Bull. Math. Soc. Sci. Math. Roumanie Tome 58(106) No. 2, 2015, 129–136

On the Forcing Dimension of a Graph

bv

BEHROOZ BAGHERI GHAVAM ABADI¹ AND ALI ZAGHIAN²

Abstract

A set $W \subseteq V(G)$ is called a resolving set, if for each two distinct vertices $u, v \in V(G)$ there exists $w \in W$ such that $d(u, w) \neq d(v, w)$, where d(x, y) is the distance between the vertices x and y. A resolving set for G with minimum cardinality is called a metric basis. The forcing dimension f(G, dim) (or f(G)) of G is the smallest cardinality of a subset $S \subset V(G)$ such that there is a unique basis containing S. The forcing dimensions of some well-known graphs are determined. In this paper, among some other results, it is shown that for large enough integer n and all integers a, b with $0 \le a \le b \le n$ and $b \ge 1$, there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b if $\{a, b\} \ne \{0, 1\}$.

Key Words: Resolving set, metric basis, forcing dimension, basis number.
2010 Mathematics Subject Classification: Primary 05C12, Secondary 05C15, 05C62.

1 Introduction

Throughout the paper, G = (V, E) is a finite, simple, and connected graph of order n. The distance between two vertices u and v, denoted by d(u, v), is the length of a shortest path between u and v in G. The diameter of G is diam $(G) = \max\{d(u, v) \mid u, v \in V(G)\}$. The girth of G is the length of a shortest cycle in G. The set of all adjacent vertices to a vertex v is denoted by N(v) and |N(v)| is the degree of a vertex v, deg(v). The maximum degree and the minimum degree of a graph G, are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The notations $u \sim v$ and $u \nsim v$ denote the adjacency and non-adjacency relations between u and v, respectively. The **Cartesian product** of two graphs G and H, denoted by $G \Box H$, is the graph with vertex set $V(G) \times V(H)$ and two vertices (u, v) and (x, y) are adjacent if and only if either u = x and $vy \in E(H)$ or $ux \in E(G)$ and v = y.

For an ordered set $W = \{w_1, w_2, \dots, w_k\} \subseteq V(G)$ and a vertex v of G, the k-vector

$$r(v|W) = (d(v, w_1), d(v, w_2), \dots, d(v, w_k))$$

is called the metric representation of v with respect to W. The set W is called a resolving set for G if distinct vertices have different metric representations. A resolving set for G with minimum

cardinality is called a metric basis, and its cardinality is the metric dimension of G, denoted by dim(G). If dim(G) = k, then G is said to be k-dimensional. A basis number of G, bas(G), is the maximum r such that every r-set S of vertices of G is a subset of some basis of G.

In [16], Slater introduced the idea of a resolving set and used a locating set and the location number for what we call a resolving set and the metric dimension, respectively. He described the usefulness of these concepts when working with U.S. Sonar and Coast Guard Loran stations. Independently, Harary and Melter [10] discovered the concept of the location number as well and called it the metric dimension. For more results related to these concepts see [5, 6, 8, 13]. The concept of a resolving set has various applications in diverse areas including coin weighing problems [15], network discovery and verification [3], robot navigation [13], mastermind game [5], problems of pattern recognition and image processing [14], and combinatorial search and optimization [15].

It is obvious that to see whether a given set W is a resolving set, it is sufficient to consider the vertices in $V(G)\backslash W$, because $w \in W$ is the unique vertex in G for which d(w, w) = 0. When W is a resolving set for G, we say that W resolves G. In general, we say an ordered set W resolves a set $T \subseteq V(G)$, if for each two distinct vertices $u, v \in T$, $r(u|W) \neq r(v|W)$.

The following bound is the known upper bound for the metric dimension.

Theorem 1. [7] If G is a connected graph of order n and diameter d, then $\dim(G) \leq n - d$.

For a basis W of G, a subset S of W is called a forcing subset of W if W is the unique basis containing S. The forcing number $f_G(W, dim)$ of W in G is the minimum cardinality of a forcing subset for W, while the forcing dimension f(G, dim) (or f(G)) of G is the smallest forcing number among all bases of G.

It is immediate that f(G) = 0 if and only if G has a unique basis. If G has no unique basis but contains a vertex belonging to only one basis, then f(G) = 1. Moreover, if for every basis W of G and every proper subset S of W, the set W is not the unique basis containing S, then $f(G) = \dim(G)$.

Theorem 2. [9] Let G be a nontrivial connected graph. If G is a complete graph, cycle, or tree, then $f(G) = \dim(G)$.

Theorem 3. [9] Let G be a connected graph of order $n \ge 2$ with $\dim(G) = n - 2$. If $G = K_{r,s}$ $(r, s \ge 1)$ or $G = K_r + \overline{K_s}$ $(r \ge 1, s \ge 2)$, then $f(G) = \dim(G)$. If $G = K_r + (K_1 \cup K_s)$ $(r, s \ge 1)$, then $f(G) = \dim(G) - 1$.

Obviously, if G is a graph with f(G) = a and dim(G) = b, then $0 \le a \le b$ and $b \ge 1$. In [9], it is determined which pairs a, b of integers with $0 \le a \le b$ and $b \ge 1$ are realizable as the forcing dimension and dimension of some nontrivial connected graph.

Theorem 4. [9] For all integers a, b with $0 \le a \le b$ and $b \ge 1$, there exists a nontrivial connected graph G with f(G) = a and $\dim(G) = b$ if and only if $\{a, b\} \ne \{0, 1\}$.

In this paper, some lower bounds for the forcing dimension of graphs are obtained. It is shown that for all integers a, b with $0 \le a \le b$ and $b \ge 1$, and for every sufficiently large n, there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b if $\{a, b\} \ne \{0, 1\}$.

2 Some lower bounds

In this section we obtain some lower bounds for the forcing dimension of graphs.

Two vertices $u, v \in V(G)$ are called twin vertices if $N(u) \setminus \{v\} = N(v) \setminus \{u\}$. It is known that, if u and v are twin vertices, then every resolving set W for G contains at least one of the vertices u and v. Moreover, if $u \notin W$ then $(W \setminus \{v\}) \cup \{u\}$ is also a resolving set for G [11]. A twin class of a vertex v, T_v , is $\{u \in V(G) \mid u \text{ and } v \text{ are twin vertices.}\}$. Note that, for every $u, v \in V(G), v \in T_v$ and if $u \in T_v$, then $T_v = T_u$. Let $\mathcal{T}(G)$ be a set of all twin classes of G with at least two elements, $\mathcal{T}(G) = \{T_v \mid v \in V(G), |T_v| \geq 2\}$.

Lemma 1. For every twin class T of G with at least two elements, there is a basis B of G, such that $|B \cap T| = |T| - 1$.

Proof: We know that for every twin class T and every basis B of G, $|B \cap T| \ge |T| - 1$. Let $v \in V(G)$, $T = T_v$, $|T_v| \ge 2$ and B_0 be a basis of G such that $B_0 \cap T_v = T_v$. By the definition of basis and property of twin vertices, since $|T_v| \ge 2$, there is a unique vertex $u \in V(G) \setminus B_0$ such that $r(u|B_0 \setminus \{v\}) = r(v|B_0 \setminus \{v\})$. Therefore, $B = (B_0 \setminus \{v\}) \cup \{u\}$ is a basis of G containing exactly $|T_v| - 1$ elements of T_v . Thus, $|B \cap T| = |T| - 1$.

Theorem 5. Let G be a connected graph.

$$\sum_{T \in \mathcal{T}(G)} (|T| - 1) \le f(G).$$

Proof: Let G be a connected graph, $\sum_{T \in \mathcal{T}(G)} (|T| - 1) > f(G)$ and $S \subset V(G)$ of cardinality f(G) such that there is a unique basis B of G containing S. Twin classes being pairwise disjoint, there exists a vertex $v \in V(G)$ such that $|T_v| \ge 2$ and $|S \cap T_v| \le |T_v| - 2$. There are at least two vertices $u_1, u_2 \in T_v$ such that $u_i \notin S$ for i = 1, 2. Since B is the unique basis containing S and by the proof of Lemma 1, we have $|B \cap T_v| = |T_v| - 1$. Suppose that $T_v \setminus B = \{u_3\}$. Therefore, $(B \setminus \{u_1\}) \cup \{u_3\}$ or $(B \setminus \{u_2\}) \cup \{u_3\}$ is a basis of G containing S, which is a contradiction. \Box

Theorem 6. If $G = K_{n_1, n_2, ..., n_r}$, then $\dim(G) = f(G) = \sum_{i=1}^r n_i - r$.

Proof: It is easy to check that $\sum_{T \in \mathcal{T}(G)} (|T| - 1) = \sum_{i=1}^{r} n_i - r$. Therefore by Theorem 5, $f(G) \leq \sum_{i=1}^{r} n_i - r$. For every $i, 1 \leq i \leq r$, let V_i be the i^{th} part of V(G), then we remove an arbitrary vertex of V_i , call new subset as V'_i . Obviously, $B = \bigcup_{i=1}^{r} V'_i$ is a metric basis of G. Thus, $dim(G) = f(G) = \sum_{i=1}^{r} n_i - r$.

Theorem 7. Let M be a matching in a K_n , $n \ge 3$. If $G = K_n \setminus M$, then $\dim(G) = f(G)$.

Proof: Let M be a matching in K_n of size r and $G = K_n \setminus M$. Assume that $M = \{u_i v_i \mid 1 \leq i \leq r\}$ and $w \in V(G)$ be a vertex that is unsaturated by M. Therefore, $B = V(G) \setminus \{w, u_1, u_2, \ldots, u_r\}$ is a metric basis of G, so dim(G) = n - r - 1. Note that $\mathcal{T}(G) = \{\{u_1, v_1\}, \{u_2, v_2\}, \ldots, \{u_r, v_r\}, V(G) \setminus V(M)\}$. Thus by Theorem 5, $f(G) \geq n - (r+1)$. Since $f(G) \leq dim(G)$, we have dim(G) = f(G) = n - r - 1.

Theorem 8. [1] Let M be a perfect matching in a $K_{n,n}$, $n \ge 2$. If $G = K_{n,n} \setminus M$, then $\dim(G) = n - 1$.

Theorem 9. Let M be a perfect matching in a $K_{n,n}$, $n \ge 3$. If $G = K_{n,n} \setminus M$, then $\dim(G) = f(G)$.

Proof: Let G be a regular bipartite graph with $V_1(G) = \{x_1, \ldots, x_n\}$, $V_2(G) = \{y_1, \ldots, y_n\}$, and $E(G) = \{x_iy_j \mid i \neq j\}$. Let $B \subset V(G)$ be an arbitrary metric basis of G, so |W| = n - 1. It is easily seen that, $|B \cap \{x_i, y_i, x_j, y_j\}| \ge 1$ and $|B \cap \{x_i, y_i\}| \le 1$, for each $i, j, 1 \le i < j \le n$. Therefore, dim(G) = f(G).

Theorem 10. Let n_1 and n_2 be two positive integers.

$$dim(P_{n_1} \Box P_{n_2}) = f(P_{n_1} \Box P_{n_2}) = 2.$$

Proof: Let $V(P_1) = \{u_1, u_2, \dots, u_{n_1}\}, V(P_2) = \{v_1, v_2, \dots, v_{n_2}\}, E(P_{n_1}) = \{u_i u_{i+1} \mid i = 1, \dots, n_1 - 1\}, \text{ and } E(P_{n_2}) = \{v_i v_{i+1} \mid i = 1, \dots, n_2 - 1\}.$ It is easily seen that, $dim(P_{n_1} \Box P_{n_2}) = 2$ and $P_{n_1} \Box P_{n_2}$ has exactly four metric bases as follows: $\{(u_1, v_1), (u_1, v_{n_2})\}, \{(u_1, v_1), (u_{n_1}, v_{1})\}, \{(u_{n_1}, v_{n_2}), (u_1, v_{n_2})\}, \text{ and } \{(u_{n_1}, v_{n_2}), (u_{n_1}, v_{1})\}.$ Therefore, $dim(P_{n_1} \Box P_{n_2}) = f(P_{n_1} \Box P_{n_2}) = 2.$

Proposition 1. Let G be a connected graph.

$$bas(G) \le f(G).$$

Proof: Suppose that there exists a connected graph G with f(G) < bas(G). Let S be a subset of V(G) of size f(G) such that there is a unique basis containing S. Since f(G) < bas(G), for every subset S' of $V(G) \setminus S$ such that $|S \cup S'| = bas(G)$, there is a basis B such that $S \cup S' \subset B$, which is a contradiction.

Theorem 11. Let G be a connected graph and $f(G) = k \ge 2$. If $T = \{v_1, v_2, \ldots, v_k, v_{k+1}\}$ is a twin class, then $f(G \setminus \{v_i\}) = k - 1$ for $1 \le i \le k + 1$.

Proof: By Theorem 5, G has just one twin class with at least two elements, that is T. Without loss of generality, let $S = T \setminus \{v_{k+1}\}$ be a forcing subset of a basis of G. First, we show that for every basis B of G, $T \not\subseteq B$. On the contrary, suppose that there exists a basis B of G such that $T \subseteq B$. Since T is a twin class, there exists a unique vertex $u \in V(G) \setminus B$ such that

132

 $r(u|B \setminus \{v_{k+1}\}) = r(v_{k+1}|B \setminus \{v_{k+1}\})$. Therefore, $B' = (B \setminus \{v_{k+1}\}) \cup \{u\}$ is a basis of G. Thus, $S \subseteq B \cap B'$, which is a contradiction.

For every k-subset of T, there is a unique basis of G containing that subset. On the contrary and without loss of generality, assume that there are two bases B_1 and B_2 of G such that $\{v_2, v_3, \ldots, v_{k+1}\} \subset B_1 \cap B_2$. Since $T \notin B_i$, $B'_i = (B_i \setminus \{v_{k+1}\}) \cup \{v_1\}$, for i = 1, 2, is a basis of G. Thus, $S \subset B_1 \cap B_2$, which is a contradiction.

Note that by Theorem 5, $f(G \setminus \{v_i\}) \ge \sum_{T' \in \mathcal{T}(G \setminus \{v_i\})} (|T'| - 1) = k - 1$, for $1 \le i \le k + 1$. Claim 1: For every basis B of $G \setminus \{v_i\}$, $|B \cap (T \setminus \{v_i\})| = k - 1$. Suppose that B_0 is a basis of $G \setminus \{v_i\}$ for some $1 \le i \le k + 1$ such that $T \setminus \{v_i\} \subset B_0$. Since $\dim(G \setminus \{v_i\}) = \dim(G) - 1$ and $k \ge 2$, $B' = B_0 \cup \{v_i\}$ is a basis of G containing T, which is a contradiction.

On the contrary, suppose that $f(G \setminus \{v_i\}) \ge k$ for some $1 \le i \le k+1$. Therefore, for every $T' \subset T_v \setminus \{v_i\}$ of cardinality k-1, there are at least two basis B_1 and B_2 of $G \setminus \{v_i\}$ that $T' \subset B_j$, for j = 1, 2. By Claim 1, $|B_j \cap T \setminus \{v_i\}| = k-1$, therefore, $B_j \cup \{v_i\}$ for j = 1, 2 are two basis of G containing $T' \cup \{v_i\}$ and $|T' \cup \{v_i\}| = k$, which is a contradiction.

3 Graphs with prescribed dimensions, forcing dimensions, basis numbers and orders

In Theorem 4, it is shown that for every $0 \le a \le b$ and $b \ge 1$, there exists a connected graph G with f(G) = a and dim(G) = b. By using the similar technique of Theorem 4, we prove that for every $0 \le a \le b$, $b \ge 1$, and for every sufficiently large n, there is a connected graph G of order n with f(G) = a and dim(G) = b. First we need the following theorem.

Let G be a k-dimensional graph such that it has a unique basis. Such graph is called uniquely k-dimensional graph [2]. Obviously, for every uniquely k-dimensional graph G, bas(G) = f(G) = 0. It is proved that for every $k, k \ge 2$, and every $n \ge \lfloor \frac{5k}{2} + 1 \rfloor$, there is a uniquely k-dimensional graph of order n.

Theorem 12. [2] For every $k, k \ge 2$, there exists a uniquely k-dimensional graph of order n for every $n \ge \lfloor \frac{5k}{2} + 1 \rfloor$.

Theorem 13. For every $a, b, 0 \le a \le b, b \ge 1$, $\{a, b\} \ne \{0, 1\}$, and for every $n \ge \lceil \frac{5(b-a)}{2} + 1 \rceil + a$, there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b.

Proof: By Theorem 12, let H be a uniquely (b-a)-dimensional graph of order $n_0 \ge \lceil \frac{5(b-a)}{2} + 1 \rceil$. First we construct a graph G of order $n_0 + a$ with $V(G) = V(H) \cup X$, where $X = \{x_1, \ldots, x_a\}$, such that each x_i $(1 \le i \le a)$ has the same neighborhood as u in H and the induced subgraph $\{u, x_1, \ldots, x_a\}$ is complete, where $u \in V(H) \setminus B_0$ and B_0 is the unique basis of H.

We first show that $B_1 = B_0 \cup X$ is a basis of G and therefore, $\dim(G) = b$. Since H has a unique basis, $T_u = \{u\}$ in H. Thus, $X \cup \{u\}$ is a twin class and B_0 is the unique basis of H,

I.
$$r_H(v|B_0) = r_G(v|B_0)$$
 for every $v \in V(H)$;

II. $|B \cap (X \cup \{u\})| \ge a$, for each basis B of G;

III. $B_0 \subset B$, for each basis B of G. (Since $B \setminus X$ is a resolving set of H.)

Therefore $B_0 \cup X$ is a basis of G and dim(G) = b.

We are now prepared to show that f(G) = a. Let B be a basis of G. Since B_0 must belong to B, it follows that B is the unique basis containing $B \setminus B_0$. Thus, $f_G(B) \leq |B \setminus B_0| = b - (b - a) = a$. This is true for every basis B of G and so $f(G) \leq a$. On the other hand, by Theorem 5, since $X \cup \{u\}$ is a twin class, $f(G) \geq a$. Therefore, f(G) = a.

In [12], the properties of k-dimensional graphs in which every k subset of vertices is a metric basis are studied. Such graphs are called randomly k-dimensional graphs. It is obvious that for every randomly k-dimensional graph G, bas(G) = f(G) = dim(G) = k.

Example 1. Let $n \ge 2$ be an integer. Every complete graph K_n is a randomly (n-1)-dimensional graph and $bas(K_n) = f(K_n) = dim(K_n) = n-1$.

Theorem 14. For every $a, n, 0 \le a \le n$, there exists a connected graph G of order n with bas(G) = 0 and f(G) = dim(G) = a.

Proof: Let *H* be a cycle of order n - a + 1. First we construct a graph *G* of order *n* with $V(G) = V(H) \cup X$, where $X = \{x_1, \ldots, x_{a-1}\}$, such that each x_i $(1 \le i \le a - 1)$ has the same neighborhood as *u* in *H* and the induced subgraph $\{u, x_1, \ldots, x_{a-1}\}$ is complete, where $u \in V(H)$. Let $v \in V(G)$ such that $d(u, v) = \lfloor \frac{n-a+1}{2} \rfloor$. It is easy to check that f(G) = dim(G) = a and there is no basis containing *v*. Thus, bas(G) = 0.

Theorem 15. For every $a, n, 0 \le a \le n$, there exists a connected graph G of order n with bas(G) = 1 and f(G) = dim(G) = a.

Proof: Let $H = (u_1, u_2, u_3, \ldots, u_{n-a+1})$ be a path of order n-a+1. First we construct a graph G of order n with $V(G) = V(H) \cup X$, where $X = \{x_1, \ldots, x_{a-1}\}$, such that each x_i $(1 \le i \le a-1)$ has the same neighborhood as u_2 in H and the induced subgraph $\{u_2, x_1, \ldots, x_{a-1}\}$ is complete. Since the twin class T_{u_2} has a vertices, $dim(G) \ge f(G) \ge a-1$. It is easy to check that every $B \subset V(G)$ of cardinality a with $|B \cap T_{u_2}| = a-1$ is a resolving set of G. Hence f(G) = dim(G) = a and for every $v \in V(G)$ there is some basis containing v. For each $\{u_i, u_j\} \subset V(H) \setminus \{u_2\}, i, j \ne 2$, there is no basis B such that $\{u_i, u_j\} \subset B$. Thus, bas(G) = 1. \Box

The following question is an open problem in this area.

Problem 1. For which a, b, c of integers with $0 \le a \le b \le c$, does there exist a nontrivial connected graph G with bas(G) = a, f(G) = b, and dim(G) = c?

Acknowledgement: Behrooz Bagheri Gh. wishes to thank the National Elites Foundation of Iran, Sharif University of Technology, and Malek Ashtar University of Technology.

References

- M. BACA, E.T. BASKORO, A.N.M. SALMAN, S.W. SAPUTRO AND D. SUPRIJANTO, The metric dimension of regular bipartite graphs, *Bull. Math. Soc. Sci. Math. Roumanie*, 54 (102) (2011), 15–28.
- [2] B. BAGHERI GH., M. JANNESARI AND B. OMOOMI, Uniquely dimensional graphs, Ars Combinatoria, to appear.
- [3] Z. BEERLIOVA, F. EBERHARD, T. ERLEBACH, A. HALL, M. HOFFMANN, M. MIHALAK AND L.S. RAM, Network dicovery and verification, *IEEE Journal On Selected Areas in Communications*, 24 (12) (2006), 2168–2181.
- [4] P. BUCZKOWSKI, G. CHARTRAND, C. POISSON AND P. ZHANG, On k-dimensional graphs and their bases, *Period. Math. Hungar.*, 46 (1) (2003), 9–15.
- [5] J. CACERES, C. HERNANDO, M. MORA, I.M. PELAYO, M.L. PUERTAS, C. SEARA AND D.R. WOOD, On the metric dimension of cartesian products of graphs, *SIAM Journal on Discrete Mathematics*, **21** (2) (2007), 423–441.
- [6] G.G. CHAPPELL, J. GIMBEL AND C. HARTMAN, Bounds on the metric and partition dimensions of a graph, Ars Combinatoria, 88 (2008), 349–366.
- [7] G. CHARTRAND, L. EROH, M.A. JOHNSON AND O.R. OLLERMANN, Resolvability in graphs and the metric dimension of a graph, *Discrete Applied Mathematics*, **105** (2000), 99–113.
- [8] G. CHARTRAND AND P. ZHANG, The theory and applications of resolvability in graphs, A survey. In Proc. 34th Southeastern International Conf. on Combinatorics, Graph Theory and Computing, 160 (2003), 47–68.
- [9] G. CHARTRAND, P. ZHANG AND KALAMAZOO, The forcing dimension of a graph, *Mathematica Bohemica*, **126** (4) (2001), 711–720.
- [10] F. HARARY AND R.A. MELTER, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195.
- [11] C. HERNANDO, M. MORA, I.M. PELAYO, C. SEARA AND D.R. WOOD, Extremal graph theory for metric dimension and diameter, *The Electronic Journal of Combinatorics*, 17 (2010), #R30.
- [12] M. JANNESARI AND B. OMOOMI, On randomly k-dimensional graphs, Applied Mathematics Letters, 24 (2011), 1625–1629.
- [13] S. KHULLER, B. RAGHAVACHARI AND A. ROSENFELD, Landmarks in graphs, Discrete Applied Mathematics, 70 (3) (1996), 217–229.
- [14] R.A. MELTER AND I. TOMESCU, Metric bases in digital geometry, Computer Vision Graphics and Image Processing, 25 (1984), 113–121.

[15] A. SEBO AND E. TANNIER, On metric generators of graphs, Mathematics of Operations Research, 29 (2) (2004), 383–393.

[16] P.J. SLATER, Leaves of trees, Congressus Numerantium, 14 (1975), 549–559.

Received: 12.04.2014 Accepted: 29.10.2014

> ¹Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11155-9415, Tehran, Iran E-mail: b.bagheri@sharif.edu

²Department of Mathematics and Cryptography, Malek Ashtar University of Technology, P. Box 83145–115, Isfahan, Iran E-mail: a_zaghian@mut-es.ac.ir