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Abstract

The paper study the asymptotic behaviour of the heat transfer in a
bounded domain formed by two interwoven connected components sepa-
rated by an interface on which the heat flux is continuous and the temper-
ature subjects to a first-order jump condition. The macroscopic laws and
their effective coefficients are obtained by means of the two-scale conver-
gence technique of the periodic homogenization theory for several orders of
magnitude of the conductivities and of the jump transmission coefficient.
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1 Introduction

This paper deals with the asymptotic behaviour (for ε → 0) of the heat trans-
fer problem in the framework introduced by [10], a realistic ε-periodic structure
composed of two connected components. The reference conductor (where the con-
ductivity is of unity order with respect to ε) is set in the ambient component, the
only one which is reaching the boundary of the domain. The second component
contains the core material, where the conductivity is of ε2β-order, with β ∈ (0, 1].
The jump transfer coefficient of the interface has εr-order, with r ∈ (−1, 1].

Since now, this problem has been treated only for β = 0 and when the core
material is composed of isolated grains (see [2], [3], [5], [7] and [8]). For a structure
with connected core material, only the case β = 0 and r = 1 has been rigorously
studied (see [6]).

In order to derive the macroscopic behaviour we obtain the two-scale homog-
enized systems by applying the two-scale convergence technique of the periodic
homogenization theory (see [1] and [9]). In each distinct case we uncouple the
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local-periodic problems and determine the specific effective coefficients of the
macroscopic problems, which, luckily here, are well-posed and therefore, uniquely
defining the asymptotic behaviour of the temperature.

2 The heat conduction problem

Let Ω be an open connected bounded set in RN (N ≥ 3), locally located on one
side of the boundary ∂Ω, a Lipschitz manifold composed of a finite number of
connected components.

Let Ya be a Lipschitz open connected subset of the unit cube Y = (0, 1)N . We
assume that Yb = Y \ Y a has a locally Lipschitz boundary, that the intersections
of ∂Yb with ∂Y are reproduced identically on the opposite faces of Y ,

Σ+i = {y ∈ ∂Y : yi = 1}, Σ−i = {y ∈ ∂Y : yi = 0}, ∀i ∈ {1, 2, . . . , N}, (2.1)

and that Y b ∩ Σ±i ⊂⊂ Σ±i. We assume also that repeating Y by periodicity,
the reunion of all the Y a parts is a connected domain in RN with a locally C2

boundary; we denote it by RNa and we set the origin of the coordinate system
such that there exists R > 0 with the property B(0, R) ⊆ RNa . Moreover, we
denote Γ := ∂Ya ∩ ∂Yb and ν the normal on Γ (exterior to Ya).

If ei stands for the unit vector of the canonical basis in RN then, for any
ε ∈ (0, 1), we introduce

Zε = {k ∈ ZN : εk + εY ⊆ Ω}, (2.2)

Iε = {k ∈ Zε : εk ± εei + εY ⊆ Ω, ∀i ∈ {1, ..., N}}. (2.3)

The core component of our structure is defined by

Ωεb = int

( ⋃
k∈Iε

(εk + εY b)

)
(2.4)

and the reference conductor by

Ωεa = Ω \ Ωεb. (2.5)

The interface between the two components is denoted by

Γε = ∂Ωεa ∩ ∂Ωεb = ∂Ωεb, (2.6)

and we have to remark that all the boundaries are at least locally Lipschitz, that
Ωεa is connected and that Ωεb can be also connected.

Next, we introduce the Hilbert space

Hε =

{
v ∈ L2(Ω) : v

∣∣∣
Ωεa

∈ H1(Ωεa), v
∣∣∣
Ωεb

∈ H1(Ωεb), v = 0 on ∂Ω

}
(2.7)
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endowed with the scalar product

(u, v)Hε =

∫
Ωεa

∇u∇v + ε2

∫
Ωεb

∇u∇v + ε

∫
Γε

[u][v], (2.8)

where [u] = γεbu − γεau and γεau, γεbu are the traces of u on Γε defined in
H1(Ωεa) and H1(Ωεb), respectively.

Our domain has the following well-known properties (see [4], [6]):

Lemma 1. There exists an extension operator Pε ∈ L
(
H1(Ωεa);H1

0 (Ω)
)

such
that

Pεv = v in Ωεa, (2.9)

|∇Pεv|L2(Ω) ≤ C |∇v|L2(Ωεa) , ∀v ∈ H
1(Ωεa), (2.10)

where C > 0 is a constant independent of ε.

Lemma 2. For any v ∈ Hε there exists C > 0, independent of ε, such that

|v|L2(Ωεa) ≤ C |∇v|L2(Ωεa) , (2.11)

ε1/2 |γεav|L2(Γε) ≤ C
(
|v|L2(Ωεa) + ε |∇v|L2(Ωεa)

)
, (2.12)

|v|L2(Ωεb) ≤ C
(
ε1/2 |γεbv|L2(Γε) + ε |∇v|L2(Ωεb)

)
. (2.13)

Remark 1. Taking in account the L2−norm of the jump on Γε the results of the
previous Lemma have an important consequence:

|v|L2(Ωεb) ≤ C |v|Hε
,∀v ∈ Hε. (2.14)

For ε ∈ (0, 1) we introduce the transmission factor hε(x) = h(x/ε), where
h ∈ C(Y ), and the symmetric conductivities aεij(x) = aij(x/ε), b

ε
ij(x) = bij(x/ε),

where aij , bij ∈ L∞per(Y ), with the property that there exists δ > 0 such that

h ≥ δ, a.e. on Y, (2.15)

aijξiξj ≥ δξiξi and bijξiξj ≥ δξiξi, ∀ξ ∈ RN , a.e. on Y. (2.16)

Finally, considering β ∈ (0, 1], r ∈ (−1, 1] and f ∈ L2(Ω), we look for the
temperature distribution uε which satisfies the heat conduction equations

− ∂

∂xi

(
aεij

∂uε

∂xj

)
= f in Ωεa, (2.17)

−ε2β ∂

∂xi

(
bεij
∂uε

∂xj

)
= f in Ωεb, (2.18)

and the following transmission and boundary conditions
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aεij
∂uε

∂xj
νεi = ε2βbεij

∂uε

∂xj
νεi = εrhε (γεbu

ε − γεauε) on Γε, (2.19)

uε = 0 on ∂Ω. (2.20)

The variational formulation of the problem (2.17)-(2.20) is the following:
To find uε ∈ Hε such that

∫
Ωεa

aεij
∂uε

∂xj

∂v

∂xi
+ ε2β

∫
Ωεb

bεij
∂uε

∂xj

∂v

∂xi
+ εr

∫
Γε

hε[uε][v] =

∫
Ω

fv, ∀v ∈ Hε. (2.21)

Applying Lax-Milgram Theorem and using (2.11)-(2.16), we get:

Theorem 1. For any ε ∈ (0, 1) there exists a unique uε ∈ Hε, solution of the
problem (2.21).

3 A priori estimates of the temperature

First, using coerciveness property and the inequalities (2.11)-(2.14), we find some
C > 0, independent of ε, such that

|uε|L2(Ω)≤ C, |∇u
ε|L2(Ωεa)≤ C, ε

β |∇uε|L2(Ωεb)≤ C, ε
r/2 |[uε]|L2(Γε)≤ C. (3.1)

Next, using the notations

ûεα =

{
u in Ωεα
0 in Ω− Ωεα

∇̂u
ε

α =

{
∇u in Ωεα
0 in Ω− Ωεα,

(3.2)

∀u ∈ H1(Ωεα), α ∈ {a, b}, and introducing the Hilbert spaces

H1
per (Ya) =

{
ϕ ∈ H1

loc

(
RNa
)

: ϕ is Y -periodic
}
, (3.3)

H̃1
per (Ya) =

{
ϕ ∈ H1

loc

(
RNa
)

:

∫
Ya

ϕ = 0 and ϕ is Y -periodic

}
, (3.4)

we can present the main compactness result:

Theorem 2. For every β ∈ (0, 1] and r ∈ (−1, 1] there exists ua ∈ H1
0 (Ω), ηa ∈

L2
(

Ω; H̃1
per(Ya)

)
and ub ∈ L2(Ω, L2

per(Yb)) such that the following convergences

hold on some subsequence

ûεa
2s
⇀ χaua, (3.5)

∇̂u
ε

a
2s
⇀ χa (∇xua +∇yηa(·, y)) , (3.6)

ûεb
2s
⇀ χbub, (3.7)
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where χα : L2(Ω×Yα)→ L2(Ω×Y ), α ∈ {a, b}, denotes the straight prolongation
with zero; sometimes it can be identified with the characteristic value of Yα.

When β ∈ (0, 1) we find that ub is independent of y, with ub ∈  L2(Ω).
When β = 1 it holds

ε∇̂u
ε

b
2s
⇀ χb∇yub. (3.8)

Proof: The properties (3.5)-(3.7) follow from the a priori estimates. They can
be proved by adapting the methods of [1], except the fact that ua has to vanish

on ∂Ω. For this, as the estimations (3.1) imply that
{
|∇uεa|L2(Ωεa)

}
ε

is bounded,

then using the Poincaré-Friedrichs inequality and the extension operator (2.9)-
(2.10) we obtain

|Pεuεa|H1
0 (Ω) ≤ C |∇Pεu

ε
a|L2(Ω) ≤ C |∇u

ε
a|L2(Ωεa) ≤ C,

which shows that {Pεuεa}ε is bounded in H1
0 (Ω). Hence, there exists u′a ∈ H1

0 (Ω)

such that Pεu
ε
a ⇀ u′a in H1

0 (Ω) and consequently χa(
{
x
ε

}
)Pεu

ε
a

2s
⇀ χa(y)u′a. On

the other hand, as χa(
{
x
ε

}
)Pεu

ε
a = ûεa and ûεa

2s
⇀ χa(y)ua, then, by identifying

the limits, we get ua = u′a in Ω.
When β ∈ (0, 1), we have to prove that ub is independent of y. Using the a

priori estimates (3.1), for any Ψ ∈
[
D(Ω;C∞per(Y ))

]N
it holds

ε

∫
Ω

∇̂u
ε

b(x)Ψ
(
x,
x

ε

)
dx = ε1−βεβ

∫
Ω

∇̂u
ε

b(x)Ψ
(
x,
x

ε

)
dx −→ 0, (3.9)

which is identical to that from which the same property follows in the classical
way (see [1]).

When β = 1, the estimations (3.1) imply that
{
ε∇̂u

ε

b

}
ε

is bounded in L2(Ω)

and hence we can assume that it has a two-scale limit on the same subsequence

as
{
εûεb

}
ε
(see the main compactness theorem of [1] or [9]). The form of this

limit, that is (3.8), can still be found by adapting the standard methods (see
Proposition 1.14 of [1]).

Now, for any k ∈ {1, 2, ..., N} , we define ηak ∈ H̃1
per (Ya) as the unique solution

of the local-periodic problem

− ∂

∂yi

(
aij

∂ (ηak + yk)

∂yj

)
= 0 in Ya, (3.10)

aij
∂ (ηak + yk)

∂yj
νi = 0 on Γ. (3.11)
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The symmetric and positively defined effective conductivity A is given by

Aij =

∫
Ya

( aij + aik
∂ηaj
∂yk

) dy, ∀i, j ∈ {1, 2, ..., N} . (3.12)

Finally, we introduce the functions w0 and w1, which are the only solutions
in H1

per(Yb) of the following two local-problems:

− ∂

∂yi

(
bij
∂w0

∂yj

)
= 1 in Yb, w0 = 0 on Γ, (3.13)

− ∂

∂yi

(
bij
∂w1

∂yj

)
= 1 in Yb, −bij

∂w1

∂yj
νi + hw1 = 0 on Γ. (3.14)

Due to the existence of the first-order jump interface Γε, there are two effective
coefficients describing the microscopic transfer:

h̃ =

∫
Γ

h(y)dσ and w̃1h =

∫
Γ

w1(y)h(y)dσ. (3.15)

4 The homogenization process for β ∈ (0, 1) and r = 1

Remark 2. Using Theorem 2, we pass (2.21) to the limit, with the following test
function

v(x) =
(

Φa(x) + εϕa

(
x,
x

ε

)
,Φb(x) + εϕb

(
x,
x

ε

))
, (4.1)

where Φα ∈ D(Ω) and ϕα ∈ D(Ω;C∞per(Yα)), α ∈ {a, b}. We get∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φa
∂xi

+
∂ϕa
∂yi

)
+

∫
Ω

h̃(ub − ua)(Φb − Φa) =

=

∫
Ω×Y

(χaΦa + χbΦb) f. (4.2)

Introducing the Hilbert space V1 := H1
0 (Ω)×L2(Ω)×L2(Ω, H̃1

per(Ya)), endowed
with the following scalar product

〈(ua, ub, ηa) , (Φa,Φb, ϕa)〉V1
=

∫
Ω

∇ua∇Φa +

∫
Ω

(ub − ua) (Φb − Φa) +

+

∫
Ω×Ya

∇yηa∇yϕa , (4.3)

then by density arguments we prove that (ua, ub, ηa) is the only solution of:
To find (ua, ub, ηa) ∈ V1 satisfying∫

Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φa
∂xi

+
∂ϕa
∂yi

)
+ h̃

∫
Ω

(ub − ua)(Φb − Φa) =

=

∫
Ω×Y

(χaΦa + χbΦb) f, ∀ (Φa,Φb, ϕa) ∈ V1. (4.4)
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Theorem 3. If uε is the solution of the problem (2.21) the convergences (3.5)-
(3.8) hold on the whole sequence and the limit (ua, ub) ∈ H1

0 (Ω) × L2(Ω) is the
unique solution of the homogenized problem∫

Ω

Aij
∂ua
∂xj

∂Φa
∂xi

+

∫
Ω

h̃(ub − ua)(Φb − Φa) =

∫
Ω

(|Ya|Φa + |Yb|Φb) f,

∀(Φa,Φb) ∈ H1
0 (Ω)× L2(Ω). (4.5)

Consequently, the homogenization process is summarized in this case by:

Theorem 4. If uε is the solution of the problem (2.21) then

uε
2s
⇀ u+

|Yb|
h̃
χbf, (4.6)

where u ∈ H1
0 (Ω) is the unique solution of the Dirichlet problem∫

Ω

A∇u∇Φ =

∫
Ω

fΦ, ∀Φ ∈ H1
0 (Ω). (4.7)

5 The homogenization process for β ∈ (0, 1) and r ∈ (−1, 1)

Remark 3. Multiplying the variational problem (2.21) with ε1−r, setting (4.1)
as test function and passing to the limit, we find that:

ua = ub ∈ H1
0 (Ω) (5.1)

Next, passing to the limit with (4.1) as test function in (2.21) with Φa = Φb = Φ,
we obtain ∫

Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂ϕa
∂yi

)
dxdy =

∫
Ω

fΦdx. (5.2)

By density arguments we remark that (u, ηa) ∈ V2 := H1
0 (Ω) × L2(Ω, H̃1

per(Ya))
is solution of the problem:

To find (u, ηa) ∈ V2 satisfying∫
Ω×Ya

aij

(
∂u

∂xj
+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂ϕa
∂yi

)
dxdy =

∫
Ω

fΦdx

∀ (Φ, ϕa) ∈ V2. (5.3)

It easy to verify that (5.3) is a well-posed problem in the Hilbert space V2,
endowed with the scalar product:

〈(u, ηa) , (Φ, ϕa)〉V2 =

∫
Ω

∇u∇Φ +

∫
Ω×Ya

∇yηa∇yϕa. (5.4)
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In the present case the asymptotic behavior is summarized by:

Theorem 5. If uε is the solution of the problem (2.21) then,

uε
2s
⇀ u, (5.5)

where u ∈ H1
0 (Ω) is the unique solution of (4.7).

6 The homogenization process for β = 1 and r = 1

Remark 4. For Φ ∈ D(Ω) and ϕα ∈ D
(
Ω;C∞per(Yα)

)
, with α ∈ {a, b}, we pass

(2.21) to the limit, using the test function

v(x) =
(

Φ(x) + εϕa

(
x,
x

ε

)
, ϕb

(
x,
x

ε

))
, x ∈ Ω. (6.1)

It follows that∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂ϕa
∂yi

)
+

∫
Ω×Yb

bij
∂ub
∂yj

∂ϕb
∂yi

+

+

∫
Ω×Γ

h (ub − ua) (ϕb − Φ) =

∫
Ω×Ya

fΦ +

∫
Ω×Yb

fϕb, (6.2)

Denoting V3 := H1
0 (Ω)×L2(Ω;H1

per(Yb))×L2(Ω, H̃1
per(Ya)), we find by density

arguments that (ua, ub, ηa) is the only solution of the problem:
To find (ua, ub, ηa) ∈ V3 satisfying∫

Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂ϕa
∂yi

)
+

∫
Ω×Γ

h (ub − ua) (ϕb − Φ) +

+

∫
Ω×Yb

bij
∂ub
∂yj

∂ϕb
∂yi

=

∫
Ω×Ya

fΦ +

∫
Ω×Yb

fϕb, ∀ (Φ, ϕb, ϕa) ∈ V3. (6.3)

The problem (6.3) is well-posed in V3, Hilbert space with the scalar product:

〈(ua, ub, ηa) , (Φ, ϕa, ϕb)〉V3 =

∫
Ω

∇ua∇Φ +

∫
Ω×Yb

∇ub∇ϕb+

+

∫
Ω×Γ

(ub − ua) (ϕb − Φ) +

∫
Ω×Ya

∇yϕa∇yηa. (6.4)

Theorem 6. If uε is the solution of (2.21) then

uε
2s
⇀
(
| Ya | +w̃1h

)
u+ w1χbf, (6.5)

where u ∈ H1
0 (Ω) and w1 ∈ H1

per(Yb) are defined by (4.7) and (3.14).
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Proof: If u ∈ H1
0 (Ω) is the solution of the homogenized system (4.7) then it is

easy to verify that the only solution of the problem (6.3) is given by

ua(x) =
(
| Ya | +w̃1h

)
u(x), x ∈ Ω, (6.6)

ub(x, y) =
(
| Ya | +w̃1h

)
u(x) + w1(y)f(x), (x, y) ∈ Ω× Yb, (6.7)

ηa(x, y) =
(
| Ya | +w̃1h

)
ηak(y)

∂u

∂xk
(x), (x, y) ∈ Ω× Ya. (6.8)

7 The homogenization process for β = 1 and r ∈ (−1, 1)

The preliminary result of this case is the following:

Lemma 3. For any Φ ∈ D(Ω) and ϕα ∈ D(Ω;C∞per(Yα)), α ∈ {a, b} such that

ϕb(x, y) = Φ(x), ∀(x, y) ∈ Ω× Γ (7.1)

we have: ∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂ϕa
∂yi

)
+

∫
Ω×Yb

bij
∂ub
∂yj

∂ϕb
∂yi

=

=

∫
Ω×Ya

fΦ +

∫
Ω×Yb

fϕb. (7.2)

Moreover,
ua = ub on Ω× Γ. (7.3)

Proof: Multiplying (2.21) with ε1−r, setting the test function (6.1) with Φ ∈
D(Ω), ϕa ∈ D(Ω;C∞per(Ya)), ϕb ∈ D(Ω;C∞per(Yb)) and passing to the limit we get∫

Ω×Γ

h(y) (ub(x, y)− ua(x)) (ϕb(x, y)− Φ(x)) = 0, (7.4)

which obviously imply (7.3).
In order to obtain (7.2) we set in (2.21) the test function (6.1) with the

supplementary condition (7.1). The proof is completed again by passing to the
limit, the term corresponding to the integral on Γε being of order ε1+r/2.

In the light of the previous result, we introduce the space

V :=
{

(Φ, ϕ) ∈ H1
0 (Ω)× L2(Ω;H1

per(Yb)), ϕ = Φ on Ω× Γ
}
. (7.5)
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Remark 5. Using density arguments it follows that

((ua, ub), ηa) ∈ V4 := V × L2(Ω; H̃1
per(Ya)) is solution of the problem:

To find ((ua, ub), ηa) ∈ V4 satisfying∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂ϕa
∂yi

)
+

∫
Ω×Yb

bij
∂ub
∂yj

∂ϕb
∂yi

=

=

∫
Ω×Ya

fΦ +

∫
Ω×Yb

fϕb, ∀ ((Φ, ϕb), ϕa) ∈ V4. (7.6)

The problem (7.6) is a well-posed in the Hilbert space V4, endowed with the
scalar product:

〈((ua, ub), ηa) , ((Φ, ϕb), ϕa)〉V4
=

∫
Ω

∇ua∇Φ +

∫
Ω×Yb

∇yub∇yϕb +

∫
Ω×Ya

∇yϕa∇yηa.

Thus, in the present case the results of the homogenization process can be
summarized by:

Theorem 7. If uε is the solution of the problem (2.21) then,

uε
2s
⇀ |Ya|u+ w0χbf, (7.7)

where u ∈ H1
0 (Ω) and w0 ∈ H1

per(Yb) are defined by (4.7) and (3.13).

Proof: If u ∈ H1
0 (Ω) is the unique solution of (4.7) then we verify that the unique

solution of (7.6) is the following:

ua = |Ya|u, ub = |Ya|u+ w0f, ηa = |Ya|ηak
∂u

∂xk
,

where ηak and w0 are defined by the problems (3.10)-(3.11) and (3.13).
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