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Abstract

In this expository paper we present a short outline of Cogalois Theory.
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Introduction

Cogalois Theory , a fairly new area in Field Theory, has been initiated in 1986 by Greither and
Harrison [19], and then, systematically developed in the last 28 years. A basic source of this
theory is the author’s monograph [7]. Cogalois Theory deals with field extensions E/F which
possess a ∆-Cogalois correspondence, i.e., a canonical lattice isomorphism between the lattice
I(E/F ) of all intermediate fields of E/F and the lattice L(∆) of all subgroups of a certain
group ∆ canonically associated with E/F . This situation is dual to that from Galois Theory :
any finite Galois extension E/F possess a Γ-Galois correspondence, i.e., a canonical lattice
anti-isomorphism between I(E/F ) and L(Γ), where Γ is the Galois group of the extension
E/F . An Abstract Cogalois Theory for arbitrary profinite groups, dual to the Abstract Galois
Theory for such groups, is also discussed.

1. Basic notation

By N we denote the set {0, 1, 2, . . .} of all natural numbers, by N∗ the set N \ {0} of all
strictly positive natural numbers, by Z the ring of all rational integers, and by Q (resp. R, C)
the field of all rational (resp. real, complex) numbers. For any set M , not necessarily finite,
|M | will denote the cardinal number of M .
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Throughout this paper F denotes a fixed field, Char(F ) its characteristic, e(F ) its character-
istic exponent (that is, e(F ) = 1 if F has characteristic 0, and e(F ) = p if F has characteristic
p > 0), and Ω a fixed algebraically closed field containing F as a subfield. Any extension of F
is supposed to be a subfield of Ω.

For an arbitrary ∅ 6= S ⊆ Ω and n ∈ N∗ we denote throughout this paper:

S∗ = S \ {0}, Sn = {xn |x ∈ S}, µn(S) = {x ∈ S |xn = 1},

µ(S) = {x ∈ S |xk = 1 for some k ∈ N∗}.

For any x ∈ Ω∗, x̂ will denote the coset xF ∗ of x in the quotient group Ω∗/F ∗. By a
primitive n-th root of unity we mean any generator of the cyclic group µn(Ω); ζn will always
denote such an element.

For a group G, the notation H 6 G means that H is a subgroup of G, and the lattice of
all subgroups of G is denoted by L(G). For any subset M of G, 〈M〉 denotes the subgroup of
G generated by M .

For a field extension F ⊆ E, shortly, extension, we shall use the notation E/F . If E/F
is an extension, then any subfield K of E with F ⊆ K is called an intermediate field of the
extension E/F , and I(E/F ) will denote the set of all its intermediate fields. Note that I(E/F )
is a complete lattice.

For all other undefined terms and notation concerning basic Field Theory the reader is
referred to Bourbaki [18] and/or Karpilovsky [23].

2. Kneser and Cogalois extensions

For any field extension E/F we denote T (E/F ) := {x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗ }.
Observe that for every x ∈ T (E/F ) there exists an n ∈ N∗ such that xn = a ∈ F , so x is
an n-th radical of a, denoted by n

√
a. The quotient group T (E/F )/F ∗ was called in [19] the

Cogalois group of the extension E/F and denoted by Cog (E/F ).
As in [11], a field extension E/F is said to be a radical extension if there exists a subset

A ⊆ T (E/F ) such that E = F (A), i.e., E is obtained by adjoining to the base field F an
arbitrary set A of “radicals” over F . Clearly, one can replace A by the subgroup G = F ∗〈A 〉
of the multiplicative group E∗ of E generated by F ∗ and A. Thus, any radical extension E/F
has the form E = F (G), with F ∗ 6 G 6 T (E/F ). Such an extension is called G-radical .

A field extension E/F , which is not necessarily finite, has been called in [14] G-Kneser if
it is a G-radical extension such that there exists a set of representatives for the factor group
G/F ∗ which is linearly independent over F ; in case the G-radical extension E/F is finite then
the last condition can be expressed equivalently as |G/F ∗| = [E : F ]. The extension E/F is
called Kneser if it is G-Kneser for some group G. As in [14], an extension E/F is said to be a
Cogalois extension if it is T (E/F )-Kneser; for finite extensions these are exactly the Cogalois
extensions introduced by Greither and Harrison in [19]. As in [19], a field extension E/F is
said to be pure if µp(E) ⊆ F for all p, p odd prime or 4.

2.1. The Kneser Criterion ([24], [14]). An arbitrary separable G-radical extension E/F is
G-Kneser if and only if ζp ∈ G =⇒ ζp ∈ F for every odd prime p and 1± ζ4 ∈ G =⇒ ζ4 ∈ F .

�
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2.2. The Greither-Harrison Criterion ([19], [14]). An arbitrary extension E/F is Coga-
lois if and only if it is radical, separable, and pure. �

2.3. Examples of Cogalois extensions. (1) Any finite G-radical extension E/F with E
a subfield of R is clearly pure, hence it is Cogalois by the Greither-Harrison Criterion, and
Cog (E/F ) = G/F ∗.

For example, the extension Q (n1
√
a1 , . . . ,

nr
√
ar )/Q with r, n1, . . . , nr, a1, . . . , ar ∈ N∗, is

a G-radical Cogalois extension, where G = Q∗〈n1
√
a1, . . . ,

nr
√
ar 〉, hence its Cogalois group is

precisely Q∗〈n1
√
a1 , . . . ,

nr
√
ar 〉/Q∗. In particular, we have

[Q (n1
√
a1 , . . . ,

nr
√
ar ) : Q ] = |Q∗〈n1

√
a1 , . . . , nr

√
ar 〉/Q∗|.

(2) A quadratic extension Q(
√
d )/Q, where d 6= 1 is a square-free integer, is Cogalois if

and only if d 6= −1, −3. Observe that the extension Q(
√
−3 )/Q is Q∗〈

√
−3 〉 -Kneser but it

is not Cogalois. �

3. G-Cogalois extensions

For an arbitrary G-radical extension E/F , the maps

ϕ : I(E/F ) −→ L(G/F ∗), ϕ(K) = (K ∩G)/F ∗,

and

ψ : L(G/F ∗) −→ I(E/F ), ψ(H/F ∗) = F (H),

arise in a very natural way and establish a so called Cogalois connection between the lattices
I(E/F ) and L(G/F ∗). We say that the G-radical extension E/F is an extension with G/F ∗-
Cogalois correspondence if the maps ϕ and ψ defined above are isomorphisms of lattices,
inverse to one another. It turns out that the G-Kneser extensions with G/F ∗-Cogalois cor-
respondence are precisely the so called strongly G-Kneser extensions; these are the G-radical
extensions E/F such that, for every intermediate field K of E/F , the extension E/K is K∗G-
Kneser, or equivalently, the extension K/F is K∗ ∩G-Kneser.

The most interesting strongly G-Kneser extensions are those extensions which additionally
are separable, called G-Cogalois extensions; they play in Cogalois Theory the same role as
Galois extensions play in Galois Theory. These extensions are completely characterized within
the class of G-radical extensions by means of a crucial General Purity Criterion presented
below. In order to state it we have to introduce some notation.

Denote by P the set of all positive prime numbers, by P the set (P\{2})∪{4}, by Dn the
set of all positive divisors of a given number n ∈ N∗, and by Pn the set P ∩ Dn. Recall that
an extension E/F is called pure when µp(E) ⊆ F for all p ∈ P. More generally, if ∅ 6= Q ⊆ P,
we say that an extension E/F is Q-pure if µp(E) ⊆ F for all p ∈ Q. If n ∈ N∗, then an
extension E/F is called n-pure if it is Pn-pure. For any torsion multiplicative group T with
identity element e we denote by OT the set of all orders of elements of T . When the subset
OT of N∗ is a finite set, then the least number m ∈ N∗ such that Tm = {e} is the exponent
exp(T ) of T and the group T is called exp(T )-bounded . For any G-radical extension E/F ,
G/F ∗ is a torsion group, so OG/F∗ ⊆ N∗. A G-radical extension E/F is said to be n-bounded
extension if exp(G/F ∗) = n. For any G-radical extension E/F we denote PG := P ∩ OG/F∗ .
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3.1. The General Purity Criterion [3]. A separable G-radical extension is G-Cogalois if
and only if it is PG-pure. �

From 3.1 it follows immediately that any Cogalois extension E/F is T (E/F )-Cogalois.
Note that when a G-radical extension E/F is n-bounded, then OG/F∗ = Dn, hence PG =
P ∩ Dn = Pn, and so, we obtain:

3.2. The n-Purity Criterion ([11], [14]). A separable n-bounded G-radical extension E/F
is G-Cogalois if and only if it is n-pure. In particular, a finite separable G-radical extension
E/F with exp(G/F ∗) = n is G-Cogalois if and only if it is n-pure. �

Using 3.1 and 3.2 one deduces that the class of finite or infinite G-Cogalois extensions is
fairly large, including besides the Cogalois extensions, the classical Kummer extensions [23],
the neat presentations [19], as well as various generalizations of these two types of extensions:
the generalized Kummer extensions [11], [14], the Kummer extensions with few roots of unity
[1], [6], [14], and the quasi-Kummer extensions [7] (see 5.1 for definitions).

3.3. The Kneser group of a G-Cogalois extension ([11], [14]). Let E/F be an ex-
tension which is simultaneously G-Cogalois and H-Cogalois. Then G = H, and the uniquely
determined group G/F ∗ is called the Kneser group of the extension E/F and is denoted by
Kne(E/F ). �

3.4. Primitive elements [12]. Let E/F be a finite G-Cogalois extension and let (xi)16i6n be
a finite family of elements of G. If x̂i 6= x̂j for every i, j ∈ {1, . . . , n}, i 6= j, then x1+ . . .+xn
is a primitive element of E/F if and only if G = F ∗〈x1, . . . , xn〉; in particular, if {u1, . . . , ur}
is any set of representatives of G/F ∗, then u1 + . . .+ ur is a primitive element of E/F .

If G = F ∗〈x1, . . . , xn〉 and [F (x1, . . . , xn) : F ] =
∏n
i=1 [F (xi) : F ], then

F (x1, . . . , xn) = F (x1 + . . .+ xn). �

4. Galois G-Cogalois extensions

Let E/F be an arbitrary Galois extension. Then, the Galois group Γ of E/F is a profinite
group, or equivalently, a Hausdorff, compact, and totally disconnected topological group with
respect to its Krull topology.

Let M 6 E∗ be such that σ(M) ⊆ M for every σ ∈ Γ. A crossed homomorphism (or
an 1-cocycle) of Γ with coefficients in M is a map f : Γ → M satisfying the condition
f(στ) = f(σ) · σ(f(τ)) for every σ, τ ∈ Γ. The set Z1

c (Γ,M) of all continuous 1-cocycles
of Γ with coefficients in the discrete group M is an Abelian group. For any α ∈ M , the
1-coboundary fα : Γ→ M , defined by fα(σ) = σ(α)·α−1, σ ∈ Γ, is a continuous map and the
set B1(Γ,M) = { fα |α ∈M } of all 1-coboundaries of Γ with coefficients in M is a subgroup
of Z1

c (Γ,M). The quotient group Z1
c (Γ,M)/B1(Γ,M) is denoted by H1

c (Γ,M).
For an arbitrary extension E/F , the map

ψ : Cog (E/F ) −→ Z1
c (Gal (E/F ), µ(E)), ψ(α̂) = fα, α ∈ T (E/F ),

is a well-defined group morphism. The Hilbert’s Theorem 90 , saying that if E/F is an arbitrary
Galois extension then H1

c (Γ, E∗) = 1, has the following reformulation in terms of Cogalois
groups.
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4.1. The Cogalois group via continuous 1-cocycles ([25], [15]). For any Galois exten-
sion E/F , the map α̂ 7→ fα establishes a group isomorphism

Cog (E/F )
∼−→ Z1

c (Gal (E/F ), µ(E)). �

As an immediate consequence of 4.1, it follows that if E/F is a finite Galois extension with
µ(E) finite, then Cog(E/F ) is a finite group (see [15]); in particular, for any extension K/L
of algebraic number fields, which is not necessarily Galois, the group Cog(K/L) is finite (see
[19]).

4.2. The Kneser group via continuous 1-cocycles [4]. For any Galois G-Cogalois
extension E/F , the map α̂ 7→ fα yields a group isomorphism

Kne (E/F )
∼−→ Z1

c (Gal (E/F ), µG(E)),

where µG(E) :=
⋃
m∈OG/F∗ µm(E). �

From 4.2 we deduce that if E/F is a Galois n-bounded G-Cogalois extension, in particular a
finite Galois G-Cogalois extension with n = exp(G/F ∗), then there exists a group isomorphism

Kne (E/F )
∼−→ Z1

c (Gal (E/F ), µn(E)).

4.3. Radical extensions via continuous 1-cocycles [4]. Let E/F be a Galois extension
with Galois group Γ, and let K ∈ I(E/F ). Then K/F is a radical extension if and only if
there exists U 6 Z1

c (Γ, µ(E)) such that Gal (E/K) = {σ ∈ Γ |h(σ) = 1, ∀ h ∈ U}. �

Using 4.3, one can obtain characterizations of G-Kneser and G-Cogalois subextensions of
a given Galois extension E/F with Galois group Γ via subgroups of Z1

c (Γ, µ(E)) (see [4]).

For any topological group T we denote by T̂ the character group of T , that is, the group
Hom c(T,U) of all continuous group morphisms of T into the unit circle U.

4.4. Abelian G-Cogalois extensions [9]. If E/F is an Abelian G-Cogalois extension, then

the discrete torsion Abelian groups Kne (E/F ) and ̂Gal (E/F ) are isomorphic. In particular,

the discrete torsion Abelian groups Cog (E/F ) and ̂Gal (E/F ) are isomorphic for any Abelian
Cogalois extension E/F . �

From 4.4 it follows immediately that for any finite Abelian G-Cogalois extension E/F , the
finite Abelian groups Kne (E/F ) and Gal (E/F )) are isomorphic; in particular, the groups
Cog (E/F ) and Gal (E/F )) are isomorphic for any finite Abelian Cogalois extension E/F .

5. Applications of Cogalois Theory

5.1. Applications to Kummer Theory. As in [7], [14], we say that an extension E/F is a
classical n-Kummer extension (resp. a generalized n-Kummer extension, n-Kummer extension
with few roots of unity, n-quasi Kummer extension), where n ∈ N∗, if E = F (B) for some
∅ 6= B ⊆ E∗, with gcd(n, e(F )) = 1, Bn ⊆ F , and µn(Ω) ⊆ F (resp. µn(E) ⊆ F, µn(E) ⊆
{−1, 1}, ζp ∈ F for every p ∈ Pn). If E/F is any of these four types of Kummer exten-
sions, then E/F is an F ∗〈B〉-Cogalois extension (see [7], [14]). This implies not only that the
whole classical Kummer Theory can be easily deduced from this fact, but also that the various
generalizations of classical Kummer extensions enjoy very similar properties to them.
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5.2. Applications to Elementary Field Arithmetic. (1) A real number α > 0 can
be written as a finite sum of real numbers of type ± ni

√
ai , 1 6 i 6 r, r, ni, ai ∈ N∗, if and

only if the extension Q(α)/Q is radical (or Kneser, or Cogalois). We deduce that if a square-

free integer d > 2 and r ∈ Z∗ are such that r > −
√
d and

√
r2 − d 6∈ Q(

√
d ), then

√
r +
√
d

cannot be written as a finite sum of real numbers of type ± ni
√
ai , 1 6 i 6 r, with r, ni, ai ∈ N∗,

since the extension Q
(√

r +
√
d
)
/Q is not Cogalois (see [2]); in particular, this holds, e.g., for

the number
√

1 +
√

2.
(2) If F is any subfield of R, r, n1, . . . , nr ∈ N∗, and a1, . . . , ar ∈ F ∗ are positive, then

F (n1
√
a1 , . . . ,

nr
√
ar ) = F (n1

√
a1 + · · ·+ nr

√
ar ), by 3.4; this implies that

n1
√
a1 + · · ·+ nr

√
ar ∈ F ⇐⇒ ni

√
ai ∈ F for all i, 1 6 i 6 r.

(3) If r, n0, n1, . . . , nr ∈ N∗ and a0, a1, . . . , ar ∈ Q are positive, then n0
√
a0 can be written

as a finite sum of monomials of form c · n1
√
a1

j1 · . . . · nr
√
ar

jr , with j1, . . . , jr ∈ N and c ∈ Q∗,
if and only if n0

√
a0 is itself such a monomial (see [2]).

(4) For further applications of Cogalois Theory to Elementary Field Arithmetic, see [2].

5.3. Applications to Algebraic Number Theory. The Kneser Criterion has nice ap-
plications not only in investigating field extensions with Cogalois correspondence, but also in
proving some results in Algebraic Number Theory. Thus, a series of classical results due to
Hasse [20], Besicovitch [17], Mordell [26], and Siegel [27] concerning the computation of degrees
of particular radical extensions of algebraic number fields, can be very easily proved using the
Kneser Criterion (see [7]).

A classical construction from 1920 in the Algebraic Number Theory, originating with Hecke
[21], is the following one: to every algebraic number field K one can associate a so-called
system of ideal numbers S, which is a certain subgroup of the multiplicative group C∗ of
complex numbers such that K∗ 6 S and the quotient group S/K∗ is canonically isomorphic
to the ideal class group C`K of K. The equality [K(S) : K ] = |C`K | was claimed by Hecke
[22, p.122 ] but never proved by him. To the best of our knowledge, no proof of this assertion
is available in the literature, excepting the very short one in [13] based on Cogalois Theory.

5.4. Applications to Gröbner bases. Unexpected applications of the Kneser Criterion to
Gröbner bases can be found in [16].

6. Connections with graded algebras and Hopf algebras

6.1. Cogalois Theory via graded algebras. The basic concepts of Cogalois Theory like
G-radical, G-Kneser, and G-Cogalois field extension can be also described in terms of Clifford
extensions and strongly group-graded algebras invented by Dade 1970 and 1980, respectively
(see [5]). A similar approach in investigating Cogalois extensions E/F , finite or not, is due to
Masuoka [25] using the concepts of group-graded field extension and coring.

6.2. Kneser and Cogalois extensions via Hopf algebras. The Kneser and Cogalois
field extensions can be described in terms of Galois H-objects appearing in Hopf algebras as
follows (see [5]). A G-radical field extension E/F is G-Kneser if and only if E is a Galois
F [G/F ∗]-object via the comodule structure given by the map E −→ E⊗F [G/F ∗], x 7→ x⊗ ĝ,
for all x ∈ Fg and g ∈ G. In particular, a field extension E/F is Cogalois if and only if E is
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a Galois F [ Cog(E/F ) ]-object with respect to the comodule structure given by the linear map
E −→ E ⊗ F [ Cog(E/F ) ], x 7→ x⊗ ĝ, for all x ∈ Fg and g ∈ T (E/F ).

7. Abstract Cogalois Theory

An Abstract Cogalois Theory for arbitrary profinite groups, which is dual to the Abstract Galois
Theory , has been developed in [10]. The basic concepts of the field theoretic Cogalois Theory,
namely that of G-Kneser and G-Cogalois field extension, as well as their main properties are
generalized to arbitrary profinite groups.

The main idea in doing so is to use the description presented in 4.1, via the Hilbert’s
Theorem 90, of the Cogalois group Cog(E/F ) of an arbitrary Galois extension E/F as the
group Z1

c (Gal(E/F ), µ(E)). Note that the multiplicative group µ(E) is isomorphic (in a non
canonical way) to a subgroup of the additive group Q/Z, and that the basic groups appearing
in the investigation of E/F from the Cogalois Theory perspective are subgroups of Cog(E/F ).
In this way, the above description of Cog(E/F ) in terms of continuous 1-cocycles naturally
suggests to study the abstract setting of subgroups of groups of type Z1

c (Γ, A), with Γ an
arbitrary profinite group and A any subgroup of Q/Z such that Γ acts continuously on the
discrete group A. Thus, one can define the concepts of Kneser subgroup and Cogalois subgroup
of the group Z1

c (Γ, A) and one can establish their main properties, including an Abstract
Kneser Criterion for Kneser groups of cocycles and an Abstract Quasi-Purity Criterion for
Cogalois groups of cocycles. Their proofs, involving cohomological as well as topological tools,
are completely different from that of their field theoretic correspondents. A natural dictionary
relates the basic notions of the (field theoretic) Cogalois Theory to their correspondents in the
Abstract Cogalois Theory, which permit to retrieve easily most of the basic results of the former
one from the corresponding results from the latter one (see [8]).
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