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Abstract

Let I ) J be two squarefree monomial ideals of a polynomial algebra over a field generated
in degree ≥ d, resp. ≥ d + 1 . Suppose that I is generated by three monomials of degrees d.
If the Stanley depth of I/J is ≤ d + 1 then the usual depth of I/J is ≤ d + 1 too.
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1 Introduction

Let S = K[x1, . . . , xn], n ∈ N, be a polynomial ring over a field K. Let I ) J be two squarefree
monomial ideals of S and u ∈ I \ J a monomial in I/J . For Z ⊂ {x1, . . . , xn} with (J : u) ∩
K[Z] = 0, let uK[Z] be the linear K-subspace of I/J generated by the elements uf , f ∈ K[Z].
A presentation of I/J as a finite direct sum of such spaces D : I/J =

⊕r
i=1 uiK[Zi] is called a

Stanley decomposition of I/J . Set sdepth(D) := min{|Zi| : i = 1, . . . , r} and

sdepth I/J := max{sdepth (D) : D is a Stanley decomposition of I/J}.

Stanley’s Conjecture says that the Stanley depth sdepthS I/J ≥ depthS I/J . The Stanley
depth of I/J is a combinatorial invariant and does not depend on the characteristic of the field
K. If J = 0 then this conjecture holds for n ≤ 5 by [12], or when I is an intersection of four
monomial prime ideals by [11], [13], or an intersection of three monomial primary ideals by [23], or
a monomial almost complete intersection by [3]. The Stanley depth and the Stanley’s Conjecture
are similarly given when I, J are not squarefree. In the non squarefree monomial ideals a useful
inequality is sdepth I ≤ sdepth

√
I (see [8, Theorem 2.1]).

Suppose that I is generated by squarefree monomials of degrees ≥ d for some positive integer
d. We may assume either that J = 0, or J is generated in degrees ≥ d + 1 after a multigraded
isomorphism. We have depthS I ≥ d by [5, Proposition 3.1] and it follows depthS I/J ≥ d (see [15,
Lemma 1.1]). Depth of I/J is a homological invariant and depends on the characteristic of the
field K. The Stanley decompositions of S/J corresponds bijectively to partitions into intervals of
the simplicial complex whose Stanley-Reisner ring is S/J . If Stanley’s Conjecture holds then the
simplicial complexes are partitionable (see [4]). Using this idea an equivalent definition of Stanley’s
depth of I/J was given in [5].

Let PI\J be the poset of all squarefree monomials of I\J with the order given by the divisibility.
Let P be a partition of PI\J in intervals [u, v] = {w ∈ PI\J : u|w,w|v}, let us say PI\J = ∪i[ui, vi],
the union being disjoint. Define sdepthP = mini deg vi. Then sdepthS I/J = maxP sdepthP,
where P runs in the set of all partitions of PI\J (see [5], [21]).
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For more than thirty years the Stanley Conjecture was a dream for many people working in
combinatorics and commutative algebra. Many people believe that this conjecture holds and tried
to prove directly some of its consequences. For example in this way a lower bound of depth given
by Lyubeznik [10] was extended by Herzog at al. [6] for sdepth.

Some numerical upper bounds of sdepth give also upper bounds of depth, which are independent
of char K. More precisely, write ρj(I \ J) for the number of all squarefree monomials of degrees j
in I \ J .

Theorem 1.1. (Popescu [16, Theorem 1.3]) Assume that depthS(I/J) ≥ t, where t is an integer

such that d ≤ t < n. If ρt+1(I \ J) < αt :=
∑t−d

i=0(−1)t−d+iρd+i(I \ J), then depthS(I/J) = t
independently of the characteristic of K.

The proof uses Koszul homology and is not very short. An extension is given below.

Theorem 1.2. ( Shen [20, Theorem 2.4]) Assume that depthS(I/J) ≥ t, where t is an integer such

that d ≤ t < n. If for some k with d+1 ≤ k ≤ t+1 it holds ρk(I\J) <
∑k−1

j=d(−1)k−j+1
(
t+1−j
k−j

)
ρj(I\

J), then depthS(I/J) = t independently of the characteristic of K.

Shen’s proof is very short, based on a strong tool, namely the Hilbert depth considered by
Bruns-Krattenhaler-Uliczka [2] (see also [22], [7]). Thus it is important to have the right tool.

Let r be the number of the squarefree monomials of degrees d of I and B (resp. C) be the
set of the squarefree monomials of degrees d + 1 (resp. d + 2) of I \ J . Set s = |B|, q = |C|. If
r > s then Theorem 1.1 says that depthS I/J = d, namely the minimum possible. This was done
previously in [15] (the idea started in [14]). Moreover, Theorem 1.1 together with Hall’s marriage
theorem for bipartite graphs gives the following:

Theorem 1.3. (Popescu [15, Theorem 4.3]) If sdepthS I/J = d then depthS I/J = d, that is
Stanley’s Conjecture holds in this case.

The purpose of our paper is to study the next step in proving Stanley’s Conjecture namely the
following weaker conjecture.

Conjecture 1.4. Suppose that I ⊂ S is minimally generated by some squarefree monomials
f1, . . . , fk of degrees d, and a set H of squarefree monomials of degrees ≥ d + 1. Assume that
sdepthS I/J = d+ 1. Then depthS I/J ≤ d+ 1.

The following theorem is a partial answer.

Theorem 1.5. The above conjecture holds in each of the following two cases:

1. k = 1,

2. 1 < k ≤ 3, H = ∅.

When k = 1 and s 6= q + 1 the result was stated in [17] and [18]. The theorem follows from
Proposition 3.1 and Theorems 2.3, 3.4.

We owe thanks to the Referee, who noticed some mistakes in a previous version of this paper,
especially in the proof of Lemma 3.3.

2 Cases r = 1 and d = 1

Let I ) J be two squarefree monomial ideals of S. We assume that I is generated by squarefree
monomials of degrees ≥ d for some d ∈ N. We may suppose that either J = 0, or is generated
by some squarefree monomials of degrees ≥ d + 1. As above B (resp. C) denotes the set of the
squarefree monomials of degrees d+ 1 (resp. d+ 2) of I \ J .
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Lemma 2.1. Suppose that I ⊂ S is minimally generated by some square free monomials {f1, . . . , fr}
of degrees d, and a set E of square free monomials of degrees ≥ d+ 1. Assume that sdepthS I/J ≤
d + 1 and the above Conjecture 1.4 holds for k < r and for k = r, |H| < |E| if E 6= ∅. If either
C 6⊂ (f2, . . . , fr, E), or C 6⊂ (f1, . . . , fr, E \ {a}) for some a ∈ E then depthS I/J ≤ d+ 1.

Proof: Let c ∈ (C\(f2, . . . , fr, E)). Then c ∈ (f1), let us say c = f1xtxp. Set I ′ = (f2, . . . , fr, E,B\
{f1xt, f1xp}), J ′ = I ′ ∩ J . In the following exact sequence

0→ I ′/J ′ → I/J → I/(J + I ′)→ 0

the last term is isomorphic with (f1)/(J + I ′) ∩ (f1) and has depth and sdepth ≥ d + 2 because
c 6∈ (J + I ′) (here it is enough that depth ≥ d+ 1, which is easier to see). By [19, Lemma 2.2] we
get sdepthS I

′/J ′ ≤ d + 1. It follows that depthS I
′/J ′ ≤ d + 1 by hypothesis and so the Depth

Lemma gives depthS I/J ≤ d+ 1.
Now, let I ′′ = (f1, . . . , fr, E \ {a}) for some a ∈ E and c ∈ C \ I ′′. In the following exact

sequence

0→ I ′′/I ′′ ∩ J → I/J → I/(J + I ′′)→ 0

the last term is isomorphic with (a)/(a) ∩ (J + I ′′) and has depth and sdepth ≥ d + 2 because
c 6∈ J + I ′′ and as above we get depthS I/J ≤ d+ 1.

The following lemma could be seen somehow as a consequence of [17, Theorem 1.10], but we
give here an easy direct proof.

Lemma 2.2. Suppose that r = 1, let us say I = (f) and E = ∅. If sdepthS I/J = d+1, d = deg f
then depthS I/J ≤ d+ 1.

Proof: First assume that d > 0. Note that I/J ∼= S/(J : f). We have sdepthS I/J = sdepthS S/(J :
f) and depthS I/J = depthS S/(J : f). It is enough to treat the case d = 1. We may assume that
x1|f and using [5, Lemma 3.6] after skipping the variables of f/x1 we may reduce our problem to
the case d = 1.

Therefore we may assume that d = 1. If C = ∅ then x1xtxk ∈ J for all 1 < t < k ≤ n and so
(J : x1) contains all squarefree monomials of degree two in xt, t > 1, that is the annihilator of the
element induced by x1 in I/J has dimension ≤ 2. It follows that depthS I/J ≤ 2.

If let us say c = x1x2x3 ∈ C then in the exact sequence

0→ (B \ {x1x2, x1x3})/J ∩ (B \ {x1x2, x1x3})→ I/J → I/J + (B \ {x1x2, x1x3})→ 0

the last term is isomorphic with (x1)/(J, (B \ {x1x2, x1x3}) and it has depth ≥ 2 and sdepth 3
because it has just the interval [x1, c]. The first term is not zero since otherwise sdepthS I/J = 3,
which is false. Then the first term has sdepth ≤ 2 by [19, Lemma 2.2] and so it has depth ≤ 2
by[15, Theorem 4.3]. Now it is enough to apply the Depth Lemma.

Now assume that d = 0, that is I = S. Set S′ = S[xn+1], I ′ = (xn+1), J ′ = xn+1J . We have
sdepthS′ I ′/J ′ = sdepthS′ S′/JS′ = 1 + sdepthS S/J = 2 using [5, Proposition 3.6]. From above
we get depthS′ I ′/J ′ ≤ 2 and it follows depthS I/J ≤ 1.

The following theorem extends the above lemma and [18], its proof is given in the last section.

Theorem 2.3. Suppose that I ⊂ S is minimally generated by a squarefree monomial {f}, of
degree d and a set E 6= ∅ of monomials of degrees d+ 1. Assume that sdepthS I/J ≤ d+ 1. Then
depthS I/J ≤ d+ 1.

Lemma 2.4. Suppose that I = (x1, x2), E = ∅. If sdepthS I/J = 2 then
depthS I/J ≤ 2.
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Proof: By [17, Proposition 1.3] we may suppose that C 6⊂ (x2). Then apply Lemma 2.1, its
hypothesis is given by Theorem 2.3.

We need the following lemma, its proof is given in Section 4.

Lemma 2.5. Suppose that I ⊂ S is minimally generated by some squarefree monomials {f1, f2, f3}
of degree d and that sdepth I/J = d+ 1. If there exists c ∈ C ∩ ((f3) \ (f1, f2)) then depthS I/J ≤
d+ 1.

Proposition 2.6. Suppose that I = (x1, x2, x3), E = ∅. If sdepthS I/J = 2 then depthS I/J ≤ 2.

Proof: By [17, Proposition 1.3] we may suppose that C 6⊂ (x1, x2). Then we may apply Lemma
2.5.

Remark 2.7. When J = 0 the above proposition follows quickly from [1] (see also [5]).

3 Case r, d > 1

Proposition 3.1. Suppose that I ⊂ S is generated by two squarefree monomials {f1, f2} of degrees
d. Assume that sdepthS I/J ≤ d+ 1. Then depthS I/J ≤ d+ 1.

Proof: We may suppose that I is minimally generated by f1, f2 because otherwise apply the
Theorem 2.3. Let w be the least common multiple of f1, f2. First suppose that C 6⊂ (w). This is
the case when w ∈ J , or degw > d + 2, or w ∈ C and q > 1. Then it is enough to apply Lemma
2.1, the case r = 1 being done in the Theorem 2.3. If q = 1 then r > q and by [20, Corollary 2.6]
(see also Theorem 1.2) we get depthS I/J ≤ d + 1. Assume that w ∈ B. After renumbering the
variables xi we may suppose that C = {wxi : 1 ≤ i ≤ q} and so in B we have at least the elements
of the form w, f1xi, f2xi, 1 ≤ i ≤ q . Thus s ≥ 2q + 1 > q + 2 when q > 1 and by [16, Theorem
1.3] (see Theorem 1.1) we are done.

Lemma 3.2. Suppose that I ⊂ S is generated by three squarefree monomials
{f1, f2, f3} of degrees d, sdepthS I/J = d + 1 and let wij be the least common multiple of fi, fj,
1 ≤ i < j ≤ 3. If w12, w13, w23 ∈ B and are different then depthS I/J ≤ d+ 1.

Proof: After renumbering the variables xi we may assume that f1 = x1 · · ·xd and f2 = x1 · · ·xd−1xd+1.
We see that f3 must have d− 1 variables in common with f1 and also with f2. If f3 /∈ (x1...xd−1)
then we may suppose that f3 = x2...xdxd+1 and w12 = w13, which is false. It remains that
f3 ∈ (x1 · · ·xd−1) so f3 = x1 · · ·xd−1xd+2. But this case may be reduced to d = 1 which is done in
Proposition 2.6.

Lemma 3.3. If C ⊂ (w12, w13, w23) and sdepthS I/J ≤ d+ 1 then depthS I/J ≤ d+ 1.

Proof: Note that if q < r = 3 then depthS I/J ≤ d + 1 by [20, Corollary 2.6] (see here Theorem
1.2). Suppose that q > 2.

Now assume that all wij ∈ B. Set Cij = C ∩ (wij), qij = |Cij | and Bij the set of all b ∈ B
which divide some c ∈ Cij . If all wij are equal, let us say wij = w, then after renumbering the
variables xi the monomials of C have the form wxt, 1 ≤ t ≤ q. Thus B contains w and fjxt for
j ∈ [3] and t ∈ [q]. It follows that s ≥ 3q + 1 > q + 3 for q > 1 and so depthS I/J ≤ d+ 1 by [16,
Theorem 1.3]. Then we may suppose that all wij are different and we may apply Lemma 3.2.

Next assume that w12, w13 ∈ B and w23 ∈ C. As above we can assume that f2 = x1 · · ·xd,
f3 = x3 · · ·xd+2 and f1 = x2 · · ·xd+1. We have C ⊂ C12∩C13, and q = q12 + q13−1 because w23 ∈
C12 ∩C13. As in the case of r = 2 we have |B12| = 2q12 + 1 and |B13 \B12| ≥ 2q13−min{q12, q13}.
It follows that s ≥ 2q+4−min{q12, q13} > q+3, which implies depthS I/J ≤ d+1 by [16, Theorem
1.3]. Note that if w23 ∈ J , or degw23 > d+ 2 then q = q12 + q13 and we get in the same way that
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s ≥ 2q + 2−min{q12, q13} ≥ q + 3. Thus depthS I/J ≤ d+ 1 unless q12 = q13 = 1. The last case
is false because q > 2.

Suppose that all wij are different, w12 ∈ B and w23, w13 ∈ C. We may assume that f2 =
x1 · · ·xd, f3 = x3 · · ·xd+2 and f1 = x2 · · ·xd · xd+3. We have q = q12 + 2, B12 ∩ B13 ⊂
{xd+1f1, xd+2f1} and so |B13\B12| ≥ 2. Also note that B23∩(B12∪B13) ⊂ {xd+1f2, xd+2f2, x2f3}
and so |B23 \ (B12 ∪B13)| ≥ 1. It follows that s ≥ 2q12 + 1 + 2 + 1 = 2q. If q > 3 we get s > q + 3
and so depthS I/J ≤ d+ 1 by [16]. If q = 3 then q12 = 1 and so B12 = {w12, xtf1, xtf2} for some
xt 6 |f1, xt 6 |f2. If t = d+1 or t = d+2 then we see that |B13 \B12| ≥ 3 and so s > 6 = r+q, which
is enough. If t > d+ 3 then s is even bigger than 7. If let us say w23 ∈ J , or degw23 > d+ 2 then
q = q12 + 1 and as above s ≥ 2q12 + 1 + 2 = 2q+ 1 > q+ 3 because q ≥ 3, which is again enough. If
also w13 ∈ J , or degw13 > d+ 2 then q = q12 and as above s ≥ 2q12 + 1 = 2q + 1 > q + 3 because
q ≥ 3.

Suppose that w12 ∈ B and w23 = w13 ∈ C. We may assume that f2 = x1 · · ·xd, f3 = x3 · · ·xd+2

and f1 = x1 · · ·xd−1 · xd+2. We have q = q12 and B12 ⊃ B13. Thus s ≥ 2q12 + 1 = 2q + 1 > q + 3
and so again depthS I/J ≤ d+ 1.

Finally if all wij are in C (they must be different, otherwise q ≤ 2 which is false) then q = 3 ,
qij = 1 and we get s ≥ 12 > q + 3 which is again enough.

Theorem 3.4. Suppose that I ⊂ S is generated by three squarefree monomials {f1, f2, f3} of
degrees d, and sdepthS I/J = d+ 1. Then depthS I/J ≤ d+ 1.

Proof: We may suppose that I is minimally generated by f1, f2, f3 because otherwise apply
Proposition 3.1. If C 6⊂ (w12, w13, w23) then apply Lemma 2.5. Thus we may suppose that
C ⊂ (w12, w13, w23) and we may apply Lemma 3.3.

4 Proof of Lemma 2.5

Let c = f3xi3xj3 and set I ′ = (f1, f2, B \ {f3xi3 , f3xj3}), J ′ = I ′ ∩ J . Consider the following exact
sequence

0→ I ′/J ′ → I/J → I/(I ′ + J)→ 0.

The last term has sdepth = d + 2 so by [19, Lemma 2.2] we get that the first term has
sdepth ≤ d+ 1. If depth I ′/J ′ ≤ d+ 1 then by Depth Lemma we are done. It is enough to show
that sdepthS I

′/J ′ = d + 1 implies depthS I
′/J ′ ≤ d + 1, or directly depthS I/J ≤ d + 1. Note

that if sdepthS I
′/J ′ = d then depthS I

′/J ′ = d by Theorem 1.3. Let B′, C ′, E′ be similar to B,
C, E in the case of I ′/J ′.

We see that E′ ⊂ (f3). We may suppose that C ′ ⊂ ((f1) ∩ (f2)) ∪ (E′) and E′ 6= ∅, otherwise
apply Lemma 2.1 with the help of Theorem 2.3.

Set I ′E = (f1, f2), J ′E = I ′E ∩ J ′ and for all i ∈ [n] \ supp f1 such that f1xi ∈ B′ \ (f2)
set I ′i = (f2, B \ {f1xi}), J ′i = I ′i ∩ J ′. We may suppose that sdepthS I

′
E/J

′
E ≥ d + 2 and

sdepthS I
′
i/J
′
i ≥ d+ 2. Indeed, otherwise one of the left terms from the following exact sequences

0→ I ′E/J
′
E → I ′/J ′ → I ′/I ′E + J ′ → 0,

0→ I ′i/J
′
i → I ′/J ′ → I ′/I ′i + J ′ → 0,

have depth ≤ d + 1 by Proposition 3.1 and Theorem 2.3. With the Depth Lemma we get
depthS I

′/J ′ ≤ d + 1 since the right terms above have depth ≥ d + 1. Let PE , Pi be parti-
tions of I ′E/J

′
E , I ′i/J

′
i with sdepth d + 2. We may choose PE and Pi such that each interval

starting with a squarefree monomial of degree ≤ d+ 1 ends with a monomial from C ′.
Our goal is mainly to reduce our problem to the case when w13, w12 ∈ B′ ∪ C ′.
Case 1 C ′ 6⊂ (f1, f3) ∩ (f2, f3)
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Let for example c = f1xuxv ∈ C ′ \ (f2, f3), set I ′′ = (f2, B
′ \ {f1xu, f1xv}), J ′′ = I ′′ ∩ J ′ and

consider the exact sequence:

0→ I ′′/J ′′ → I ′/J ′ → I ′/(I ′′ + J ′)→ 0.

The last term has sdepth d+ 2 so by [19, Lemma 2.2] we see that the first term has sdepth ≤
d + 1. Using Theorem 2.3 we have depthS I

′′/J ′′ ≤ d + 1 and then by the Depth lemma we get
depthS I

′/J ′ ≤ d+ 1 ending Case 1.
Let f1 = x1...xd , in PE we have the intervals [f1, c1], [f2, c2] and so at least one of c1, c2, let

us say c1 = f1xixj , is not a multiple of w12. In Pi we have the interval [b, c1] for some b ∈ E′,
otherwise replacing the interval [f1xj , c1] or the interval [c1, c1] with the interval [f1, c1] we get a
partition P for I ′/J ′ with sdepth = d+ 2.

Case 2 There exists t ∈ [n], t 6∈ supp f1 ∪ {i} such that Pi contains the interval [f1xt, f1xtxi],
or [f1xtxi, f1xtxi].

In this case changing in Pi the hinted interval with [f1, f1xtxi] we get a partition of I ′/J ′ with
sdepth ≥ d+ 2 which is false.

As we have seen above we may suppose that in Pi there exists an interval [b, c1] with c1 ∈
(f1) ∩ (E′) ⊂ (w13). It follows that w13 ∈ B′ ∪ C ′. We may assume that if w13 ∈ B′ then
xi 6 |w13, otherwise change i by j. Thus c1 = xiw13 or c1 = w13. If C ′ ∩ (f1xi) = {c1} then in
Pj we have the interval [f1xi, c1], that is we are in Case 2. Then there exists another monomial
c′ ∈ C ′ ∩ (f1xi). We may suppose that [c′, c′] is not in Pi, because otherwise we are in Case 2.
If we have [u, c′] in Pi for some u ∈ E′ then c′ ∈ (w13) and so c′ = c1 if w13 ∈ C ′, otherwise
c′ = xiw13 = c1 because xi 6 |w13. Contradiction! Then in Pi we have the interval [f2, c

′] or the
interval [f2xk, c

′] for some k. Thus c′ ∈ (w12) and so w12 ∈ B′ ∪C ′. Note that w12 6= w13 because
c1 ∈ (w13) \ (f2).

Case 3 w12, w13 ∈ C ′.
In this case c1 = w13, c′ = w12 and so f2, f3 ∈ (xi). Then in Pi we have the interval

[f1xj , f1xjxu], u 6= i and f1xjxu /∈ (f2, f3) because f1xjxu /∈ (xi), that is we are in Case 1.
Case 4 w12 ∈ B′, w13 ∈ C ′.
Thus c1 = w13. We may assume that w12 = x1...xd+1, f2 = x2...xd+1, i 6= d + 1 6= j and

c′ = x1...xd+1xi. We also see that f3 ∈ (xixj) because c1 = w13. In Pi we have the interval
[f1xj , f1xjxu], u 6= i. If u 6= d + 1 then f1xjxu /∈ (f2, f3), that is we are in Case 1. Otherwise
u = d + 1, and so xjw12 ∈ C ′, in particular f2xj ∈ B′. We see that in Pi we can have either
w12 ∈ [f2, c

′] or there exists an interval [w12, w12xk]. If k = j then w12xk is the end of the interval
starting with f1xj , which is false. If k = i then we are in Case 2. Thus i 6= k 6= j.

When in Pi there exists the interval [w12, w12xk] then there exists also the interval [f1xk, f1xkxt].
If f1xkxt ∈ (f2) then t = d + 1 and so f1xkxt = xkw12 which is not possible because xkw12 is
in [w12, xkw12]. If f1xkxt ∈ (f3) then {k, t} = {i, j} which is not possible since k 6∈ {i, j}. Then
f1xkxt /∈ (f2, f3), that is we are in Case 1. It remains the case when w12 is in the interval
[f2, c

′]. In Pi we have an interval [f2xj , f2xlxj ] for some l. If f2xjxl ∈ (f1) then l = 1 and so
f2xjxl = xjw12 which is already the end of the interval starting with f1xj . Contradiction ! Thus
f2xlxj ∈ (f3), otherwise we are in Case 1. We get l = i and changing [f2, c

′], [f2xj , f2xixj ] with
[f2, f2xixj ], [w12, c

′] we arrive in Case 2.
Case 5 w12 ∈ C ′, w13 ∈ B′.
Thus we may assume that w12 = c′ = x1...xd+1xi, f2 = x3...xd+1xi. As c1 ∈ (w13) we have

w13 ∈ {f1xi, f1xj}. If w13 = f1xi then in Pi we have an interval [f1xj , f1xjxu]. If f1xjxu ∈ (f2)
then u = i. Also if f1xjxu ∈ (f3) we get f1xjxu ∈ (w13) and we get again u = i, that is we are in
Case 2. Thus f1xjxu /∈ (f2, f3) and we arrive in Case 1.

Then, we may suppose that w13 = f1xj . Since f1xd+1|c′ we see that f1xd+1 ∈ B′. In Pi we
can have the interval [f1xd+1, f1xd+1xm]. If f2xd+1xm ∈ (f2) then m = i, that is we are in Case
2. Then f2xd+1xm ∈ (f3) because otherwise we are in Case 1. It follows that m = j and we have
[f1xd+1, f1xd+1xj ] in Pi. Then the interval [f1xj , f1xjxp] existing in Pi has p 6= j and also p 6= i
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because otherwise we are in Case 2. Thus we must also have an interval [f1xp, f1xpxk] with k 6= j
and also k 6= i, otherwise we are in Case 2. Then f1xpxk /∈ (f2, f3), that is we are in Case 1.

Case 6 w12, w13 ∈ B′.
We may assume that w12 = x1...xd+1, f2 = x2...xd+1 and c′ = x1...xd+1xi. If w23 ∈ B′ then

all wij are different and by Lemma 3.2 we get depthS I/J ≤ d + 1. Thus we may suppose that
w23 ∈ C ′. We may choose f3 = x1x3...xdxi or f3 = x1x3...xdxj . If f3 = x1x3...xdxi then in Pi we
have as above the interval [f1xj , f1xd+1xj ]. Indeed, if we have [f1xj , f1xmxj ] then f1xmxj 6∈ (f3)
and so f1xmxj ∈ (f2), otherwise we are in Case 1. It follows m = d+1. As f2xj |xjw12 = f1xd+1xj
we get f2xj ∈ B′. Let [f2, f2xjxk] or [f2xj , f2xjxk] be the existing interval of Pi containing f2xj .
Note that f2xjxk 6∈ (f3) and if f2xjxk ∈ (f1) then f2xjxk = xjw12 which appeared already in the
previous interval. Thus f2xjxk /∈ (f1, f3), that is we are in Case 1.

It remains that f3 = x1x3...xdxj and, as before, we have in Pi the interval [f1xj , f1xd+1xj ]. We
see then f2xj ∈ B′ and we must have also an interval [f2, f2xjxk] or [f2xj , f2xjxk]. If f2xjxk ∈
(f1) ∪ (f3) then we get k = 1 and so f2xjxk = xjw12 which appeared in the previous interval. It
follows that f2xjxk /∈ (f1, f3), that is we are in Case 1.

5 Proof of Theorem 2.3

Suppose that E 6= ∅ and s ≤ q+1. We may assume that |B\E| ≥ 2 because otherwise depthS I/J ≤
d+ 1 since the element induced by f in I/J is annihilated by all variables but one and those from
supp f . For b = fxi ∈ B set Ib = (B \ {b}), Jb = J ∩ Ib. If sdepthS Ib/Jb ≥ d + 2 then let Pb be
a partition on Ib/Jb with sdepth d+ 2. We may choose Pb such that each interval starting with a
squarefree monomial of degree d, d+ 1 ends with a monomial of C. In Pb we have some intervals
for all b′ ∈ B \ {b}] an interval [b′, cb′ ]. We define h : B \ {b} → C by b′ → cb′ . Then h is an
injection and | Imh| = s − 1 ≤ q (if s = 1 + q then h is a bijection). We may suppose that all
intervals of Pb starting with a monomial v of degree ≥ d+ 2 have the form [v, v].

Lemma 5.1. Suppose that the following conditions hold:

1. s ≤ q + 1,

2. sdepthS Ib/Jb ≥ d+ 2, for a b ∈ B ∩ (f),

3. C ⊂ ((f) ∩ (E)) ∪ (∪a,a′∈E,a6=a′(a) ∩ (a′)).

Then either sdepthS I/J ≥ d + 2, or there exists a nonzero ideal I ′ ( I generated by a subset of
{f} ∪B such that sdepthS I

′/J ′ ≤ d+ 1 for J ′ = J ∩ I ′ and depthS I/(J, I
′) ≥ d+ 1.

Proof: Consider h as above for a partition Pb with sdepth d + 2 of Ib/Jb which exists by (2). A
sequence a1, . . . , ak is called a path from a1 to ak if ai ∈ B \ {b}, i ∈ [k], ai 6= aj for 1 ≤ i < j ≤ k,
ai+1|h(ai) for 1 ≤ i < k, and h(ai) 6∈ (b) for 1 ≤ i < k. This path is bad if h(ak) ∈ (b) and it is
maximal if all divisors from B of h(ak) are in {b, a1, . . . , ak}. If a = a1 we say that the above path
starts with a. Since |B \ E| ≥ 2 there exists a1 ∈ B \ {b}. Set c1 = h(a1). If c1 ∈ (b) then the
path {a1} is maximal and bad. By recurrence choose if possible ap+1 to be a divisor from B of cp
which is not in {b, a1, . . . , ap} and set cp = h(ap), p ≥ 1. This construction ends at step p = e if
all divisors from B of ce−1 are in {b, a1, . . . , ae−1}. If ci 6∈ (b) for 1 ≤ i < e− 1 then {a1, . . . , ae−1}
is a maximal path. If ce−1 ∈ (b) then this path is also bad. We have two cases:

1) there exist no maximal bad path starting with a1,
2) there exists a maximal bad path starting with a1.
In the first case, set T1 = {b′ ∈ B : there exists a path a1, . . . , ak with ak = b′}, G1 = B \ T1

and I ′1 = (f,G1), I ′′1 = (G1), J ′1 = I ′1 ∩ J , J ′′1 = I ′′1 ∩ J . Note that I ′′1 6= 0 because b ∈ I ′′1 . Consider
the following exact sequence

0→ I ′1/J
′
1 → I/J → I/(J, I ′1)→ 0.
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If T1 ∩ (f) = ∅ then the last term has depth ≥ d+ 1 and sdepth ≥ d+ 2 using the restriction of Pb

since h(b′) 6∈ I ′1, for all b′ ∈ T1. If the first term has sdepth ≥ d + 2 then by [19, Lemma 2.2] the
middle term has sdepth ≥ d + 2. Otherwise, the first term has sdepth ≤ d + 1 and we may take
I ′ = I ′1.

If let us say a ∈ (f) for some a ∈ T1 then in the following exact sequence

0→ I ′′1 /J
′′
1 → I/J → I/(J, I ′′1 )→ 0

the last term has sdepth ≥ d + 2 and depth ≥ d + 1 since h(a) 6∈ I ′′1 and we may substitute
the interval [a, h(a)] from the restriction of Pb to (T1) by [f, h(a)], the second monomial from
[f, h(a)]∩B being also in T1. As above we get either sdepthS I/J = d+2, or sdepthS I

′′
1 /J

′′
1 ≤ d+1,

depthS I/(J, I
′′
1 ) ≥ d+ 1.

In the second case, let a1, . . . , at1 be a maximal bad path starting with a1. Set cj = h(aj),
j ∈ [t1]. Then ct1 = bxu1

for some u1 and let us say b = fxi. If at1 ∈ (f) then changing in Pb

the interval [at1 , ct1 ] by [f, ct1 ] we get a partition on I/J with sdepth d+ 2. Thus we may assume
that at1 ∈ E. If fxu1 ∈ {a1, . . . , at1−1}, let us say fxu1 = av, 1 ≤ v < t1 then we may replace in
Pb the intervals [ap, cp], v ≤ p ≤ t1 with the intervals [av, ct1 ], [ap+1, cp], v ≤ p < t1. Now we see
that we have in Pb the interval [fxu1

, fxixu1
] and switching it with the interval [f, fxixu1

] we get
a partition with sdepth ≥ d + 2 for I/J . Thus we may assume that fxu1

6∈ {a1, . . . , at1}. Now
set at1+1 = fxu1

. Let at1+1, . . . , ak be a path starting with at1+1 and set cj = h(aj), t1 < j ≤ k.
If ap = av for v < t1, p > t1 then change in Pb the intervals [aj , cj ], v ≤ j ≤ p with the
intervals [av, cp], [aj+1, cj ], v ≤ j < p. We have in Pb an interval [fxu1 , fxixu1 ] and switching it
to [f, fxixu1

] we get a partition with sdepth ≥ d + 2 for I/J . Thus we may suppose that in fact
ap 6∈ {b, a1, . . . , ap−1} for any p > t1 (with respect to any path starting with at1+1). We have again
two subcases:

1′) there exist no maximal bad path starting with at1+1,
2′) there exists a maximal bad path starting with at1+1.
In 1′) set T2 = {b′ ∈ B : there exists a path at1+1, . . . , ak with ak = b′}, G2 = B \ T2 and

I ′2 = (f,G2), I ′′2 = (G2), J ′2 = I ′2 ∩ J , J ′′2 = I ′′2 ∩ J . As above, we see that if T2 ∩ (f) = ∅ then we
may take I ′ = I ′2 and if T2 ∩ (f) 6= ∅ then I ′ = I ′′2 works.

In the second case, let at1+1, . . . , at2 be a maximal bad path starting with at1+1 and set cj =
h(aj) for j > t1. As we saw the whole set {a1, . . . , at2} has different monomials. As above
ct2 = bxu2 and we may reduce to the case when fxu2 6∈ {a1, . . . , at1}. Set at2+1 = fxu2 and again
we consider two subcases, which we treat as above. Anyway after several such steps we must arrive
in the case p = tm when b|ctm and again a certain fxum

is not among {a1, . . . , atm} and taking
atm+1 = fxum

there exist no maximal bad path starting with atm+1. This follows since we may
reduce to the case when the set {a1, . . . , atm} has different monomials and so the procedures should
stop for some m. Finally, using Tm = {b′ ∈ B : there exists a path atm+1, . . . , ak with ak = b′} as
T1 above we are done.

Now Theorem 2.3 follows from the next proposition, the case s > q+ 1 being a consequence of
[16] (see here Theorem 1.1).

Proposition 5.2. Suppose that I ⊂ S is minimally generated by a squarefree monomial f of degree
d, and a set E of squarefree monomials of degrees ≥ d+ 1. Assume that sdepthS I/J = d+ 1 and
s ≤ q + 1. Then depthS I/J ≤ d+ 1.

Proof: Apply induction on |E|, the case E = ∅ follows from Lemma 2.2. Suppose that |E| > 0.
We may assume that E contains just monomials of degrees d + 1 by [17, Lemma 1.6]. Using
Theorem 1.3 and induction on |E| apply Lemma 2.1. Thus we may suppose that C ⊂ ((f)∩ (E))∪
(∪a,a′∈E,a6=a′(a) ∩ (a′)).

Let b ∈ (B ∩ (f)) and I ′b = (B \ {b}). Set J ′b = I ′b ∩ J . Clearly b 6∈ I ′b. As in Case 1 from the
previous section we see that if sdepthS I

′
b/J
′
b ≤ d+1 then depthS I

′
b/J
′
b ≤ d+1 by Theorem 1.3 and
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so depthS I/J ≤ d + 1 by the Depth Lemma. Thus we may suppose that sdepthS I
′
b/J
′
b ≥ d + 2.

Applying Lemma 5.1 we get either sdepthS I/J ≥ d + 2 contradicting our assumption, or there
exists a nonzero ideal I ′ ( I generated by a subset of {f} ∪ B such that sdepthS I

′/J ′ ≤ d + 1
for J ′ = J ∩ I ′ and depthS I/(J, I

′) ≥ d + 1. In the last case we see that depthS I
′/J ′ ≤ d + 1

by induction hypothesis on |E| and so depthS I/J ≤ d + 1 by the Depth Lemma applied to the
following exact sequence

0→ I ′/J ′ → I/J → I/(J, I ′)→ 0.
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