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Inequalities for a polynomial with prescribed zeros
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Vinay Kumar Jain

Abstract

For a polynomial p(z) of degree n with a zero of order k(≥ 1) at β, it is
known that

max
|z|=1

| p(z)

(z − β)k
| ≤

(n− k + 1

1 + |β|

)k
max

1≤l≤n−k+1
|p(γ′l)|,

γ′1, γ
′
2, . . . , γ

′
n−k+1 being the roots of zn−k+1 + eiγ(n−k+1) = 0, with γ =

arg β (γ = 0 for β = 0). By considering a polynomial p(z) of degree n with
zeros β1, β2, . . . , βk we have obtained certain inequalities thereby giving a
refinement of the known result.
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1 Introduction and statement of results

Famous chemist Mendeleev [5] while making a study of the specific gravity
of a solution as a function of the percentage of the dissolved substance, obtained
a pretty mathematical result for polynomials of degree 2 and told it to contem-
porary famous mathematician A. A. Markov who [4] naturally investigated the
corresponding problem for polynomials of degree n and proved what has come to
be known as Markov’s Theorem:

Markov’s Theorem. If P (x) is a real polynomial of degree n and |P (x)| ≤ 1
on [−1, 1] then |P ′(x)| ≤ n2 on [−1, 1], with equality attainable only at ±1 and
only when P (x) = ±Tn(x), where Tn(x) (the so called Chebyshev polynomial) is
cosn cos−1 x.

After about 20 years S. Bernstein wanted, for applications in the theory of
approximation of functions by polynomials, the analogue of Markov’s theorem for
the unit disk in the complex plane instead of for the interval [−1, 1]. He asked,
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if P (z) is a polynomial of degree n and |P (z)| ≤ 1 for |z| ≤ 1, how large can
|P ′(z)| be for |z| ≤ 1. Using maximum modulus principle we can say that he
asked, if P (z) is a polynomial of degree n and |P (z)| ≤ 1 for |z| = 1, how large
can |P ′(z)| be for |z| = 1. The answer [2] is that |P ′(z)| ≤ n for |z| = 1, with
equality attained for P (z) = zn. Entire result can be restated as: If P (z) is a
polynomial of degree n such that max|z|=1 |P (z)| ≤ 1 then max|z|=1 |P ′(z)| ≤ n
(i.e. max|z|=1 |P ′(z)| ≤ nmax|z|=1 |P (z)|). And this result itself has come to
be known as Bernstein’s Theorem. Bernstein’s theorem has been generalized in
many ways with applications in Theory of Approximation. Thinking similarly for
results with applications in Theory of Approximation by using Schwarz’s lemma
and its various implications Rahman and Mohammad [6] thought of obtaining a
bound for

max
|z|=1

| p(z)
z − a

|,

p(z) being a polynomial of degree at most n, with max|z|=1 |p(z)| = 1 and p(a) = 0
for a fixed a on the unit circle and proved

Theorem A. If p(z) is a polynomial of degree n such that |p(z)| ≤ 1 on the
unit circle and p(1) = 0 then for |z| ≤ 1

| p(z)
z − 1

| ≤ n

2
.

The example 1
2 (zn − 1) shows that the result is best possible.

Aziz [1] obtained a refinement of Theorem A and proved

Theorem B. Let p(z) be a polynomial of degree n such that p(β) = 0 where β
is an arbitrary non-negative real number. If z1, z2, . . . , zn are the zeros of zn + 1
then

max
|z|=1

| p(z)
z − β

| ≤ n

1 + β
max
1≤i≤n

|p(zi)|.

We [3] obtained the following generalization of Theorem B.

Theorem C. Let p(z) be a polynomial of degree n such that

p(z) = (z − β)kq(z), k ≥ 1 and β is arbitrary.

Then

max
|z|=1

| p(z)

(z − β)k
| ≤

(n− k + 1

1 + |β|

)k
max

1≤l≤n−k+1
|p(γ′l)|,

where γ′1, γ
′
2, . . . , γ

′
n−k+1 are the roots of

zn−k+1 + eiγ(n−k+1) = 0

and

γ =

{
arg β , β 6= 0,
0 , β = 0.



Inequalities for a Polynomial 453

In this paper we consider a polynomial p(z) of degree n with zeros β1, β2, . . . , βk
and prove certain inequalities which help us to obtain a refinement of
Theorem C. More precisely we prove

Theorem 1. Let p(z) be a polynomial of degree n such that

p(z) =
{

(z − β1)(z − β2) . . . (z − βk)
}
q(z), k > 1. (1.1)

Further let

γk =

{
arg βk , βk 6= 0,
0 , βk = 0,

with v
(k)
1 , v

(k)
2 , . . . , v

(k)
n being the roots of

zn + einγk = 0.

Then
max|z|=1 | p(z)

(z−β1)(z−β2)...(z−βk) | ≤
n(n−1)...(n−k+1)

(1+|β1|)(1+|β2|)...(1+|βk|) max1≤l≤n |p(v(k)l )|.

As the order of β1, β2, . . . , βk is immaterial, we can obtain

Theorem 2. Let p(z) be a polynomial of degree n such that

p(z) =
{

(z − β1)(z − β2) . . . (z − βk)
}
q(z), k > 1.

Further for 1 ≤ j ≤ k let

γj =

{
arg βj , βj 6= 0,
0 , βj = 0,

with v
(j)
1 , v

(j)
2 , . . . , v

(j)
n being the roots of

zn + einγj = 0.

Then for 1 ≤ j ≤ k

max|z|=1 | p(z)
(z−β1)(z−β2)...(z−βk) | ≤

n(n−1)...(n−k+1)
(1+|β1|)(1+|β2|)...(1+|βk|) max1≤l≤n |p(v(j)l )|.

Using Theorem 2 we obtain

Corollary 1. Under the same hypotheses as in Theorem 2

max|z|=1 | p(z)
(z−β1)(z−β2)...(z−βk) | ≤

n(n−1)...(n−k+1)
(1+|β1|)(1+|β2|)...(1+|βk|) min1≤j≤k

(
max1≤m≤n |p(v(j)m )|

)
.
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Remark 1. For k = 1 Corollary 1 is Theorem C with k = 1 and is therefore
true.

Theorem 3. Let p(z) be a polynomial of degree n such that

p(z) =
{

(z − β1)(z − β2) . . . (z − βk)
}
q(z), k ≥ 1. (1.2)

Further let v1, v2, . . . , vn−k+1 be the roots of

zn−k+1 + 1 = 0

and for 1 ≤ j ≤ k let

Sj =



| 1−βj
1−|βj |2 | , |βj | 6= 1,
1
2 , βj = 1,
∞, (with the , |βj | = 1 with βj 6= 1.
understanding that for
such a possibility, the
expression

{(
∏k
j=1 Sj) max1≤s≤n−k+1 |p(vs)|}

will also take the value ∞)

(1.3)

Then

max
|z|=1

| p(z)

(z − β1)(z − β2) . . . (z − βk)
| ≤ (n− k + 1)k

( k∏
j=1

Sj

)
max

1≤s≤n−k+1
|p(vs)|.

Theorem 4. Let p(z) be a polynomial of degree n such that

p(z) =
{

(z − β1)(z − β2) . . . (z − βk)
}
q(z), k > 1.

Further for 1 ≤ j ≤ k let

γj =

{
arg βj , βj 6= 0,
0 , βj = 0,

with t
(j)
1 , t

(j)
2 , . . . , t

(j)
n−k+1 being the roots of

zn−k+1 + ei(n−k+1)γj = 0

and for 1 ≤ l ≤ k, with l 6= j let

T
(j)
l =



1 , βl = βj ,

2| 1−|βl|e
i(γl−γj)

1−|βl|2 |+ | 1−|βj |1−|βl| | , βl 6= βj with |βl| 6= 1,

∞, (with the understanding , βl 6= βj with |βl| = 1.
that for such a possibility,
the expression{(∏k

l = 1

l 6= j

T
(j)
l

)
max1≤s≤n−k+1 |p(t(j)s )|

}
will also take the value ∞)

(1.4)
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Then for 1 ≤ j ≤ k

max|z|=1 | p(z)
(z−β1)(z−β2)...(z−βk) | ≤

(n−k+1)k

(1+|βj |)k
{(∏k

l = 1

l 6= j

T
(j)
l

)
max1≤s≤n−k+1 |p(t(j)s )|

}
.

Using Theorem 4 we obtain

Corollary 2. Under the same hypotheses as in Theorem 4

max|z|=1 | p(z)
(z−β1)(z−β2)...(z−βk) | ≤

(n− k + 1)k min1≤j≤k

({(∏k

l = 1

l 6= j

T
(j)
l

)
max1≤s≤n−k+1 |p(t(j)s )|

}
(1+|βj |)k

)
.

On combining Corollary 1, Theorem 3 and Corollary 2 we obtain the following
refinement as well as a generalization of Theorem C with k > 1.

Theorem 5. Let p(z) be a polynomial of degree n such that

p(z) = {(z − β1)(z − β2) . . . (z − βk)}q(z), k > 1.

Further let v1, v2, . . . , vn−k+1 be the roots of

zn−k+1 + 1 = 0

and for 1 ≤ j ≤ k let

Sj =



| 1−βj
1−|βj |2 | , |βj | 6= 1,
1
2 , βj = 1,
∞, (with the understanding , |βj | = 1 with βj 6= 1,
that for such a possibility,
the expression{(∏k

j=1 Sj
)

max1≤s≤n−k+1 |p(vs)|
}

will also take the value ∞)

γj =

{
arg βj , βj 6= 0,
0 , βj = 0,

with v
(j)
1 , v

(j)
2 , . . . , v

(j)
n being the roots of

zn + einγj = 0,

t
(j)
1 , t

(j)
2 , . . . , t

(j)
n−k+1 being the roots of

zn−k+1 + ei(n−k+1)γj = 0
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and for 1 ≤ l ≤ k, with l 6= j let

T
(j)
l =



1 , βl = βj ,

2| 1−|βl|e
i(γl−γj)

1−|βl|2 |+ | 1−|βj |1−|βl| | , βl 6= βj with |βl| 6= 1,

∞, (with the understanding that , βl 6= βj with |βl| = 1.
for such a possibility, the expression{(∏k

l = 1

l 6= j

T
(j)
l

)
max1≤s≤n−k+1 |p(t(j)s )|

}
will also take the value ∞)

Then

max|z|=1 | p(z)
(z−β1)(z−β2)...(z−βk) | ≤

min

[
n(n−1)...(n−k+1)

(1+|β1|)(1+|β2|)...(1+|βk|) min1≤j≤k(max1≤m≤n |p(v(j)m )|),

(n− k + 1)k(Πk
j=1Sj) max1≤s≤n−k+1 |p(vs)|,

(n− k + 1)k min1≤j≤k
{
(∏k

l = 1

l 6= j

T
(j)
l

)
max1≤s≤n−k+1 |p(t(j)s )|

(1+|βj |)k
}]
.

And on combining Theorem 3 with k = 1 and Corollary 1 for k = 1 along with
Remark 1 we obtain the following refinement of Theorem C with k = 1.

Theorem 6. Let p(z) be a polynomial of degree n such that

p(z) = (z − β1)q(z).

Let v1, v2, . . . , vn be the roots of

zn + 1 = 0

and

S1 =



| 1−β1

1−|β1|2 | , |β1| 6= 1,
1
2 , β1 = 1,
∞, (with the understanding , |β1| = 1 with β1 6= 1,
that for such a possibility,
the expression {S1 max1≤s≤n |p(vs)|}
will also take the value ∞)

γ1 =

{
arg β1 , β1 6= 0,
0 , β1 = 0,

with v
(1)
1 , v

(1)
2 , . . . , v

(1)
n being the roots of

zn + einγ1 = 0.



Inequalities for a Polynomial 457

Then

max
|z|=1

| p(z)
z − β1

| ≤ min
[ n

1 + |β1|
max

1≤m≤n
|p(v(1)m )|, nS1 max

1≤s≤n
|p(vs)|

]
.

Remark 2. For p(z) = (z − 1)2(z + 1)(z + 2) with

β1 = β2 = β = 1, k = 2 and n = 4,

the bound for

max
|z|=1

| p(z)

(z − 1)2
|

is 20.7 by Theorem C and 11.7 by Theorem 5. And for p(z) = (z + 100)(z + 1)2

with

k = 1, β1 = β = −100 and n = 3,

the bound for

max
|z|=1

| p(z)

z + 100
|

is 12 by Theorem C and 9.14 by Theorem 6.

2 Lemmas

For the proofs of the theorems we require the following lemmas.

Lemma 1. Let z1, z2, . . . , zn be the zeros of zn + 1. Then

n∑
l=1

1

|zl − 1|2
=
n2

4
.

This lemma is due to Aziz [1, relation 11].

Lemma 2. Under the same hypothesis as in Lemma 1

1

|zl − 1|
<
n

2
, 1 ≤ l ≤ n.

Proof of Lemma 2. If follows easily from Lemma 1.

Lemma 3.

| e
iθ − 1

eiθ − β
| ≤ 2| 1− β

1− |β|2
|, |β| 6= 1 & − π ≤ θ ≤ π.

Proof of Lemma 3. It follows by using usual method for finding maximum
value of a function of one variable.
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Lemma 4. Let γ and δ be two complex numbers such that

γ 6= δ and |δ| 6= 1,

with

φ1 =

{
arg γ , γ 6= 0,
0 , γ = 0,

φ2 =

{
arg δ , δ 6= 0,
0 , δ = 0,

and
φ = φ2 − φ1.

Then

|e
iθ − γ
eiθ − δ

| ≤ 2|1− |δ|e
iφ

1− |δ|2
|+ |1− |γ|

1− |δ|
|, − π ≤ θ ≤ π.

Proof of Lemma 4.

|e
iθ − γ
eiθ − δ

| = | e
iψ − |γ|

eiψ − |δ|eiφ
|, (ψ = θ − φ1),

≤ 2|1− |δ|e
iφ

1− |δ|2
|+ |1− |γ|

1− |δ|
|, (by Lemma 3).

This completes the proof of Lemma 4.

3 Proofs of the theorems

Proof of Theorem 1. The polynomial

T1(z) = (z − β1)q(z) (3.1)

is of degree n− k + 1 and by Theorem C with k = 1 we have

max
|z|=1

|q(z)| = max
|z|=1

| T1(z)

z − β1
| ≤ n− k + 1

1 + |β1|
max

1≤l1≤n−k+1
|T1(v

(1)
l1

)|, (3.2)

with v
(1)
1 , v

(1)
2 , . . . , v

(1)
n−k+1 being the roots of

zn−k+1 + eiγ1(n−k+1) = 0 (3.3)

and

γ1 =

{
arg β1 , β1 6= 0,
0 , β1 = 0.

Further the polynomial

T2(z) = (z − β2)T1(z),

= (z − β1)(z − β2)q(z), (by (3.1)), (3.4)
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is of degree n− k + 2 and by Theorem C with k = 1 we have

max
|z|=1

|T1(z)| = max
|z|=1

| T2(z)

z − β2
| ≤ n− k + 2

1 + |β2|
max

1≤l2≤n−k+2
|T2(v

(2)
l2

)|, (3.5)

with v
(2)
1 , v

(2)
2 , . . . , v

(2)
n−k+2 being the roots of

zn−k+2 + eiγ2(n−k+2) = 0

and

γ2 =

{
arg β2 , β2 6= 0,
0 , β2 = 0.

Now as
|v(1)l1 | = 1, 1 ≤ l1 ≤ n− k + 1, (by (3.3)),

we can combine (3.2) and (3.5) and obtain

max
|z|=1

|q(z)| ≤ (n− k + 1)(n− k + 2)

(1 + |β1|)(1 + |β2|)
max

1≤l2≤n−k+2
|T2(v

(2)
l2

)|.

We can now continue and obtain similarly

max
|z|=1

|q(z)| ≤ (n− k + 1)(n− k + 2)(n− k + 3)

(1 + |β1|)(1 + |β2|)(1 + |β3|)
max

1≤l3≤n−k+3
|T3(v

(3)
l3

)|,

(with

T3(z) = (z − β3)T2(z),

= (z − β1)(z − β2)(z − β3)q(z), (by (3.4)), (3.6)

v
(3)
1 , v

(3)
2 , . . . , v

(3)
n−k+3 being the roots of

zn−k+3 + eiγ3(n−k+3) = 0

and

γ3 =

{
arg β3 , β3 6= 0,
0 , β3 = 0,

),

. . . . . . . .

. . . . . . . .

. . . . . . . .

max
|z|=1

|q(z)| ≤ (n− k + 1)(n− k + 2) . . . (n− k + k)

(1 + |β1|)(1 + |β2|) . . . (1 + |βk|)
max

1≤l≤n−k+k
|Tk(v

(k)
l )|, (3.7)
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(with

Tk(z) = (z − βk)Tk−1(z),

= (z − β1)(z − β2) . . . (z − βk)q(z), (similar to (3.4) and (3.6))) (3.8)

Now Theorem 1 follows by using (1.1) and (3.8) in (3.7).
Proof of Theorem 3. If

|βj | = 1 with βj 6= 1,

for at least one j, 1 ≤ j ≤ k then Theorem 3 follows trivially. Therefore we now
assume that

|βj | 6= 1 or βj = 1, 1 ≤ j ≤ k.

Further let
T (z) = (z − 1)q(z).

Then by Theorem B with β = 1

max
|z|=1

|q(z)| = max
|z|=1

| T (z)

z − 1
| ≤ n− k + 1

2
max

1≤s≤n−k+1
|T (vs)|. (3.9)

Now

|T (vs)| =
1

|vs − 1|k−1
( k∏
j=1

| vs − 1

vs − βj
|
)
|p(vs)|,

which by Lemma 2, Lemma 3 and (1.3) implies that

|T (vs)| ≤ 2(n− k + 1)k−1
( k∏
j=1

Sj
)
|p(vs)|

and therefore by (1.2) and (3.9) we get

max|z|=1 | p(z)
(z−β1)(z−β2)...(z−βk) | ≤

(n− k + 1)k
(∏k

j=1 Sj
)

max1≤s≤n−k+1 |p(vs)|.

This completes the proof of Theorem 3.
Proof of Theorem 4. If

βl 6= βj with |βl| = 1,

for at least one l, 1 ≤ l ≤ k with l 6= j then Theorem 4 follows trivially. Therefore
we now assume that

βl = βj or βl 6= βj with |βl| 6= 1, 1 ≤ l ≤ k with l 6= j.

Further let
pj(z) = (z − βj)kq(z).
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Then by Theorem C

max
|z|=1

|q(z)| = max
|z|=1

| pj(z)

(z − βj)k
| ≤

(n− k + 1

1 + |βj |
)k

max
1≤s≤n−k+1

|pj(t(j)s )|. (3.10)

Now

|pj(t(j)s )| =
( k∏
l = 1
l 6= j

| t
(j)
s − βj
t
(j)
s − βl

|
)
|p(t(j)s )|,

which by Lemma 4 and (1.4) implies that

|pj(t(j)s )| ≤
( k∏
l = 1
l 6= j

T
(j)
l

)
|p(t(j)s )|

and therefore by (3.10) and (1.1) we get

max|z|=1 | p(z)
(z−β1)(z−β2)...(z−βk) | ≤

(n−k+1)k

(1+|βj |)k
{(∏k

l = 1
l 6= j

T
(j)
l

)
max1≤s≤n−k+1 |p(t(j)s )|

}
.

This completes the proof of Theorem 4.
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