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1 Introduction

Throughout, X will denote a connected CW-complex. Without loss of generality, we may
assume that X has a single 0-cell. Let π = π1(X,x0) be the fundamental group of our space
based at this point, and let πab = H1(X,ZZ) be the abelianization of π.

An old idea, going back to J.W. Alexander’s definition of his eponymous knot polynomial,
is to consider the homology groups of the universal abelian cover Xab, viewed as modules over
the group-algebra C[πab]. The resulting Alexander invariants, Hi(X

ab,C), play an important
role in low-dimensional topology and geometry.

Let I be the augmentation ideal of C[πab], and let Ĥi(X
ab,C) be the completion of the i-th

Alexander invariant with respect to the I-adic filtration. The first main result of this note is
about the finiteness properties of these modules (as well as their natural generalizations), when
viewed as complex vector spaces.

Our approach is via commutative differential graded algebras (for short, cdga’s) A., and
their resonance varieties Rir(A), which sit inside H1(A). We say that A is a q-model for X if
A has the same Sullivan q-minimal model as the de Rham cdga of X [18]. When the space X
has a q-model A with good finiteness properties (i.e., when A is q-finite in the sense explained
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in Section 3), we relate the finite-dimensionality of the completions of the Alexander invariants
of X to the geometry of the resonance varieties of A, as follows.

Theorem 1. Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a
q-finite q-model A. Then the complex vector space

⊕
i≤q Ĥi(X

ab,C) is finite-dimensional if and

only if 0 is an isolated point in the variety
⋃
i≤qRi1(A).

A particularly interesting class of spaces to which Theorem 1 applies consists of smooth,
connected, quasi-projective varieties, for which we may take as a suitable cdga model the Gysin
model constructed by Morgan in [14]. Our theorem extends results from both [6] and [17], where
only the formal case was considered, i.e., the case when A may be taken to be the cohomology
ring H.(X,C) with zero differential, and Rir(X) := Rir(A) are the usual resonance varieties of
X.

The classical theory of Alexander polynomials of knots and links has a vast and fruitful ge-
neralization. Given a connected, finite-type CW-complex X, the characteristic varieties Vir(X)
are certain algebraic subsets of the character torus H1(X,C∗), defined as the jump loci for
cohomology with coefficients in rank 1 local systems on X. (In the context of Kähler geometry,
these varieties are also known as the Green–Lazarsfeld sets [10, 11].) In degree i = 1, the
characteristic varieties depend only on the fundamental group π = π1(X), and provide power-
ful invariants for this group. When X is a quasi-projective manifold as above, the set V1

1 (π)
controls fibrations of X onto curves of general type, cf. Arapura [1].

Let X be a connected, quasi-projective manifold which is not a curve; that is, X = X \D,
whereX is a projective manifold of dimension at least 2, andD is a union of smooth divisors with
normal crossings. Let D =

⋃m
k=1D

k be the decomposition of D into connected components. For
each index k, let Ik be the intersection matrix associated to the divisor Dk; more specifically,
Ik = (Dk

i · Dk
j ), where Dk

i and Dk
j run through the irreducible components of Dk. Denoting

by U(u) the germ of the analytic set U at a point u, we may state our second main result, as
follows.

Theorem 2. Assume that the intersection matrix Ik is either negative or positive definite, for
each k = 1, . . . ,m. Then there is an analytic germ isomorphism H1(X,C∗)(1) ∼= H1(X,C)(0)
which induces analytic germ isomorphisms V1

r (X)(1) ∼= R1
r(X)(0), for all r ≥ 0.

In [5], the germs Vir(X)(1) were identified with the germs Rir(A)(0), with no additional as-
sumptions on X, by choosing A to be the Gysin model associated to the above compactification
of X. The main point in Theorem 2 is the replacement of the Gysin model by the smaller,
much simpler sub-cdga (H.(X,C), d = 0). This theorem extends similar results from [7, 8].

The unifying idea behind both Theorem 1 and Theorem 2 is the description of germs of
characteristic varieties of spaces in terms of suitable cdga models, established in [5] and further
elaborated in [3, 13].

Each of these theorems considers some rather intricate objects, namely, the Alexander in-
variants and the characteristic varieties of a reasonably nice space, and manages to relate these
objects (upon completion, or by passing to germs at the origin) to some simpler objects, namely,
the resonance varieties of an appropriate cdga.
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2 Some commutative algebra

Let R be a Noetherian ring, m ⊂ R a maximal ideal, and M a finitely generated R-module.
We will denote by M̂ the m-adic completion of M , and view it as a module over R̂, the m-adic
completion of R.

Let m0 = m·Rm be the maximal ideal of the localized ring Rm = S−1R, where S = R\m. The
following result says that completion with respect to m corresponds to ‘analytic localization’,
and hence is stronger than algebraic localization.

Proposition 1. The natural morphism M →Mm = S−1M induces an isomorphism M̂ → M̂m,
where the first completion is with respect to m, and the second completion is with respect to m0.

Proof: Applying Theorem 7.2 from [9], we see that M̂ = M ⊗R R̂ and M̂m = Mm ⊗Rm
R̂m.

Since Mm = M ⊗RRm, we also have M̂m = M ⊗R R̂m. Hence, it is enough to consider only the
case M = R.

To prove that R̂ ∼= R̂m, it is enough to show that there are isomorphisms

R/mk → Rm/m
k
0

for all k ∈ N. Using Proposition 2.5 from [9], we have that

Rm/m
k
0
∼= S−1R/S−1mk ∼= S−1(R/mk).

We claim that any element s ∈ S becomes invertible in R/mk. To see this, let I = mk + (s).
This ideal cannot be contained in a maximal ideal n, since mk ⊂ I ⊂ n implies, by taking
radicals, that m ⊂ n, and hence m = n. This is a contradiction, since s ∈ n \m. It follows that
I = R and hence there are elements x ∈ mk and t ∈ R such that x+ st = 1.

The claim shows that S−1(R/mk) ∼= R/mk, thereby concluding the proof.

Assume now in addition that R is a finitely generated C-algebra, and let Spec(R) be its
maximal spectrum. The support of the R-module M , denoted supp(M) is the subvariety of
Spec(R) defined by the annihilator ideal of M in R, denoted ann(M).

Proposition 2. Let M be a finitely-generated R-module, let m be a maximal ideal in R, and
let M̂ be the m-adic completion of M . Then, the following conditions are equivalent.

1. The C-vector space M̂ is finite-dimensional.

2. The point m is isolated with respect to supp(M).

Proof: Suppose first that M̂ = 0. This condition is equivalent to Mm = 0, that is, m /∈
supp(M).

Suppose now that M̂ 6= 0. By Proposition 1, dimC M̂ < ∞ if and only if dimC M̂m < ∞.
In turn, the second condition is equivalent to saying that the module M̂m has finite length; in
other words, its Krull dimension is zero, see [9, Proposition 10.8]. By [9, Corollary 12.5], this
is equivalent to the Krull dimension of Mm being equal to zero. By [9, Corollary 2.18], the last
condition is equivalent to the fact that {m} is an irreducible component of supp(M).
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3 Resonance varieties of a cdga

Let A = (A., d) be a commutative, differential graded algebra (cdga) over the field of complex
numbers. That is to say, A =

⊕
i≥0A

i is a graded C-vector space, endowed with a graded-

commutative multiplication map · : Ai ⊗Aj → Ai+j and a differential d : Ai → Ai+1 satisfying
the graded Leibnitz rule.

We say that A is q-finite, for some q ≥ 1, if A0 = C and Ai is finite-dimensional, for each
i ≤ q. Furthermore, we say that two cdga’s A and B have the same q-type if there is a zig-zag
of cdga maps from one to the other, inducing isomorphisms in cohomology in degree up to q,
and a monomorphism in cohomology in degree q + 1.

For each cohomology class ω ∈ H1(A), we make A into a cochain complex,

(A, dω) : A0 dω // A1 dω // A2 dω // · · · , (3.1)

using as differentials the maps given by

dω(α) = dα+ ω · α, (3.2)

for all α ∈ A. Computing the homology of these chain complexes for various values of the
parameter ω, and keeping track of the resulting Betti numbers yields some interesting subsets
of the affine space H1(A). More precisely, for each i and r, define

Rir(A) = {ω ∈ H1(A) | dimCH
i(A, dω) ≥ r} (3.3)

to be the i-th resonance variety of depth r of the cdga (A, d). It is readily seen that these sets
are Zariski closed subsets of the affine space H1(A), for all i ≤ q. The set Ri1(A) is simply
denoted by Ri(A).

When the differential d is zero, the resonance varieties of the algebra A are homogeneous
subsets of H1(A) = A1. In general, though, the resonance varieties of a cdga are not homoge-
neous. Here is a simple example, extracted from [13].

Example 3. Let A be the exterior algebra on generators x, y in degree 1, endowed with
the differential given by dx = 0 and dy = y ∧ x. Then H1(A) = C, generated by x, and
R1(A) = {0, 1}.

4 Algebraic models and resonance

We now return to the topological setting from the Introduction. Throughout, X will be a
connected CW-complex with finite q-skeleton, for some q ≥ 1 (for short, a q-finite space).
There are two kinds of resonance varieties that one can associate to the space X, depending on
which cdga one uses to approximate it.

The most direct approach is to take the cohomology algebra H.(X,C), endowed with the
zero differential. Let Rir(X) be the resonance varieties of this cdga. By the above discussion,
these sets are Zariski closed, homogeneous subsets of the affine space H1(X,C), for all i ≤ q.
As before, we will denote Ri1(X) by Ri(X).
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While relatively easy to compute, these varieties may not provide accurate enough informa-
tion about our space, since the cohomology algebra H.(X,C) may not be a (rational homotopy)
model for X.

We thus turn to Sullivan’s model of polynomial forms on X (see [18]). This model, which we
denote by (Ω.(X), d), is a cdga defined over Q which imitates the de Rham algebra of differential
forms on a smooth manifold; in particular, H.(Ω(X)) ∼= H.(X,C), as graded rings.

The difficulty is that, in general, Sullivan’s model does not have good finiteness properties.
So let us assume Ω(X) has the same q-type as a q-finite cdga (A, d). (As pointed out in [5, 13],
this assumption is satisfied in many situations of geometric interest.) In this case, the resonance
varieties Rir(A) are identified with Zariski-closed subsets of H1(X,C), for all i ≤ q, since

H1(A) ∼= H1(Ω(X)) ∼= H1(X,C). (4.1)

The next result provides a comparison between the two types of resonance varieties associ-
ated to our space X, under the above assumptions.

Theorem 4 ([13]). Suppose X is q-finite and Ω.(X) has the same q-type as a q-finite cdga
A. Then, for all i ≤ q, the tangent cone at 0 to the resonance variety Rir(A) is contained in
Rir(X).

As the next example shows, the inclusion from Theorem 4 can well be strict.

Example 5. Let X be the 3-dimensional Heisenberg nilmanifold. Then X is a circle bundle
over the torus, with Euler number 1; thus, H1(X,C) = C2 and all cup products of degree 1
classes vanish. It follows that R1(X) coincides with H1(X,C).

On the other hand, X admits as a model the exterior algebra A on generators x, y, z in
degree 1, with differential dx = dy = 0 and dz = x∧ y. It is now a simple matter to check that
R1(A) = {0}, thereby proving the claim.

5 Characteristic varieties

We now turn to another type of homological jump loci associated to our space X. Let π =
π1(X), and let Hom(π,C∗) be the algebraic group of complex-valued, multiplicative characters
on π, with identity 1 corresponding to the trivial representation. For each character ρ : π → C∗,
let Cρ be the corresponding rank 1 local system on X.

The characteristic varieties of X are the jump loci for homology with coefficients in such
local systems,

Vir(X) = {ρ ∈ Hom(π,C∗) | dimCHi(X,Cρ) ≥ r}. (5.1)

For each i ≤ q, the sets Vir(X) are Zariski-closed subsets of the character group Hom(π,C∗) =
H1(X,C∗). The set Vi1(X) is simply denoted by Vi(X).

When the space X has an algebraic model A with good finiteness properties, the charac-
teristic varieties of X may be identified around the identity with the resonance varieties of A.
More precisely, we have the following basic result.

Theorem 6 ([5]). Assume X is q-finite and Ω.(X) has the same q-type as a q-finite cdga
A. Then, for all i ≤ q and all r ≥ 0, the germ at 1 of Vir(X) is isomorphic to the germ
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at 0 of Rir(A). Furthermore, all these isomorphisms are induced by an analytic isomorphism
H1(X,C∗)(1) ∼= H1(A)(0) obtained from the map exp∗ : Hom(π,C)→ Hom(π,C∗).

A precursor to this theorem can be found in the pioneering work of Green and Lazarsfeld
[10, 11] on the cohomology jump loci of compact Kähler manifolds. An important particular
case (for i = 1 and under a 1-formality assumption) was first established in [7].

6 Alexander-type invariants

As before, let X be a connected CW-complex. Let ν : π � G be an epimorphism from the
fundamental group of X to an abelian group G, and let Xν be the corresponding Galois cover.
The action of the group of deck-transformations on this cover puts a C[G]-module structure on
the homology groups Hi(X

ν ,C). We shall call these modules the Alexander-type invariants of
the cover Xν → X.

Assume now that the CW-complex X has finite q-skeleton, for some q ≥ 1. Since X has
finitely many 1-cells, its fundamental group is finitely generated. Thus, the quotient G is a
finitely-generated abelian group, and the group-algebra R = C[G] is a commutative, finitely
generated C-algebra. Likewise, the Alexander-type invariants Hi(X

ν ,C) are finitely-generated
R-modules, for all i ≤ q.

Theorem 7 ([16]). With notation as above, the following equality holds:

ν∗
( ⋃
i≤q

supp(Hi(X
ν ,C))

)
= im(ν∗) ∩

( ⋃
i≤q

Vi(X)
)
,

where ν∗ : Hom(G,C∗)→ Hom(π,C∗) is the monomorphism induced by ν.

In particular, taking ν = ab, we see that the variety
⋃
i≤q Vi(X) coincides with the union

up to degree q of the support varieties of the Alexander invariants Hi(X
ab,C).

7 Completion and resonance

As above, let X be a q-finite CW-complex. Set π = π1(X), and let ν : π � G be an epimor-
phism to an abelian group G. Let ν∗ : H1(G,C) → H1(π,C) be the induced homomorphism.
Identifying H1(π,C) with H1(X,C), we may view the image of ν∗ as a linear subspace of
H1(X,C).

Theorem 8 ([17]). With notation as above, the following implication holds:

im(ν∗) ∩
(⋃
i≤q

Ri(X)

)
= {0} =⇒ dim

⊕
i≤q

Ĥi(X
ν ,C) <∞.

We now sharpen this result, under the assumption that X has a q-finite q-model A, i.e.,
Ω.(X) has the same q-type as A.

Theorem 9. Suppose that the q-finite CW-complex X has a q-finite q-model A. Then the
following conditions are equivalent.
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1. The complex vector space
⊕

i≤q Ĥi(X
ν ,C) is finite-dimensional.

2. The point 0 is an isolated point in the variety im(ν∗) ∩
(⋃

i≤qRi(A)
)
.

Proof: By Proposition 2, the C-vector space
⊕

i≤q Ĥi(X
ν ,C) is finite-dimensional if and only if

the identity character 1 ∈ Hom(G,C∗) is an isolated point in the variety
⋃
i≤q supp(Hi(X

ν ,C)).

By Theorem 7, this variety may be identified with the intersection of the algebraic subgroup
im
(
ν∗ : Hom(G,C∗) → Hom(π,C∗)

)
with the corresponding union of characteristic varieties,⋃

i≤q Vi(X).

Finally, by Theorem 6, the germ at 1 of the above intersection may be identified with the
germ at 0 of the trace on the linear subspace im

(
ν∗ : H1(G,C)→ H1(π,C)

)
of the correspond-

ing union of resonance varieties,
⋃
i≤qRi(A).

Putting these facts together completes the proof.

Taking ν = ab in the above result proves Theorem 1 from the Introduction.

8 Positive weights and formal spaces

Let A be a rationally defined cdga. We say that A has positive weights if Ai =
⊕

j∈ZZA
i
j for

each i ≥ 0, and, moreover, these vector space decompositions are compatible with the cdga
structure and satisfy the condition A1

j = 0, for all j ≤ 0. As we shall see in Section 9, the Gysin
models of a connected quasi-projective manifold have positive weights.

The existence of positive weights on a cdga model A for a space X leads to a strong con-
nection between the resonance varieties of A and X.

Theorem 10 ([13]). Assume X is q-finite, Ω.(X) has the same q-type as a q-finite cdga A with
positive weights, and the identification (4.1) preserves Q-structures. Then Rir(A) ⊆ Rir(X), for
all i ≤ q and r ≥ 0.

Under the above (more restrictive) assumptions, Theorem 8 also follows from Theorems 9
and 10. The positive weight property also enters into the following result, applicable to Gysin
models of quasi-projective manifolds.

Corollary 1. Under the assumptions from the above theorem, the complex vector space⊕
i≤q Ĥi(X

ab,C) is finite-dimensional if and only if
⋃
i≤qRi(A) = {0}.

Proof: By Theorem 9, the dimension of
⊕

i≤q Ĥi(X
ab,C) is finite if and only if 0 is an isolated

point in
⋃
i≤qRi(A). Note that the C∗-action on A1 associated to the positive weight decom-

position leaves both H1(A) and the resonance varieties Rir(A) invariant. Since plainly the orbit
C∗ · α is positive-dimensional for 0 6= α ∈ A1 and 0 belongs to the closure of this orbit, our
claim follows.
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A connected space X is said to be q-formal if Sullivan’s model Ω.(X) has the same q-type
as the cohomology algebra H.(X,C) endowed with the 0 differential. By [4], compact Kähler
manifolds are ∞-formal. For a detailed discussion of formality (especially 1-formality) in our
context, we refer to [15].

Notice that, if X is q-finite and q-formal, we may take A = (H.(X,C), d = 0) as an
appropriate cdga model in Theorem 6.

Theorem 11 ([6]). Suppose X is 1-finite and 1-formal. Then the following holds:

dim
⊕
i≤1

Ĥi(X
ab,C) <∞ ⇐⇒

⋃
i≤1

Ri(X) = {0}.

We may now generalize this result, as follows.

Theorem 12. Let X be a q-formal CW-complex with finite q-skeleton. Then

dim
⊕
i≤q

Ĥi(X
ν ,C) <∞ ⇐⇒ im(ν∗) ∩

( ⋃
i≤q

Ri(X)
)

= {0},

for any abelian Galois cover Xν of X.

Proof: By assumption, the cohomology algebra A = H.(X,C) endowed with the 0 differential
is a q-finite q-model for X. Clearly, this cdga has positive weights: simply set Aij = Ai if

j = i, and zero otherwise. Furthermore, the C∗-action on A1 associated to this positive weight
decomposition is just C∗-multiplication. The desired conclusion follows in the same way as in
Corollary 1, using the fact that each resonance variety Ri(X) is a homogeneous variety.

Example 13. Let X be the Heisenberg manifold from Example 5. This space is not 1-formal,
and R1(X) = C2; thus, neither Theorem 11 nor Theorem 8 apply in this case.

On the other hand, as we saw previously, X admits a finite model (A, d) for which R1(A) =

{0}. Thus, we may apply Theorem 9 to conclude that Ĥ1(Xab,C) is finite-dimensional. (In
fact, direct computation shows that H1(Xab,C) = C.)

9 Gysin models

Let X be a connected quasi-projective manifold. Choose a smooth compactification, X = X\D,
where D =

⋃
j∈J Dj is a finite union of smooth divisors with normal crossings. There is then an

associated rational cdga, (A., d) = A.(X,D), called the Gysin model of the compactification,
constructed as follows.

As a vector space, Ak =
⊕

p+l=k A
p,l, with

Ap,l =
⊕
|S|=l

Hp
( ⋂
i∈S

Di,Q
)

(−l), (9.1)

where S runs through the l-element subsets of J and (−l) denotes the Tate twist. The multipli-
cation in A is induced by the cup-product, and has the property that Ap,l · Ap′,l′ ⊆ Ap+p

′,l+l′ .
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The differential, d : Ap,l → Ap+2,l−1, is defined by using the various Gysin maps coming from
intersections of divisors.

Morgan proved in [14] that Ω.Q(X) has the same ∞-type as (A., d), and thus Ω.(X) has
the same ∞-type as (A., d) ⊗ C; moreover, the induced homology isomorphisms preserve Q-
structures. The weight of Ap,l is by definition p + 2l, and this clearly gives a positive-weight
decomposition of (A., d).

Note that (H.(X,C), d = 0) is a sub-cdga of A.(X,D) ⊗ C, much simpler than the whole
Gysin model. Unfortunately, this subalgebra does not give a model for X, in general.

We will need a more detailed description of (A., d) = A.(X,D) in low degrees. Omitting
the coefficients for cohomology (they will be assumed to be either Q or C for the rest of this
section), we have:

A0 = A0,0 = H0(X) (9.2)

A1 = A1,0 ⊕A0,1 = H1(X)⊕
⊕
j∈J

H0(Dj)

A2 = A2,0 ⊕A1,1 ⊕A0,2 = H2(X)⊕
⊕
j∈J

H1(Dj)⊕
⊕

{j,j′}⊂J

H0(Dj ∩Dj′),

with differential d : A0 → A1 the zero map, and differential d : A1 → A2 given by

d(η, (bj)j∈J) =
(∑
j∈J

ιj!(bj), 0, 0
)

(9.3)

for η ∈ H1(X) and bj ∈ H0(Dj). Here ιj : Dj → X denotes the inclusion and ιj! : H
0(Dj) →

H2(X) the corresponding Gysin map. Note that ιj!(1) ∈ H2(X) is the Poincaré dual of the
fundamental class [Dj ]. In analytic terms, ιj!(1) = c1(OX(Dj)); see e.g. [12, p. 141].

To conclude this section, we provide the following cohomological criterion, as a warm-up
exercise with Gysin models.

Lemma 1. Let ι : X → X be the inclusion map, and assume that each divisor Dj ⊂ X is
irreducible. Then the induced map ι∗ : H1(X) → H1(X) is an isomorphism if and only if the
classes {ιj!(1)}j∈J are linearly independent.

Proof: By functoriality of Gysin models [14], the map ι∗ may be identified with the homo-
morphism induced on H1 by the inclusion (H.(X), d = 0) ↪→ A.(X,D). By inspecting the
definition (9.3) of the differential d : A1 → A2, we infer that the induced map on H1 is an
isomorphism if and only if the restriction of d to A0,1 is injective.

10 Intersection forms and resonance

Let X be a connected projective manifold of dimension n ≥ 2, and let D be a union of smooth
divisors in X. Let {Dj}j∈J be the irreducible components of D. We may define the intersection
multiplicity Di ·Dj of two such components by the usual formula,

Di ·Dj = 〈ηiηjαn−2, [X]〉, (10.1)



266 A. Dimca, Ş. Papadima, A. Suciu

where α is a Kähler form on X and ηi ∈ H2(X,ZZ) is the cohomology class dual to [Di] ∈
H2n−2(X,ZZ). Alternatively, using the projection formula from [2, p. 11], we have that

Di ·Dj = 〈ι∗j (ηiαn−2), [Dj ]〉, (10.2)

where ιj : Dj → X is the inclusion. When n = 2 the choice of α is not necessary, since Di ·Dj

coincides then with the usual intersection number of curves on a smooth surface.
Now let (A., d) = A.(X,D) be the Gysin model (over C) associated to the divisor D ⊂ X,

as described in low degrees in the previous section. Also let X = X \ D, and let ι : X → X
be the inclusion map. The decomposition of D into connected components leads to a partition
J = J1 ∪ · · · ∪ Jm. It follows from (10.1) that the intersection matrix of D splits into blocks
I1, . . . , Im, given by the intersection matrices of the divisors Dk =

⋃
j∈Jk Dj .

Lemma 2. Suppose each of the intersection matrices I1, . . . , Im is invertible. Then the map
ι∗ : H1(X,C)→ H1(X,C) is an isomorphism.

Proof: For each j ∈ J , set ηj := ιj!(1) ∈ H2(X,C). By Lemma 1, we only need to check that
the classes {ηj}j∈J are independent.

Suppose
∑
j∈J bjηj = 0. Taking the cup product of

∑
j∈J bjηj with the classes ηiα

n−2 for

each i ∈ J and evaluating on the fundamental class [X], we see using formula (10.1) that the
vector (bj)j∈J is in the kernel of the intersection matrix of D. By our hypothesis, this matrix
is invertible. Hence, bj = 0 for all j ∈ J .

Consider now a 1-form ω ∈ H1(X,C) = H1(A) and the associated covariant derivative dω
from (3.2), given by dω(a) = aω for a ∈ A0 and

dω(η, (bj)j∈J) =
(∑
j∈J

ιj!(bj) + ω ∧ η, (bjι∗j (ω))j∈J , 0
)

(10.3)

for (η, (bj)j∈J) ∈ A1. With a stronger hypothesis on the divisor D, we obtain the following
lemma.

Lemma 3. Suppose each of the intersection matrices I1, . . . , Im is definite. If dω(η, (bj)j∈J) =
0, then bj = 0 for all j ∈ J .

Proof: Let D1, . . . , Dm be the connected components of D, and let {Dj}j∈Jk be the set of
irreducible components of Dk. Let J ′k be the set of indices i ∈ Jk for which ι∗i (ω) = 0, and set
J ′′k = Jk \ J ′k. The intersection matrix Ik contains the diagonal block I ′k. Since, by assumption,
Ik is a definite matrix, each of these blocks is an invertible matrix.

If i ∈ J ′′k , then the condition dω(η, (bj)j∈J) = 0 implies that bi = 0. If i ∈ J ′k, let us apply
ι∗i to the equality

∑
j∈J ιj!(bj) + ω ∧ η = 0. Using formula (10.2), we find that the vector

(bj)j∈
⋃m

k=1 J
′
k

belongs to the kernel of the invertible matrix I ′ with blocks I ′1, . . . , I
′
m.

Observe now that the hypothesis of Theorem 2 coincides with that of Lemma 3, and implies
that of Lemma 2. Thus, we may invoke these two lemmas in order to finish the proof of the
theorem, as shown next.
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Proof: Recall that X = X\D, and (A., d) is the Gysin model (over C) associated to the divisor
D ⊂ X. By Theorem 6, then, there is an analytic isomorphism H1(X,C∗)(1) ∼= H1(A)(0) which
identifies V1

r (X)(1) with R1
r(A)(0), for all r ≥ 0.

On the other hand, the inclusion (H.(X,C), d = 0) ↪→ (A., d) identifies H1(X,C) with
H1(A), by Lemma 2, and R1

r(X) with R1
r(A) for all r ≥ 0, by Lemma 3, and we are done.

Corollary 2. Suppose that the intersection matrices associated to the divisor D = X \X are
definite. Then for any fixed projective curve Cg of genus g > 1, the inclusion ι : X → X induces
a bijection between the equivalence classes of fibrations X → Cg (i.e., surjective morphisms with
connected general fiber) and the equivalence classes of fibrations defined on X.

Proof: In view of the relationship between fibrations X → Cg and irreducible components of
V1
1 (X)(1), and likewise for X, established by Arapura in [1], the desired conclusion follows from

Theorem 2, in conjunction with the identification V1
1 (X)(1) ∼= R1

1(X)(0) from [7].

11 Examples and discussion

In this last section, we make a few additional remarks and we examine several classes of examples
related to Theorem 2.

Remark 14. There is an alternate way to prove Corollary 2, one which is both more direct, and
also covers the cases g = 0 and g = 1. If dimX = 2, Zariski’s Lemma (see Lemma (8.2) from
[2, p. 90]), when coupled with our assumption on D prevents any of the connected components
Dk of D to be a fiber of a fibration X → Cg. The general case can be reduced to the surface
case by taking a general linear section.

Remark 15. It may happen that the map ι∗ : H1(X,C) → H1(X,C) is an isomorphism, yet
the conclusion of Theorem 2 does not hold.

For instance, take X = C1 × C1 to be the product of two elliptic curves, and D to be the
diagonal in the product. In view of Lemma 1 (see also [12, p. 64]), the map ι∗ is an isomorphism.
On the other hand, V1

1 (X) is 2-dimensional at 1, by [7, Example 10.2], yet R1
1(X) = {0}, by

an easy computation.

Example 16. Let S be a normal, projective, connected complex surface. Then the singular lo-
cus of S is a finite set, say {a1, . . . , am}. Take X to be the regular locus, Sreg = S\{a1, . . . , am}.
By resolving each of these singularities, we obtain a surface X as in Theorem 2: indeed, the
corresponding matrices Ik are all negative definite in this case, in view of the Mumford–Grauert
criterion (see Theorem 2.1 from [2, p. 72]). The case S = Sreg was treated in [7].

Example 17. Fix a set of strictly positive weights w = (w1, w2, w3) and let f ∈ C[x, y, z] be a
polynomial such that the affine surface Y given by the equation f = 0 in C3 has only isolated
singularities, and the top degree part fd of f with respect to the weights w defines an isolated
singularity at the origin of C3.
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Consider the closure Z of Y in the weighted projective space P(w1, w2, w3, 1). Then Z =
Y ∪ D, where D is a smooth curve such that D · D > 0. It follows as above that the surface
X = Yreg, the smooth part of Y , satisfies the assumption of our Theorem 2. The case of
a weighted homogeneous polynomial (i.e., when f = fd) was considered in [8], where it was
shown that such surfaces X may not be 1-formal.

Example 18. Let M be the 3-dimensional Heisenberg nilmanifold discussed in Example 5, as
well as in [7, Example 6.17] and [8, Example 8.6]. Since M is an S1-bundle with Euler number
1, it has the same homotopy type as a C∗-bundle X over an elliptic curve C = C1, associated
to the line bundle L = OC(s). We can construct a compactification X by taking the projective
bundle P(E) associated to the rank two vector bundle E = L ⊕ OC . Indeed, if D0 and D∞
denote the divisors P(0⊕OC) ⊂ P(E) and P(L⊕ 0) ⊂ P(E), then clearly X = X \ (D0 ∪D∞).

It is readily seen that D2
0 = 1 and D2

∞ = −1, which shows that we can apply Theorem
2. Using the description of the cohomology of a projective bundle, it follows that H1(C,C) =
H1(X,C) and H2(C,C) is a subspace of H2(X,C), whence R1

1(X)(0) = {0}. Theorem 2 now
shows that there are no positive-dimensional components of V1

1 (X) passing through the origin.
This behavior was predicted in Example 5, where it was pointed out that R1

1(A) = {0}, for
an explicit model A of M . The Gysin model A.(X,D) for X can also be computed explicitly,
but it is slightly more complicated than the model A.. For instance, the Hilbert series of A. is
(1 + t)3, whereas the Hilbert series of A.(X,D) is (1 + t)4.
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