f4) such that sdepthg I/ Jp > d + 2 for
Ib = (f27"'afT7B\{b})7 Jb == Jmlb,

4. the least common multiple wy of fa, f3, fa is not in (C3 \ W) N (E) (see
Ezample 1).

Then either sdepthg I/J > d+2, or there exists a nonzero ideal I' C I generated
by a subset of {fi,...,fa} U B such that depthg I/(J,I') > d + 1 and either
sdepthg I'/J < d+1 for J =JNI" ordepthgI'/J <d+1.

Proposition 2. Conjecture 1 holds for r = 4 when the least common multiples
wi of fi,oouy fic1, fit1s---s fa, © € [4] are not in (C3 \ W) N (E). In particular,
Conjecture 1 holds when r =4 and E = (.
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Proof: By Theorems [13, Theorem 1.3], [18, Theorem 2.4] (more precisely the
particular forms given in [9, Theorems 0.3, 0.4]) we may suppose that 8 = 2r <
s < ¢+ 4 and we may assume that E contains only monomials of degrees d + 1
by [14, Lemma 1.6]. We may assume that there exists b € B N (f1,..., f1)
which is not in W because otherwise B N (f1,...,f4) € BN W and therefore
IBN(f1,...,fa)] < |BNW| < 6. By [18, Theorem 2.4] this implies the depth
< d+1 of the first term of the exact sequence

0= (fi,- s )/ (IO (frsoi ) = 1/ = (E)/((J, fr,-- o, fr) N (E)) = 0

and then the middle has depth < d + 1 too using the Depth Lemma.
Renumbering f; we may suppose that there exists b € (f1) \ (fe,..., f1). As
in the proof of [9, Theorem 1.7] we may suppose that the first term of the exact
sequence
0= Iy/Jy = 1/J—=1/(J, 1) =0

has sdepth > d + 2. Otherwise it has depth < d+ 1 by Theorem 1. Note that the
last term is isomorphic with (f1)/((f1) N (J, 1)) and it has depth > d+ 1 because
b ¢ (J,I;). Then the middle term of the above exact sequence has depth < d+1
by the Depth Lemma.

Thus we may assume that the condition (3) of Proposition 1 holds. Also we
may apply [16, Lemma 1.1] and see that the condition (2) of Proposition 1 holds.
Applying Proposition 1 we get either sdepthg I/J > d + 2 contradicting our
assumption, or there exists a nonzero ideal I’ C I generated by a subset G of B,
or by G and a subset of {f1,..., fa} such that sdepthg I’ /J" < d+1for J = NI’
and depthg I/(J,I') > d + 1. In the last case we see that depthg I’/J' < d+1
by Theorem 1, or by induction on s, and so depthg I/J < d + 1 applying in the
following exact sequence

0=1')J —=1/J—=1/(J,I')=0

the Depth Lemma. O

2 Proof of Proposition 1

Since sdepthg I,/Jy > d + 2 by (3), there exists a partition P, on Ip/J, with
sdepth d+2. We may choose P, such that each interval starting with a squarefree
monomial of degree d, d + 1 ends with a monomial of C'. In P, we have three
disjoint intervals [f2,cb], [fs,ch], [fa,c4]- Suppose that B N [fi,ci] = {us,ul},
1<i<4. Forall ) € B\ {b,ug,ub,...,us,uy} we have an interval [/, cp]. We
define h : B\ {b, ua,ub,...,uq,uj} — C by b’ — cp. Then h is an injection and
[Imh|=s—-7<gq-3.

We follow the proofs of [9, Lemmas 3.1, 3.2]. A sequence ay,...,a is called
a path from a; to aj if the following statements hold:

(i) a; € B\ {b,ua,ub, ..., uq,uy}, ! € [K],

(i) a1 #a; for 1 <1< j <k,
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(iii) ajq1|h(a;) for all 1 <1 < k.

This path is weak if h(a;) € (b, ua, us, ..., uqs,uy) for some j € [k]. It is bad if
h(aj) € (b) for some j € [k] and it is mazimal if all divisors from B of h(ay) are
in {b,ug,ub, ..., ug,uy,aq,...,a5}. We say that the above path starts with a;.
Note that here the notion of path is more general than the notion of path used
in [16] and [9].

By hypothesis s > 8 and there exists a1 € B\ {b,ua, ub,...,ug,uy}. We
construct below, as an example, a path with £k > 1. By recurrence choose if
possible apy1 to be a divisor from B\ {b, ua, uh, ..., u4,uy, a1,...,a,} of my =
h(ap), p > 1. This construction ends at step p = e if all divisors from B of
me are in {b, ug, ub, ..., U4, uy,a1,...,act. This is a maximal path. If one m, €
(ug,ub, ..., uq,uy) then the constructed path is weak. If one m, € (b) then this
path is bad.

We start the proof with some helpful lemmas.

Lemma 4. P, could be changed in order to have the following properties:

1. For all 1 <i < j <4 with ui,u; @ W and wij € B\ {ug, uy, ..., uq, uj} it
holds that h(wij) & (u;) N (uj),

2. Foreach 1 <i<j <4 withu; € W, u; ¢ W, wi; € B\ {ug,us, ... ,us,uj}
it holds that h(wij) & (u;) and if h(w;;) € (u}) then i > 1,

3. For each 1 <i < j <4 with uj,u; ¢ W and w;; € B\ {ug,us, ..., us,uj}
it holds that h(wi;) & (uj,u’).

Proof: Suppose that w;; € B\ {ug, ub,...,us,uwy} and h(w;;) € (u;) for some
2<i<4andje [, j#i We have h(w;;) = zjw;; for some | & supp w;;
and it follows that w; = z;f;. Changing in P, the intervals [f;, ¢}], [wij, h(wij)]
with [f;, h(wi;)], [u}, ¢;] we may assume that the new u) = w;;. We will apply
this procedure several times eventually obtaining a partition P, with the above
properties. In case (1) we change in this way u; by w;;. Note that the number
of elements among {uz, u, ..., us,u)} which are from B NW is either preserved
or increases by one. Applying this procedure several time we get (1) fulfilled.

In case (3) the above procedure preserves among {ug,ub, ..., uq,u}} the for-
mer elements which were from B N W and includes a new one w;;. After several
steps we get fulfilled (3).

For case (2) if u; € W, u}; ¢ W and h(w;;) € (u;) we change as above u/;
by w;;. Note that the number of elements among {ug, ub, ..., us,uy} which are
from B N W increases by one. If h(w;;) € (u}) then we may change in this way
u; by w;;. We do this only if i« = 1. Note that the number of elements among
{ug, ul, ..., uyg,uy} which are from B N W is preserved. Our procedure does not
affect those ¢} with u;,u, € W and does not affect the property (1). After several
such procedures we get also (2) fulfilled. O
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From now on we suppose that P, has the properties mentioned in the above
lemma. Moreover, we fix a1 € B\ {b,us,uj, ..., us,u}} and let aq,...,a, be a
path which is not bad. For an a’ € B\ {b, ug,uj, ..., uq, u}} set
T, ={b' € B :there exists a path a] =ad’,...,a, not bad with a, ="'},
Us = hW(Ty), G = B\ Ty. If o/ = a1 we write simply 77 instead T,, and
similarly Uy, G;.

Remark 2. Any divisor from B of a monomial of Uy is in Th U{ua, ub, ..., uqg, u}}.

Lemma 5. If no weak path and no bad path starts with ay then the conclusion
of Proposition 1 holds.

Proof: Assume that [r] \ {j € [r] : U1 N (f;) # 0} = {k1,...,k,} for some
1<k <...<k, <4,0<v<4 Setk=(ki,.... k), It = (frr,- - [, G1)5
Ji, =1, nJ, and I = (G1), Ji = Iy N J for v = 0. Note that all divisors from
B of a monomial ¢ € Uy belong to 71, and Ij) # 0 because b € I). Consider the
following exact sequence

0—1,/J, —1)J—1/(J, 1) —0.

If Uy N (f1,..., f4) = 0 then the last term of the above exact sequence given for
k= (1,...,4) has depth > d+ 1 and sdepth > d+ 2 because P, can be restricted
to (T1) \ (J,I},) since h(b) ¢ I , for all b € T1 (see Remark 2). If the first term
has sdepth > d + 2 then by [17, Lemma 2.2] the middle term has sdepth > d + 2.
Otherwise, take I’ = I}

If Uy N (f1, fa, f3) = 0, but there exists by € T1 N (fy), then set k = (1,2, 3).
In the following exact sequence

0—1I./J, —1)J—1/(J,1I,)—0

the last term has sdepth > d + 2 since h(V') ¢ I}, for all b’ € T} and we may
substitute the interval [by,h(bs)] from the restriction of P, by [fs,h(bs)], the
second monomial from [fy, h(bs)] N B being also in T;. As above we get either
sdepthg I/J > d+ 2, or sdepthg I},/J,. < d+1, depthg I/(J,I},) > d+ 1.

Suppose that Uy N (f;) # 0 if and only if v < j < 4, for some 0 < v < 4
and set kK = (1,...,v). We omit the subcases 0 < v < 3, since they go as in
[9, Lemma 3.2], and consider only the worst subcase v = 0. Let b; € Ty N (f;),
j € [4] and set ¢; = h(b;). For 1 <[ < j <4 we claim that we may choose b; # b,
and such that one from ¢, ¢; is not in (w;;). Indeed, if wi; & B and ¢, ¢; € (wi;)
then necessarily ¢; = c¢; and it follows b; = b; = wy;, which is false. Suppose that
wy; € B and ¢; = zpwy;. Then choose by =z, f; € T1. If ¢; = h(b;) € (wy;) then
we get ¢; = ¢; and so b; = b; = wy; which is impossible.

We show that we may choose b; € T1 N (f;), j € [4] such that the intervals
[fj.cj), J € [4] are disjoint. Let C, C3 be as in the beginning of the previous
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section. Set C4, =U; NCq, C4 = Uy NCs, Chy = CLUCYL. Let ¢ € C), let us
say ¢ is the least common multiple of fi, fo. Then ¢ has as divisors two multiples
g1, 92 of f1 and two multiples of fo. If ¢ € C% is also a multiple of g1, let us say
¢ is the least common multiple of f;, f3 then go does not divide ¢ and the least
common multiple of fs, f3 is not in C. Thus the divisors from B\ F of ¢, ¢ are
at least 7. Since the divisors from B\ F of ¢, ¢ are in T} \ E we see in this way
that |77 \ E| > |C4| + 3. If |CY| # 0 then |C%] < 1 and so |11 \ E| > |Chs] + 2.
Assume that |C4]| = 0. Then |C}| < 4. Let ¢ € C% be the least common multiple
of f1, fa, f3 then wia, wes, w3 are the only divisors from 77 \ E of ¢ (this could
be not true when |C%| # 0 as shows Example 1). If é € C} is the least common
multiple of fi, f2, fs we have also w4, waq in 71 \ E. Similarly, if |C4| > 3 we get
also wzq € T1 \ E. Thus |T1 \ E| > |C%] + 2 = |Cl5| + 2 also when |C}] = 0.

Then there exist two different b; € T N (f;) such that ¢; = h(b;) & Chs
for let us say j = 1,2 and so each of the intervals [f;,¢;], j = 1,2 has at most
one monomial from T3 N W. Suppose the worst subcase when [f1,c;] contains
wig € B, and [fa, c2] contains wy; € B for some j # 2. First assume that j > 3,
let us say j = 3. Then choose as above b3 € Ty N (f3), by € T1 N (f4) such that
cs & (was), ¢4 & (wsq). Then [fs, cs] has from T3 N at most wis, wsg and [fa, c4]
has from T3 N W at most w4, w24. Thus the corresponding intervals are disjoint.

Otherwise, j = 1 and we have ¢; = x,, w12, j € [2], for some p; & supp w2,
p1 # p2. Take b) = xp, f1, by = xp, fo and v = h(b}), v2 = h(b)). Then v, vy
are not in C% because otherwise b, respectively b} is in W, which is false. Note
that vy & (w12), because otherwise vy = xp, w12 = ¢1 which is false since by # b5.
Similarly vy € (w12). If let us say vy & C} then we may take by = b, and we see
that for the new ¢y (namely vq) the interval [fz, c2] contains at most a monomial
from W, which we assume to be wy3 and we proceed as above. If vy, ve € C}, we
may assume that vy = w3 € C' and either vo = wo3z € C, or vo = woy € C. In
the first case we choose b3, by such that cs & (ws4), ca € (waq) and we see that
[f3,c3] has no monomial from W. Indeed, if ¢3 € (wa3) (the case ¢z € (wy3) is
similar) then ¢z = vg, which is false since then h(b}) = vy = ¢z = h(b3) and so
b, = bs € (wa3), h being injective. Also [f4, cs] has at most w4, ws4. Thus taking
b; = b, ¢; = v; for i € [2] we have again the intervals [f},¢;], 7 € [4] disjoint.
Similarly in the second case choose bs, by such that ¢z & (wa3), c4 € (w34) and we
see that [f3, c3] have at most wz4 and [fy, ¢4] have at most wq4, which is enough,
because as above c3 # w3 and ¢q4 # woy.

Next we replace the intervals [b;,c;], 1 < j < 4 from the restriction of P, to
(Tv) \ (J,1I3) with [f},¢;], the second monomial from [f;,¢;] N B being also in
T;. Note that I/(J,I}) has depth > d + 1 by Lemma 3. Thus, as above we get
either sdepthg I/J > d + 2, or sdepthg I} /J < d + 1, depthg I/(J,1}) > d + 1.

O
Lemma 6. Let a1,...,a., be a bad path, m; = h(a;), j € [e1] and m¢, = bx;.
Suppose that me, & (ua,ub, ..., us,uy). Then one of the following statements

holds:
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1. sdepthg I/J > d+ 2,

2. there exists ae,+1 € (BN (f1))\{b, u2,u, ..., uq,u}} dividing me, such that
every path e, 41, ... ,0e, Satisfies {ai,...,ae } N {115+, 0e,} = 0.

Proof: If a., = fiz; then changing in P, the interval [ae,, me,] by [f1,me,] We
get a partition on I/J with sdepth d + 2. If fiz; € {a1,...,a¢,-1}, let us say
fixi = ay, 1 < v < eg then we may replace in Py the intervals [ag, mi],v < k < eg
with the intervals [a,, me, ], [ax+1, mi],v < k < e; — 1. Now we see that we have
in P, the interval [a,, m,] (the new m, is the old m,,) and switching it with the
interval [f1,m,] we get a partition with sdepth > d + 2 for I/J. Thus we may
assume that fix; ¢ {a1,...,ac, }. Note that e; could be also 1 as in Example 3
when we take a1 = x5x6, in this case we take fiz; = x125 and {x125, 2225} is a
maximal path which is weak but not bad.

By hypothesis me, & (ug,ul, ..., ug,uy) and so fiz; &€ {ug,ub, ..., ug,uy}.
Then set ae,+1 = fiz; and let ae,41,...,a., be a path starting with a., 11 and
set my, = h(ap),p > e1. If a, = a, for v < ey, p > ey then change in P, the
intervals [ag, my],v < k < p —1 with the intervals [a,, mp_1], [ag+1, mi],v < k <
p — 2. We have in the new P, an interval [fiz;, me,| and switching it to [f1, me, |
we get a partition with sdepth > d 4 2 for I/J. Thus we may suppose that
ap+1 & {b,ua,ub, ..., us,u},a1,...,a,} and so (2) holds. O

Example 3. Let n =7, r =4,d =1, f; = z; for i € [4], E = {xs5z¢, 527},
I= (xl,...,x4,E) and

J = (xll'% L2XL7, L3XLT, T4LT, L1L2L4, L1X2X6, L1L3L4, L1X3LE6, L2L3T4, L2LL4L5,

Tol5T6, T3T5L6, LaL5L6).

Then
B = {x122, 2123, 2124, T125, T1X6, T2L3, TaLa, T2T5, T2Te,

T3La, T3T5, T3T6, TaLs, Lale ) U E

and
C= {I1$21‘3, T1X2X5, T1X3L5, L1T4LE, L1T4LE, L1L5L6, L2L3L5, L2L3L6, L2L4LE,

T3T4T5,T3T4T6, 135906337}-

We have ¢ = 12 and s = ¢+ r = 16. Take b = z1x4 and

Iy = (x9,23,24,B \ {b},E), J, = I, N J. There exists a partition P, with
sdepth 3 on Ip/J, given by the intervals [za, x12223], 23, T12575), [X4, T12426],
[5171935,33@2135]7 [I2I4,I2$41’6], [£E2I5,=’1721’3I5], [IQIG,IMB%], [I3$4,I3I4$5],
[x326, T3xaxe), [TaTs,T1T475], [T526, T12576), [T527,x52627]. We have ¢, =
X1X9T3, Chy = T1T3T5, €y = T1T4%¢ and uy = Taks, Uy = T1Ta, Uz = T3Tp, Uy =
X1X3, Uy = T1X4, Uy = T4xs. Take a3 = X224, My = xoxgx6. This is a weak path
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but not bad. It can be extended to a maximal one xox4, T2, 326, T3T4, T4Ts,
r1xs5, X225 which is not bad.

Bad paths are for example {z5z¢}, {z527, 2526}, {T527, T526, X125, T2w5}, the
last one being maximal. Replacing in P, the intervals [z4, 212426],

[Toxq, Toxsxs] With [x4, Toxaxe], [21,T12476] We get a partition on I/J with
sdepth 3.

Lemma 7. Let a1,...,a., be a bad path, m; = h(a;), j € [e1] and me, = bx;.
Suppose that a., € E and me, € (ug,ub, ..., us,uy). Then one of the following
statements holds:

1. there exists ae,+1 € B\ ({b,ua, uh, ..., us,uy} UE) dividing me, such that
every path e, 11, - - -, Ge, Satisfies {a1, ..., 0y } N {Geyt1s--- ey} = 0,

2. there exist j, 2 < j < 4 and a new partition Py, of I/Jy for which Ty is

preserved such that ae, € (f;) and me, € (uj,u}).

Proof: Assume that m., = z;b for some i and let us say me, € (u}). Then
fiz; = uhy = w2 and so there exists another divisor a of me, from B N (f3)
different of wia. If @ € [fa,ch] then we get m., = ¢, which is false. If @ is not
in {b,ug,ub, ..., ug,uy} then set ae,+1 = a. If let us say @ = uz then a = was
and so m., is the least common multiple of fi, fa, f3. Clearly, m., ¢ Cs because
otherwise b € W, which is false. Then m., = wi3 € C and we may find, let us
say another divisor @ of m,, from BN (fs) which is not uj because m., # c§. If @
is in {uq,u}} then we may find an o’ in BN (f4) which is not in {u4, vy} because
Mme, # 4. Thus in general we may find an a” in B N (f;) for some 2 < j < 4
which is not in {b, ug, uy, ..., us,uy} and me, € (uj,uj). Set ae,+1 = a”. Let
Qey41,-- -, 0e, be a path. If we are not in the case (1) then a, = a, for v < ey,
p > e and change in P, the intervals [ax, my],v < k < p — 1 with the intervals
(@, Mp_1], [@k+1, M), v < k < p—2. Note that the new a., is the old a., +1 € (f;),
that is the case (2). O

Lemma 8. Suppose that sdepthg I/J < d + 1. Then there exists a partition
Py, of Iy/Jy such that for any a1 € B\ {b,us,ub, ..., us,uy} and any bad path
a1, ..., 0e; , mj = h(a;), j € le1] with me, = bx; the following statements holds:
1. me, & (ug,ub,. .. ug,u}),
2. there exists ao, 11 € B\ ({b,ug,ub, ..., ug,uy} UE) dividing m., such that

every path e, 41, ... ,0e, Satisfies {ai,...,ae } N {115+, 0e, ) = 0.

Proof: If for any a1 € B\ {b, ua, ub,...,us,u}} there exist no bad path starting
with a; there exists nothing to show. If for any such a; for each bad path

a1,...,0e;, mj = h(a;), j € [e1] with m., € (b) it holds m., & (ua,u, ..., us,u})
then then to get (2) apply Lemma 6. Now suppose that there exists a; and a bad
path ai,...,ac,, mj = h(a;), j € [e1] with let us say m., € (b) N (u2). If we are

not in case (2) then by Lemma 7 we may change P, such that T; is preserved,
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ae, € (fj) and me, € (uj,uf;) for some 2 < j < 4. Assume that j = 2 and so
Me, € (w12), let us say uh = wia. Replacing in Py the intervals [fa, ¢5], [ae, , Me, ]
with [fa, me, ], [u2, ch] the new ¢, is the least common multiple of b and f5. Thus
there exists no path as, ..., ae, with h(ae,) € (b) N (uz,uy) because h(ae,) # cb.

Applying this procedure several time we see that there exists no path ai,...,a.,
with h(ae,) € (b) N (ug,uh,...,us,uy). Then we may apply Lemma 6 as above.

O
Example 4. Let n =5, I = (21,...,24), J = (£23%4, TaT3T5, ToLaTs, T3T4T5).
So

C = {z12923, T122%4, T1T2T5, T1T3Ts, T1L3T5, T1T4T5 ),
B = {$1$27$1$37$1m4,$1$5,$2$3,x2$4,x2$5,1‘3x47$3$5,x4m5}.

Then ¢ = 6, s = 10 = g+ r. Set b = x5, a1 = Toxs, Ay = T3T5, Qg =
T4T5, M1 = XT1X2x5, M2 = XT1X3T5, T3 = T1T4Ts5, C/z = T1X273, Cé = X1X374,
¢, = x1x924. We have on I,/J, the partition P, given by the intervals [z;, c}],
2 <i<4and [a;,m;], j € [3]. Clearly, P, has sdepth 3 and m; = bx;, 2 <17 < 4.
Using the above lemma we change in P, the intervals [a;—1,m;—1], [z, ;] with
[fi,mi—1], [wims, )] for 2 <4 < 4. Now we see that all m from the new U; are
not in (b) N (ug, ub, ..., uq, u}).

We have sdepthg I/J < 2. If sdepthg I/J = 3 then there exists an interval
[z1,c] with ¢ € {mj,ma,m3}. If ¢ = m; for some 2 < i < 4 then for any
interval [z;, /] it holds [z1,c] N [z, ¢'] = {z12;}, which is impossible. Also we
have depthg I/J < 2 by Lemma 12.

Remark 3. Suppose that sdepthgI/J < d + 1. We change P, as in Lemma
8. Moreover assume that there exists a bad path ae,+1,...,a,. Using the same
lemma we find ae,+1 such that for each path ac,41,...,ae, one has

{@er 15y ey} N{ae; 415+, Ay} = 0. The same argument gives also

{ar, ... ae,} N {ae,, +1,---,0e,} = 0. Thus we may find some disjoint sets of
elements {ac,11,...,0c,,,}, j > 0, where eg = 0. It follows that after some steps
we arrive in the case when for some [ there exist no bad path starting with a;41.

Lemma 9. Suppose that sdepthg I/J < d+1 and Py is a partition of I/ Jy, given
by Lemma 8. Assume that no bad path starts with a1, U N (ug) # 0 and there
exists a divisor @ in (BN (f2)) \{uz,ub, ..., us,uy} of a monomial m € Uy N (uz).
Then there exist a partition P, and a (possible bad) path ai,...,a, such that
T,, N{a1,...,ap_1} =0, ug and ¢}, i = 3,4 are not changed in Py, no bad path
starts with a, and one of the following statements holds:

1. Uap n (’LLQ) = [Z),
2. Ua, N (u2) # 0 and there exists by € Ty, N (f2) with h(bz) € (u2),

8. Uq, N (ug) # (0 and every monomial of Ua, N (u2) has all its divisors from
BN (f2) contained in {ug,ul,. .., uq, ul}.
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Moreover, if also Uy N (uh) # 0, then we may choose Py, and the path ay, ..., a,
such that either U,, N (ub) = O when there exists a bad path starting with a divisor
from B\ {ug,uh, ... us,uy} of ¢y, or otherwise uy € T, and cy = h(us).

Proof: Let ai,...,a. be a weak path, m; = h(a;), j € [e] such that m. = m.
If a. = a then take by = a.. If ae # a but there exists 1 < v < e such that
ay, = a. Then we may replace in P, the intervals [a,, mp],v < p < e with the
intervals [a,, me], [ap+1, mp], v < p < e. The old m, becomes the new m,, that is
we reduce to the above case when v = e.

Now assume that there exist no such v but there exists a path a.41 = a,...,q
such that m; = h(a;) € (a,) for some v’ € [e]. Then we replace in P, the intervals
[a;, m;],v" < j <1 with the intervals [a,, m], [aj+1,m;], v < j <. The new
Me41 is the old m, but the new a.y; is the old a.41 and we may proceed as
above.

Finally, suppose that no path starting with a.y; contains an element from
{a1,...,a.}. Taking p = e+1 we see that m & U,, N (uz). If there exists another
monomial m’ like m then we repeat this procedure and after a while we may get
(2), or (3).

Remains to see what happens when we have also U,, N (u3) # (). Assume that
there exist no bad path starting with a divisor of ¢}, from B\ {ua,ub, ..., ug, u}}.
Then changing in P, the intervals [ba, h(bs], [f2, ¢5] with [fa, h(b2)], [uh, cb] we see
that there exists a path ay,...,ax, which is not bad, such that the old u) = a.
We may complete T, such that ay € T,, and all divisors from B of cb, which are
not in {ug, ba, us, us, us,u)} belong to T,. For this aim we complete Ty, with
the elements connected by a path with u/, (see Example 5).

Next suppose that there exists a bad path ap = u),...,a; with h(a;) € (b).
We may assume that P, is given by Lemma 8 and so there exist no multiple of
bin Uy N (ug,uh, us, uh, ug, u}y). Note that uf = by the new ufy, considered above
has no multiple in Uy N (b) because by € Uy. By Lemma 6 there exists a;1 € B\
{b, ug, ul, us, uh, ug, vy} dividing h(a;) such that every path aj41,...,a;, satisfies
{a1,...,ai} N{ar11,...,a;,} = 0. Using Remark 3 if necessary we have T, , N
{a1,...,ap,_1} = 0 for some p’ > I, and the above situation will not appear, that
is the old w5, will not divide anymore a monomial from U, , N(uz2, u3, us, us, ua, u}).
It is also possible that us will not divide a monomial from Uap,. O]

The following bad example is similar to [9, Example 3.3].

Example 5. Let n =7, r =4,d =1, f; = z; for i € [4], E = {wsz¢, 527},
I= (.231,...,1‘4,E) and

J = ($1$779€2$47$2$6,9€2!E7,$3$6,$3$7,$4$67$4$7,963904%)-
Then B = {z1x2, x123, X124, T1T5, T1T6, T2X3, TaTs, L3Lq, T3T5, 45} U E and

C = {x12223, T122%5, T1T3T4, T1T3T5, T1L4T5, T1T5L6, TaL3Ls, T5TeL7 )
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We have ¢ =8 and s = g+ r = 12. Take b = x1x¢ and

Iy = (x9,z3,24,B \ {b}, E), J, = I, N J. There exists a partition P, with
sdepth 3 on I,/J, given by the intervals [xo, x120x3], [T3, T12324], [T4, T12425],
[x125, T12325), [Tos, T1T2s], [T3xs, Tawsws], [T5xe, T125T6), [T527, TsTexy]. We
have ¢ = zyxamws, ¢y = T1T324, ¢) = 12475 and ug = T X2, uh = Xox3, Uz =
XT3Tg, Uy = T1T3, Uy = T1X4, Uy = T4T5. Take a; = x1x5, ag = T3x5, a3 = TaTs.
This gives a maximal weak path but not bad and defines 71 = {z1x5, 325, 225},
Ui = {12325, 220325, 210225 .

As in the above lemma we may change in P, the intervals [x9, z12223],
[xox5, T1xoxs] With [xo,z1xox5], [v2x3,z12223]. Note that the old u) is not
anymore in [fo,c5] and divides xoxzzs € U;. Moreover, we have the path
{a1, 125, x375, 223} and so we must take T] = (T1 U {xoxs}) \ {z225}, U] =
(Uy U{z12223}) \ {12225} as it is hinted in the above proof. The new ug, u) are
all divisors of zzox5 - the new c¢f, which are not in 7]. However, this change of
P, was not necessary because the new ug, ub, u} are all divisors from B of the old
¢4 (see Remark 7 and Example 6). The same thing is true for ¢§ and ¢ has all
divisors from B among {ai, u4, ) }.

Remark 4. Suppose that in Lemma 9 the partition P, satisfies also the property
(1) mentioned in Lemma 4. If @ = wy; for some i = 3,4 then m ¢ (u;,u}). In
particular by #£ wag, Wway.

Lemma 10. Assume that U, N (uz) # 0 and a monomial m of U, N (uz) has
all its divisors from B N (fa) contained in {ug,ul, ..., ug,uy}. Then one of the
following statements holds:

1. m has a divisor a; € (BN (fi)) \ {ug, uh, ..., uq,uy} for somei= 3,4,
2. m € C3 \ W and it is the least common multiple of fo, f3, fa-

Proof: There exists a divisor @ € {us, ub} of m from BN (f2), otherwise m = c}.
By our assumption we have let us say @ = us = ws3. Then there exists a divisor
a' # ug from BN (f3). If o' & {ug,ub,...,uqs,uj} then we are in (1). Otherwise,
a = ug = wsy. If m € W then m = woy € Cy and there exists a divisor of m
from (BN (f1)) \ {uz,ul, ..., uq,u}}, that is (1) holds. Thus we may suppose
that m ¢ W and all its divisors from B\ E are wa3, w34, w4, that is m is in (2).

O

Remark 5. Assume that in the above lemma m has the form given in Example
1. Then m & {ch, %, ¢4} and so necessarily w2, w3, w14 are divisors of m from
B\ {ua,ub, ..., ug,u}}, that is m is in case (1).

Lemma 11. Suppose that sdepthg I/J < d+1 and P, is a partition of I/ Jy given
by Lemma 8. Assume that P, satisfies also the properties mentioned in Lemma
4 and no bad path starts with ay. Then there exist a partition P, which satisfies
the properties mentioned in Lemma 4 and a (possible bad) path a,...,a, such
that Ty, N {a1,...,ap—1} =0, no bad path starts with a,, and for every i =2,3,4
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such that there exists a divisor a; in (BN (f;))\{uz, v, ..., u4,uy} of a monomial
from Uy N (u;), one of the following statements holds:

1. Uap N (UZ) =0,
2. Ua, N (u;) # 0 and there exists by € To, N (f;) with h(b;) € (i),

3. Uq, N (u;) # 0 and every monomial of Uy, N (u;) has all its divisors from
BN (fi) contained in {ug,ub, ..., ug,uj}.

Moreover, these possible b; are different and if for some i = 2,3,4 it holds
also Uy N (u;) # 0, then we may choose P, and the path ai,...,a, such that
either Ua, N (u;) = O when there exists a bad path starting with o divisor from
B\ {uz,ul, ..., ug,uy} of ¢, or otherwise uj € Ty, and h(uj) is the old c;.

Proof: Suppose that there exists a divisor as in (BN (f2))\ {uz,ub, ..., ua, u}} of
a monomial from U N (uz) with respect of P,. Using Lemma 9 we find a partition
P, and a (possible bad) path ay, ..., a,, such that T,, N{a1,...,ap, -1} =0, no
bad path starts with a,, and one of the following statements holds:

2) Uy, 1 (u2) = 0.

J32) Ua,, M (u2) # 0 and there exists by € Ty, N (f2) with h(bs) € (u2),

J2) Ua,, N(uz) # 0 and every monomial of U,, N (uz) has all its divisors from
BN (f2) contained in {ug,ub, ..., ug,uy}.

Moreover, if also Uy N (uf) # 0, then we may choose P, and the path ay, ..., ap,
such that either U,, N (uy) = 0 when there exists a bad path starting with a
divisor from B\ {ug, us, ..., us,u}} of ¢, or otherwise us € Ty, and ¢y = h(uj).
After a small change we may suppose that P, satisfies the properties of Lemma
4 and so by # was, Way.

If Uy, N (u3,uq) = 0 then we are done. Now assume that there exists a divisor
az in BN (f3) \ {uz,us, ..., uq,uy} of a monomial m € U,, N (u3), let us say
m = m, for some path ap,,...,a.. If ac = as, or a. # as but there exists a path
Geq1 = a3, . ..,a; With a; = a, for some v < e then we change P, as in the proof
of Lemma 9 to replace ¢4 by m. Clearly, ¢4, ¢ satisfy (2) for ¢ = 2,3. Otherwise,
if a. # as but there exists no path aey1 = as, ..., ax with ay = a, for some v < e,
apply again the quoted lemma with ¢5. We get a (possible bad) path a,,, ..., ap,
with p2 > p1 such that T, N {a1,...,ap,1} = 0, no bad path starts with a,,
and one of the following statements holds:

j3) l:]a,,2 n (UB) = wa

J3) Ua,, N (u3) # 0 and there exists by € Ty, N (f3) with h(b3) € (u3),

J3) Ua,, N (uz) # 0 and every monomial m € U,, N (u3) has all its divisors
from BN (f3) contained in {ug,ul, ..., ug,ul}.

If we also have Uy N (uf) # O then it holds a similar statement as in case
i = 2. Note that by # bs since by # w3 by Remark 4 and so h(bs) # h(bs).
Very likely meanwhile the corresponding statements of js), j5), j5) do not hold
anymore because we could have by & Ty, . If there exists another as we apply
again Lemma 9 with ¢}, obtaining a new partition P, and a path a,,, ..., ap, for
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which this situation is repaired. If now ¢ does not satisfy (2) then the procedure
could continue with ¢§ and so on. However, after a while we must get a path

1., Apyy such that T, N{a1,...,apy,—1} = (), no bad path starts with ap,,
and for every ¢ = 2,3 one of the following statements holds:
jo3) Ua,,, N (u;) =0,

J53) Uay,, N (u;i) # 0 there exist b; € Ty, . N (fi) with h(b;) € (uy),
J93) Ua,,, N (u;) # 0 and every monomial m € Uy, . M (u;) has all its divisors

from B N (f;) contained in {ug,ub, ..., ug, u}}.
We end the proof applying the same procedure with ¢ together with cf, cf
and if necessary Lemma 4. O

Remark 6. Using the properties (2), (3) mentioned in Lemma 4 we may have
b; = wy;, for some 2 < i < 4 only if u;,u, € W. Thus, let us say by = w2 only if
{UQ,U/Q} = {wgg,w24}. Then {UI,U;} ¢ W for i = 3, 4 and so bg 35 w13, b4 35 W14,
in case b3, by are given by Lemma 11. Therefore at most one from b; could be
W1ij.

The idea of the proof of Proposition 1 fails in a special case hinted by Example
4. This case is solved directly by the following lemma.

Lemma 12. Suppose that b = z;f1 and (B\ E) C W U{z;f1,2;f2,x;f3,x;fa}
for some j & supp f1. Then depthg I/J < d+ 1.

Proof: If |B\ E| < 2r = 8 then depthg I/ /J"” < 2 by [18, Theorem 2.4]. Assume
that |B \ E| > 8. Our hypothesis gives |[B N W/| > 4. First assume that 5 <
|BNW| <6 and we get that let us say f; = va;, 1 <4 < 4 for some monomial v
of degree d — 1 (see the proof of [16, Lemma 3.2]). Then

depthg I/J = degv + depthg, ((I : v) N S")/((J :v)NS’),

S" = K[{x; :i € ([n] \ suppv)}] and it is enough to show the case v = 1, that is
d=1.

We may assume that f; = x;, i € [4] and j = 5 since b ¢ W. It follows that
(B\E) C WU{b, zox5, x325, 2425 }. Set I = (x1,...,24), J” = JNI". Note that
J D (x1,...,25)(x6,...,2,) and so depthg I"/J"” = depthg., (I"NS")/(J'NS")
for 8" = Klx1,...,s5).

Then J”NS" is generated by at most two monomials and so depthg, S”/(J"N
S") > 3. Since depthg, S”/(I" N S”) = 1 it follows that depthgI"”/J" =
depthg, (I" N S")/(J" N S") = 2. Therefore depthg I/J < 2 either when E = ()
or by the Depth Lemma since I/(J,I"”) is generated by monomials of F which
have degrees 2.

Now assume that |[B N W| = 4, let us say BN W = {wi4, wag, Way, W34 }.
Then we may suppose that f; = vx;xg, 2 < i < 4 and f; = vxizs for some
monomial v of degree d — 2. As above we may assume that v = 1 and n = 6.
If j = 6 then b = wy4 which is impossible. If let us say j = 2 then (B \ FE) C
W U {b, zaw326, T22476} and so |B \ E| < 8, which is false.



92 Dorin Popescu

Thus 7 ¢ {1,...,4,6} and we may assume that j = 5. It follows that
J C (z12926, T123%6, T1T2Tyg, T12324), the inclusion being strict only if |[B\E| < 8
which is not the case. Thus J = (212226, X123%6, L1224, T12324) and a compu-
tation with SINGULAR shows that depthg I/J = 3 in this case. O

Next we put together the above lemmas to get the proof of Proposition 1.
Assume that sdepthg I/J < d + 1. We may suppose always that P, satisfies
the properties mentioned in Lemma 4. Applying Lemma 8 and Remark 3 and
changing a if necessary we may suppose that no bad path starts from a;. By
Lemma 11 changing a; by a, we may suppose that for every ¢ = 2, 3,4 one of the
following statements holds

1) Uy N (w) =0,

2) U1 N (u;) # 0 and there exists b; € Ty N (f;) with h(b;) € (u;),

3) U1 N (u;) # O and every monomial of Uy N (u;) has all its divisors from
BN (f;) contained in {ug,ub, ..., ug,uy}.

Mainly we study case 3) the other two cases are easier as we will see later.
Suppose that Uy N (u2) # @ and every monomial of Uy N (uz) has all its divisors
from B N (f2) contained in {ug,ub,...,uq,uj}. Let m € Uy N (ug), let us say
m = h(a.) for some path ay,...,a.. be as in case 3). We may suppose that
U1 N (ub) = 0 because otherwise we may assume as in Lemma 9 that all divisors
of ¢, are in the enlarged T7 of T7 and so ¢}, is preserved. As in the proof of Lemma
10 one of the following statements holds:

1) Ui N (ug) = {m}, m € (u2) N (u3), ug = waz, m & (uq,u}) and there exists
as € Ty N (f3) dividing m with a3 = ae,

2" Uy N (ug) = {m}, m € (u2) N (ug), uz = waz, m & (uq, u}) and there exists
as €Ty N (fg) diVidil’lg m with ag 7é Ae,

3 UrN(ug) = {m}, m € (u2) N (uq), ug = wag, m & (us, u4) and there exists
aq € Th N (f4) dividing m with a4 = a.,

4" U N (uz) = {m}, m € (uz) N (ug), ug = waq, m & (ug, us) and there exists
aq € Th N (f4) dividing m with a4 # a.,

5) m = wag € (u2) N (uz) N (ug), ug = waz, ug = wss and there exists
aq € Ty N (f4) dividing m with h(as) = m,

6') m = wag € (u2) N (uz) N (ug), ug = waz, ug = wsg and there exists
as €T N (f4) diViding m with h(d4) 7é m,

7/) m = w; € C3, Uy = Wayq, U3z = Wa3.

In subcase 1’) change in P, the intervals [fs, ¢5], [as, m]| with [fs,m], [uf, c5].
The new 17 = Ty \ {as} corresponds to Uy’ = Uy \ {m} which has empty in-
tersection with (ug) by our assumption. If 77" is not empty then we may go on
with T instead T3, the advantage being that now we have no problem with us.
If T/ = 0 then e = 1 and the path a; is maximal. Since m & (uy,u}) we must
have ug = x fo for some k (we can also have wiy = xx f2) and so m = xpwas,
as = zpf3. If E # () then we may change a; by a monomial of E. Assume that
E = 0. If ¢§ = x4wqg for some t then z;fo € B since it divides 5. If ¢t = k
then m = ¢§. Thus t # k, x:fa &€ {b,ua,ub,...,us,uy} and we may change ag
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by z:f2 and the new T} will be not empty. If ¢5 € Cy we may find also a divi-
sor b € B\ {b,ug,ub,...,ug,u}} dividing ¢ and changing a; by &’ we will get
the new 77 not empty. Remains to assume that ¢ € C3. Then uj = w34 and
b" = way is either in {uh,uy,uly}, or we may change a; by b’ as above. Sup-

pose that uy, = wag. Then zify € B. If xpfy & {b,us,ub, ..., ug,u)} we may
change a1 by xjfs. Otherwise, let us say ug = zxf4 and ¢ = xpwis. We get
xpfi € B\ {ua,ub, ..., uq,uy} and if b # xp f1 then we may change as above ay

by xzk f1. If b = x f1 then note that B D {was, wos.ws4q, w14, b, T fo, Tp f3, Tk fa}-
If there exists a monomial ¥’ € B\ (W U {b, zy f2, Z f3, x f4}) then change a; by
b'. Otherwise B C W U {b, x f2, i f3, 2 f4} and we apply Lemma 12.

Therefore in this subcase changing P, (ug is preserved and the new uj is bs)
and passing from T7 to T] there exist no problem with us. Asin Lemma 9 we may
suppose that only one from Uy’ N(u3), Uy'N(uj5) is nonempty because otherwise we
preserve the new ¢4, that is m. If let us say Uy N (ug) = {m'}, and all divisors of
m’ from BN (fs) are contained in {ug, us, w4, vy} then m’ € (us) N (uy), ug = wsy
and there exists aqg € T7' N (fy) dividing m/. If h(as) = m’ then as above change
in Py the intervals [fy, c}], [a4, m'] with [f4,m'], [u}, c}]. Clearly Ty = TV \ {a4}
has empty intersection with (us) and similarly to above we may suppose that
T1 # 0. In this way we arrive to the situation when we will not meet case 3) for
2<4<4.

In subcase 2') we have a, € E and a1 = ag € Ty. Take Ty, , instead T7.
If a. will not appear anymore in Ty, _,, then U, ., N (u2) = 0 and the problem is

solved. Otherwise, if a, = a, for some v > e + 1 then change in P, the intervals
[ai, h(a;)], e < i < v with [ai41,h(a;)], e < @ < v, [ae, my] We see that the new
ae is the old aey1, that is we reduced to the subcase 1’). Subcases 3'), 4') are
similar to 1), 2/).

Change in subcase 5’) (as in subcase 1)) the intervals [fy, ¢}], [a4,m] of Py
with [f4,m], [u},c}]. The new Ty = Ty \ {a4} corresponds to Uy’ = Uy \ {m}
which has empty intersection with (uz) by our assumption. The proof continues
as in 1’). Similarly, 6") goes as 2').

In subcase 7’) if w; € W (see Example 1) then it has 4 divisors from B\ E and
so one of them is not in {ug,u), ..., us,uy} and we may proceed as in subcases
5), 6’). So we may assume that w; € W. Then either ugy = w34 and then a, € F
which is false by our assumption, or wsy € Ti. Set aeyr1 = wsq. We proceed
as in 2') taking T,,,, if ac & T4, or otherwise changing P, we reduce to the
situation when h(acq1) = m. Then change in P, the intervals [fy,c}], [@et1,m]
with [fa, m], [u}, ¢4] and as usual the new Uy’ = Uy \ {m} has empty intersection

Thus we may assume that for all 2 < ¢ < 4 we are in cases 1), 2). When we
are in case 2) there exists b; € T1 N (f;) with h(b;) € (u;) and we may consider the
intervals [f;, ¢;], which are disjoint since b; are different by Lemma 11. Moreover,
they contain at most one monomial from wio, w13, w14 by Remark 6, which is
useful next. Remains to study those ¢ with Uy N (f;) # 0 but Uy N (u;, u}) = 0. If
Uy N (ug,uh, ..., ug,uy) =0 then we apply Lemma 5. Suppose that U; N (f2) # 0
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and Uy N (ug,ub) = 0 but we found already bs and possible by as in 2). If
h(bs) & (f2) then choosing ¥’ € B N (f2) we see that the intervals [fz, h(b')],
[f3, h(bs)] are disjoint. A similar result holds if there exists by and h(by) & (f2).

Assume that h(bs) € (f2). Then we may suppose that ug = weg and h(bs) =
xpwag for some k € [n]\supp was. We claim that b = xy fo & {us,ub, ..., ug,u}}.
It is clear that b & {ug,uh, us,us}. I 0" € {uq,uly} then b’ = woy = uy, let us
say. Thus h(bs) € (usz,uq) but h(bs) & (ug,us). This means that the monomial
h(bs) € Uy N (uyq) is in the situation 3) (similarly to 1’)) which is not possible as
we assumed. This shows our claim.

Therefore, b € T1 N (f2) because it divides h(bs). If h(d") € (f3) then
h(b") = kwses = h(bs) which is impossible. If h(b") € (f4) then A(d") = zrway
for some t. As we saw above b’ # wyg and so t = k. If by is not done by 2)
then it is enough to note that the intervals [fa, h(b")], [fs, h(bs)] are disjoint.
Assume that b4 is given already from 2) and uy = wo4. Then b= fa # u}
because otherwise h(0") = h(bs). We see that b & {ug, ul, ..., uq,u}} and so b is

in Ty N (fy). But h(b) & (ug) because it is different of h(by). Then the intervals
[fo, R(b")], [bs, h(b3)], [fa, h(D)] are disjoint. As in Lemma 5 we find if necessary
an interval [f1, ¢] disjoint of the rest.

Suppose as in Lemma 5 that [r] \ {j € [r] : U1 N (f;) # 0} = {k1,..., k. } for
some 1 <k <...<k,<4,0<v<4 SetI = (fr,, - [fx,,G1),J =I'NJ,
With the help of the above disjoint intervals, P, induces on I/(I’,J) a partition
P} with sdepth d + 2. It follows that sdepthg I’/J" < d + 1 using [17, Lemma

2.2]. By Lemma 3 we get depthg I/(J,I') < d+ 1 and we are done. O

Remark 7. Note that in P}, all divisors from B of the new ¢, are in T} U
Ug, U, ..., usg,uy . If one old ¢ has already this property then we may keep it.
2 4 4

Remark 8. If w; € (C3\ W) N (E) then we may have indeed a problem. For
example, if uy = way, ug = was, ug = wzq, w1 = h(ay) for some a; € E but w; &
h(E\ {a1}) then the path a; is maximal, 71 = {a;} and our theory fails to solve
this case if we cannot change P, in order to have {usa, us, us} # {waq, was, w3y}

Example 6. We continue Example 5. If we take as in the above proof I’ =
(b, z56, x527) and J' = I’ N J we have the disjoint intervals [z;,¢}], 2 < ¢ < 4
and to conclude that h induces a partition on I/(I’,J), which has sdepth 3 we
need an interval [x1, ¢j] disjoint of the other ones. But this is hard because there
are too many wi; among {ug,uj,...,us,uy . We must change one ¢; with one
m € (Uy N (x;)) \ (z1). The only possibility is to take mgo = zazgzs. Since
m € (uh) \ (us,ul,uq,u)) we may change somehow ¢, with m. This is not easy
since ma = h(az), ag = x3x5 € (x2). As in Lemma 9 note that a1|ms = h(as)
and replacing in P, the intervals [a;, m;], @ € [3], m1 = h(ay) with the intervals
[a1, m3], [ag, m1], [as, ma] we see that xoxs - the new as, belongs to (x3). Thus
we may change in P, the intervals [zq, cb], [zexs5, mo] with [za, ma], [us, ch]. The
new 17 is 7Y = (Ty U{z122}) \ {z225}. Note that all divisors from BN (x2) of the
new ¢, which are different from the new wus, u) are contained in the new T3. As
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above [x;, ¢j] are disjoint intervals and changing in P, the intervals [z zq, £12223),
[z125, T122x5] With [21, x12225] we get a partition with sdepth 3 on I/(I',J).

3 Main results

We start with an elementary lemma closed to Lemma 12.

Lemma 13. Let r be arbitrarily chosen, ' < r, t € [n] \ Ul_, supp f; and I’ =
(fis--oy fr), I = J NI Suppose that all w;;, 1 < i < j <7’ are in B and
different. Then the following statements hold

1. there exists a monomial v of degree d — 1 such that f; € (v) for all i € [r'],

’

2. ifxi(fr,. .., fry C J forallk € [n)\({t}U(Uj_, supp fi)) then depthg I'/J’ <
d+1.

Proof: As in the proof of [16, Lemma 3.2] we may suppose that f; = va; for
i € [r] and some monomial v of degree d — 1, that is (1) holds. It follows that

depthS I//Jl =d-1+ depthsu($1, .. ,:L'T/)SH =d+1
where S” = K[x1,..., %, Ty]. 0

Theorem 3. Conjecture 1 holds for r < 4, the case r < 3 being given in Theorem
1.

Proof: Suppose that sdepthg I/J = d+ 1 and E # 0, the case E = () is given in
Proposition 2. The proofs of Proposition 1 and Proposition 2 show that we get
depthg I/J < d+ 1, that is Conjecture 1 holds, when we may choose b; € (BN
(f:))\W such that w; ¢ (C3\W)N(E). Suppose that we choose b1 € (BN(f1))\W
but wy € (C3\W)N(E). In the last part of the proof of Proposition 1 (see 7') and
also Remark 8) a problem appears when m = wy € T} and let us say us = way,
Uz = wWwag, Uy = w3z4. As in the proof of [16, Lemma 3.2] we may assume that
fi = vax; for 2 < i < 4 and some monomial v of degree d—1. If let us say z:fo € B
for some t ¢ U}_, supp f; then either tfy = wya, or tfa ¢ W. In the first case we
may suppose, as in the proof of Lemma 12, that one of the following statements
hold:

1) fi = va;, @ € [4] for some monomial v of degree d — 1,

2) fi = pxixs, 2 <1i <4, fi = prize for some monomial p of degree d — 2.

In both cases we see that if BN(fa, f3, f4) C W then we have z(fa,... f4) C J
for all k € [n]\ ({1} U (U',supp fi)). By Lemma 13 we get depthg I’/J <
d+1 for I' = (fa, f3, fa), J' = J N I' which gives depthgI/J < d+ 1 since
depthg I/(J,I') > d+1, b being not in (J,I'). Thus BN (fa, f3, f1) ¢ W and we
may choose, let us say by € (BN(f2))\W and again we may get depthg I/J < d+1
if wy & (C5\ W) N (E).

Thus we may assume that wy,ws € (C5\W)N(E). In particular BNW consists
in at least 5 different monomials and so we may suppose that 1) above holds and
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uh = VEoxy,, U = VI3Ty,, Uy = VT4, for some k; € ([n]\ ({2,3,4} Usuppw). If
ko = ks = k4 = 1 then ¢, = w3, ¢§ = wy, ¢} = wo, that is all w; are in C3 \ W. If
let us say k3 > 4 then V' =y, f3 € W and we are ready if ws & (C5 \ W) N (E).
Thus we may assume that ws € (C3\W)N(E). Consequently in all cases we may
assume that 3 from w; are in C3 \ W. In particular [ BNW|=6. If BN (f;) C W
for some ¢ = 3,4 then (J : f;) is generated by z; with j & ({1,...,4} Usuppw).
It follows that in the exact sequence

0= (fi)/Jn(fi) = 1/J —=1/(J, fi) =0

the first term has depth degv+4 = d+3 and sdepth > d+2. By [17, Lemma 2.2]
we get sdepthg I/(J, f;) < d+ 1 and so the last term in the above sequence has
depth < d+1 by Theorem 1. Using the Depth Lemma we get depthg I/J < d+1
too.

Therefore, we may find b; € (BN (f;)) \ W, i = 3,4 and as above we may
suppose that w; € (Cs5\ W) N (E), let us say w; € (a;) for some a; € E. We
consider three cases depending on k;.

Case 1, when k; = 1 and k; > 4 for some i, j = 2,3,4, i # j.

Assume that ks = 1, that is ¢), = w3 and ky > 1. Then a1 = vrizy &
{ug,ub, ..., uq,u}} is a divisor of ¢4. Start the usual proof with a; and if wy & Uy
then we get depthg I/J < d+ 1. Suppose that there exists a (possible bad) path
ai,...,ae, m; = h(a;) such that m. = w;. Changing in P, the intervals [a;, m;],
(S [6]7 [f2’8/2]7 [fg,Cé] with [ai+17mi]7 i€ [6 - 1]7 [fl’CIQL [f27m€]’ [uévcg] we see
that the new &, ¢ = 1,2,4 contain two from w;. Choose a new a; and start to
build U;. This time any monomial from U; has at least one divisor from B\ E
which is not in Uj=1 2 4[f;, ¢;] so the usual proof goes.

Case 2, ko, k3, ky > 4.

Then a; = vryzy & {ug,ul, ..., ug,uy}t. Let my = h(ay) = ajzy, for some k.
If k = k4 then changing in P, the intervals [fy, ¢j], [a1,m1] with [fg, m1], [u4, c}]
we see that uy = wsz4 does not divide the new ¢ and so we have no problem with
w1.

Suppose that k # k4 and k > 4 then as = vz, & {ug,ub, ... ug,ul}.
If there exists no path as,...,a., m; = h(a;) with m, = w; then we proceed
as usual. Otherwise, let aqg,...,a., m; = h(a;) be a (possible bad) path with
me = wi. Changing in P, the intervals [a;, m;], i € [e], [fs,c5], [fa,c)] with
[@it2, Mit1], @ € [e=2], [f3, me], [fa,m1], [ub, 5], [u}, ¢4] we see that any monomial
from C has at least one divisor from B\ E which is not in Uj=2 3 4(f;, ¢;] so the
usual proof goes, where ¢&; denotes the new ¢ for j = 3,4 and ¢ = c}.

Remains to study the case when k # k4 and £k = 2 or K = 3. Assume

that & = 2, that is m; = ws. Similarly we may assume that as = vz,
mo = h(ag) = agxrs = wy and ag = vaizs, ms = h(as) = azry = we. If there
exists no path asg,...,a., m; = h(a;) with m. = w; then we proceed as usual.

Otherwise, let as,...,a., m; = h(a;) be a (possible bad) path with m. = ws.
Changing in P, the intervals [a;, m;], i € [e], [f;, )], § = 2,3,4 with [a; 13, miy2],
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i € le—3], [fr,mal, [fs,ma], [fa,wn], [uh, c5], [uh, 4], [u}, c)] we arrive in a case
similar to the next one.

Case 3, ko = k3 =kys = 1.

Thus ¢ = w3 € (a1) for a; = as. If there exists a path aq,...,a., m; = h(a;)
with m. = wy then changing in P, the intervals [a;, m;], i € [e], [f2, ], [f3, 5]
with [a;11,m;], @ € [e—1], [a1, b, [f1, ], [f2,w1] we get the new & = wy, &, = w
and &, = ¢j = wy. Thus we may change the three ¢} to be any three monomials
from w;.

Assume that the above path is bad, let us say m, € (b) for p < e and as in
Lemma 8 we may suppose that a,1 ¢ E, Tq, ., N{a1,...,a,} = 0 and there exists
no bad path starting Wlth ap+1. Changing P, as above we see that the new &, are
w1, w2, wq and thews ¢ U, ., where Uy correspondsto T, = =T, , \{ap+1}
Set b/ = apy1. In fact changing in the new P, the mtervals [b',myp] with [b, m,]
we get a partition Py on Iy /Jy, where Iy Jp are defined as usually but we could
have b’ € W. There exists no bad path in P, because otherwise this induces one
in P,. We may proceed as before since all monomials from U/, has at least one
divisor from B\ E which is not in Uj—1 2 4(f;, ¢;]. Similarly, we do for any a; € E
dividing one from c, ¢4, ¢ and remains to assume that there exists no bad path
starting with a divisor from FE of any ¢}, i = 2, 3, 4.

Now suppose that a; = b3 and consider 77, U; as usual and we may suppose
that we are still in Case 3 but with (¢}), j = 1,3,4. If there exists no bad path
starting with a; and m; = h(a;) € (W) let us say m; € (wy3) then changing in
P, the intervals [a1, m1], [f1, &) with [f1, m1], [@1, ], @1 = w12 we arrive in a case
similar to Case 1. If m; ¢ (W) then assume that in P, there exist the intervals
[f1,w2], [f2,wa], [fa,w1]. Then [fs, m1] is disjoint of these intervals. Enlarge T; to
Ty adding all monomials from B connected by a path which is not bad, with the
divisors from E of (w;), j = 1,2,4. Thus taking I’ = (B\ (TLUW)), J' =JN T
we get sdepthg I/(J,I') > d + 2 which is enough as usual.

If there exists a bad path aq,...,a., m; = h(a;), me = w1, my € (b), p<e
then as above we may assume that a,11 € E, T,,,, N{a1,...,a,} =0 and there
exists no bad path starting with a,41. Moreover, we may choose ap42 € E when
e > p+ 1 because m,11 # wy. Taking as above V' = a1 and the partition Py
given on Iy /Jy we see that Tapin N (f1s--, f1) # 0 and we reduce to the above
situation with T, instead Ty. If p > e — 1 then wy € U, and so there exists

Ap+2 p+2
no problem. O

Theorem 4. Conjecture 1 holds for r = 5 if there exists t € [n] such that
t & Uieis)supp fi, (B\ E)N (1) # 0 and E C (24).

Proof: Apply Lemma 1, since Conjecture 1 holds for » < 4 by Theorem 3.
O

Example 7. Let n =8, F = {agw7, v728}, I = (v1,22, 23, 24,25, F),
J = (x126, X128, Loy, T3T6, T3, T4Le, LaLT, T4TS, T5T6, T5L7, T5L8)-
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We see that we have
B = {$1x27 L1L3,L1X4,T1T5,L1L7, L2L3,T2L4, L2X5,T2LE,

Tol7, T34, T3Ts5, Ta3x7, a5} U {E},
C= {$1$2$379615102%4,$1£E25U57961302557,$1$3$479€1$3$5,$1€C3$77$1$4$5,$2$3$47
T2X3T5, L2X3X7, X2X4X5, L2X6LT, L3LAX5, $6$73€8}

andsor =5,¢=15,s =16 < g+r. We have sdepthg I/.J = 2, because otherwise
the monomial zoxg could enter either in [xg, xoxgx7], or in [Toxe, Toxerr] and in
both cases remain the monomials of F to enter in an interval ending with xgx7xs,
which is impossible. Then depthg I/J < 2 by the above theorem since E C (z7)
and for instance z1z7 € (B \ E) N (z7).

Added in Proof: Meanwhile, an example appeared in a paper of Duval et
al. (A non-partitionable Cohen-Macaulay simplicial complex), arXiv 1504.04279,
which shows in particular that Conjecture 1 is false even when r = 5 but there
exists no t as in Theorem 2. This says that our result is tight.
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