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On the Forcing Dimension of a Graph
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Abstract

A set W ⊆ V (G) is called a resolving set, if for each two distinct vertices u, v ∈ V (G)
there exists w ∈ W such that d(u,w) 6= d(v, w), where d(x, y) is the distance between
the vertices x and y. A resolving set for G with minimum cardinality is called a metric
basis. The forcing dimension f(G, dim) (or f(G)) of G is the smallest cardinality of a
subset S ⊂ V (G) such that there is a unique basis containing S. The forcing dimensions
of some well-known graphs are determined. In this paper, among some other results, it is
shown that for large enough integer n and all integers a, b with 0 ≤ a ≤ b ≤ n and b ≥ 1,
there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b if
{a, b} 6= {0, 1}.
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1 Introduction

Throughout the paper, G = (V,E) is a finite, simple, and connected graph of order n. The
distance between two vertices u and v, denoted by d(u, v), is the length of a shortest path
between u and v in G. The diameter of G is diam(G) = max{d(u, v) | u, v ∈ V (G)}. The
girth of G is the length of a shortest cycle in G. The set of all adjacent vertices to a vertex
v is denoted by N(v) and |N(v)| is the degree of a vertex v, deg(v). The maximum degree
and the minimum degree of a graph G, are denoted by ∆(G) and δ(G), respectively. The
notations u ∼ v and u � v denote the adjacency and non-adjacency relations between u and
v, respectively. The Cartesian product of two graphs G and H, denoted by G�H, is the graph
with vertex set V (G)×V (H) and two vertices (u, v) and (x, y) are adjacent if and only if either
u = x and vy ∈ E(H) or ux ∈ E(G) and v = y.

For an ordered set W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the k-vector

r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))

is called the metric representation of v with respect to W . The set W is called a resolving set for
G if distinct vertices have different metric representations. A resolving set for G with minimum
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cardinality is called a metric basis, and its cardinality is the metric dimension of G, denoted by
dim(G). If dim(G) = k, then G is said to be k-dimensional. A basis number of G, bas(G), is
the maximum r such that every r-set S of vertices of G is a subset of some basis of G.

In [16], Slater introduced the idea of a resolving set and used a locating set and the location
number for what we call a resolving set and the metric dimension, respectively. He described the
usefulness of these concepts when working with U.S. Sonar and Coast Guard Loran stations.
Independently, Harary and Melter [10] discovered the concept of the location number as well
and called it the metric dimension. For more results related to these concepts see [5, 6, 8, 13].
The concept of a resolving set has various applications in diverse areas including coin weigh-
ing problems [15], network discovery and verification [3], robot navigation [13], mastermind
game [5], problems of pattern recognition and image processing [14], and combinatorial search
and optimization [15].

It is obvious that to see whether a given set W is a resolving set, it is sufficient to consider
the vertices in V (G)\W , because w ∈ W is the unique vertex in G for which d(w,w) = 0.
When W is a resolving set for G, we say that W resolves G. In general, we say an ordered set
W resolves a set T ⊆ V (G), if for each two distinct vertices u, v ∈ T , r(u|W ) 6= r(v|W ).

The following bound is the known upper bound for the metric dimension.

Theorem 1. [7] If G is a connected graph of order n and diameter d, then dim(G) ≤ n− d.

For a basis W of G, a subset S of W is called a forcing subset of W if W is the unique
basis containing S. The forcing number fG(W,dim) of W in G is the minimum cardinality of
a forcing subset for W , while the forcing dimension f(G, dim) (or f(G)) of G is the smallest
forcing number among all bases of G.

It is immediate that f(G) = 0 if and only if G has a unique basis. If G has no unique basis
but contains a vertex belonging to only one basis, then f(G) = 1. Moreover, if for every basis
W of G and every proper subset S of W , the set W is not the unique basis containing S, then
f(G) = dim(G).

Theorem 2. [9] Let G be a nontrivial connected graph. If G is a complete graph, cycle, or
tree, then f(G) = dim(G).

Theorem 3. [9] Let G be a connected graph of order n ≥ 2 with dim(G) = n − 2. If G =
Kr,s (r, s ≥ 1) or G = Kr + Ks (r ≥ 1, s ≥ 2), then f(G) = dim(G). If G = Kr + (K1 ∪
Ks) (r, s ≥ 1), then f(G) = dim(G)− 1.

Obviously, if G is a graph with f(G) = a and dim(G) = b, then 0 ≤ a ≤ b and b ≥ 1. In
[9], it is determined which pairs a, b of integers with 0 ≤ a ≤ b and b ≥ 1 are realizable as the
forcing dimension and dimension of some nontrivial connected graph.

Theorem 4. [9] For all integers a, b with 0 ≤ a ≤ b and b ≥ 1, there exists a nontrivial
connected graph G with f(G) = a and dim(G) = b if and only if {a, b} 6= {0, 1}.

In this paper, some lower bounds for the forcing dimension of graphs are obtained. It is
shown that for all integers a, b with 0 ≤ a ≤ b and b ≥ 1, and for every sufficiently large
n, there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b if
{a, b} 6= {0, 1}.
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2 Some lower bounds

In this section we obtain some lower bounds for the forcing dimension of graphs.

Two vertices u, v ∈ V (G) are called twin vertices if N(u) \ {v} = N(v) \ {u}. It is known
that, if u and v are twin vertices, then every resolving set W for G contains at least one of the
vertices u and v. Moreover, if u /∈ W then (W \ {v}) ∪ {u} is also a resolving set for G [11].
A twin class of a vertex v, Tv, is {u ∈ V (G) | u and v are twin vertices.}. Note that, for every
u, v ∈ V (G), v ∈ Tv and if u ∈ Tv, then Tv = Tu. Let T (G) be a set of all twin classes of G
with at least two elements, T (G) = {Tv | v ∈ V (G), |Tv| ≥ 2}.

Lemma 1. For every twin class T of G with at least two elements, there is a basis B of G,
such that |B ∩ T | = |T | − 1.

Proof: We know that for every twin class T and every basis B of G, |B ∩ T | ≥ |T | − 1. Let
v ∈ V (G), T = Tv, |Tv| ≥ 2 and B0 be a basis of G such that B0∩Tv = Tv. By the definition of
basis and property of twin vertices, since |Tv| ≥ 2, there is a unique vertex u ∈ V (G) \B0 such
that r(u|B0 \ {v}) = r(v|B0 \ {v}). Therefore, B = (B0 \ {v}) ∪ {u} is a basis of G containing
exactly |Tv| − 1 elements of Tv. Thus, |B ∩ T | = |T | − 1.

Theorem 5. Let G be a connected graph.∑
T∈T (G)

(|T | − 1) ≤ f(G).

Proof: Let G be a connected graph,
∑

T∈T (G)(|T | − 1) > f(G) and S ⊂ V (G) of cardinality

f(G) such that there is a unique basis B of G containing S. Twin classes being pairwise disjoint,
there exists a vertex v ∈ V (G) such that |Tv| ≥ 2 and |S∩Tv| ≤ |Tv|−2. There are at least two
vertices u1, u2 ∈ Tv such that ui /∈ S for i = 1, 2. Since B is the unique basis containing S and
by the proof of Lemma 1, we have |B ∩ Tv| = |Tv| − 1. Suppose that Tv \B = {u3}. Therefore,
(B \ {u1}) ∪ {u3} or (B \ {u2}) ∪ {u3} is a basis of G containing S, which is a contradiction.

Theorem 6. If G = Kn1,n2,...,nr , then dim(G) = f(G) =
∑r

i=1 ni − r.

Proof: It is easy to check that
∑

T∈T (G)(|T | − 1) =
∑r

i=1 ni − r. Therefore by Theorem 5,

f(G) ≤
∑r

i=1 ni − r. For every i, 1 ≤ i ≤ r, let Vi be the ith part of V (G), then we remove
an arbitrary vertex of Vi, call new subset as V ′i . Obviously, B = ∪ri=1V

′
i is a metric basis of G.

Thus, dim(G) = f(G) =
∑r

i=1 ni − r.

Theorem 7. Let M be a matching in a Kn, n ≥ 3. If G = Kn \M , then dim(G) = f(G).
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Proof: Let M be a matching in Kn of size r and G = Kn \ M . Assume that M =
{uivi | 1 ≤ i ≤ r} and w ∈ V (G) be a vertex that is unsaturated by M . Therefore,
B = V (G) \ {w, u1, u2, . . . , ur} is a metric basis of G, so dim(G) = n − r − 1. Note that
T (G) = {{u1, v1}, {u2, v2}, . . . , {ur, vr}, V (G)\V (M)}. Thus by Theorem 5, f(G) ≥ n−(r+1).
Since f(G) ≤ dim(G), we have dim(G) = f(G) = n− r − 1.

Theorem 8. [1] Let M be a perfect matching in a Kn,n, n ≥ 2. If G = Kn,n \ M , then
dim(G) = n− 1.

Theorem 9. Let M be a perfect matching in a Kn,n, n ≥ 3. If G = Kn,n \M , then dim(G) =
f(G).

Proof: Let G be a regular bipartite graph with V1(G) = {x1, . . . , xn}, V2(G) = {y1, . . . , yn},
and E(G) = {xiyj | i 6= j}. Let B ⊂ V (G) be an arbitrary metric basis of G, so |W | = n − 1.
It is easily seen that, |B∩{xi, yi, xj , yj}| ≥ 1 and |B∩{xi, yi}| ≤ 1, for each i, j, 1 ≤ i < j ≤ n.
Therefore, dim(G) = f(G).

Theorem 10. Let n1 and n2 be two positive integers.

dim(Pn1�Pn2) = f(Pn1�Pn2) = 2.

Proof: Let V (P1) = {u1, u2, . . . , un1
}, V (P2) = {v1, v2, . . . , vn2

}, E(Pn1
) = {uiui+1 | i =

1, . . . , n1−1}, and E(Pn2) = {vivi+1 | i = 1, . . . , n2−1}. It is easily seen that, dim(Pn1�Pn2) =
2 and Pn1�Pn2 has exactly four metric bases as follows: {(u1, v1), (u1, vn2)}, {(u1, v1), (un1 , v1)},
{(un1

, vn2
), (u1, vn2

)}, and {(un1
, vn2

), (un1
, v1)}.

Therefore, dim(Pn1
�Pn2

) = f(Pn1
�Pn2

) = 2.

Proposition 1. Let G be a connected graph.

bas(G) ≤ f(G).

Proof: Suppose that there exists a connected graph G with f(G) < bas(G). Let S be a subset
of V (G) of size f(G) such that there is a unique basis containing S. Since f(G) < bas(G), for
every subset S′ of V (G)\S such that |S∪S′| = bas(G), there is a basis B such that S∪S′ ⊂ B,
which is a contradiction.

Theorem 11. Let G be a connected graph and f(G) = k ≥ 2. If T = {v1, v2, . . . ,
vk, vk+1} is a twin class, then f(G \ {vi}) = k − 1 for 1 ≤ i ≤ k + 1.

Proof: By Theorem 5, G has just one twin class with at least two elements, that is T . Without
loss of generality, let S = T \ {vk+1} be a forcing subset of a basis of G. First, we show that
for every basis B of G, T * B. On the contrary, suppose that there exists a basis B of G
such that T ⊆ B. Since T is a twin class, there exists a unique vertex u ∈ V (G) \B such that
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r(u|B \{vk+1}) = r(vk+1|B \{vk+1}). Therefore, B′ = (B \{vk+1})∪{u} is a basis of G. Thus,
S ⊆ B ∩B′, which is a contradiction.

For every k-subset of T , there is a unique basis of G containing that subset. On the
contrary and without loss of generality, assume that there are two bases B1 and B2 of G such
that {v2, v3, . . . , vk+1} ⊂ B1 ∩ B2. Since T * Bi, B

′
i = (Bi \ {vk+1}) ∪ {v1}, for i = 1, 2, is a

basis of G. Thus, S ⊂ B1 ∩B2, which is a contradiction.

Note that by Theorem 5, f(G \ {vi}) ≥
∑

T ′∈T (G\{vi})(|T
′| − 1) = k − 1, for 1 ≤ i ≤ k + 1.

Claim 1: For every basis B of G \ {vi}, |B ∩ (T \ {vi})| = k − 1. Suppose that B0 is a basis
of G \ {vi} for some 1 ≤ i ≤ k + 1 such that T \ {vi} ⊂ B0. Since dim(G \ {vi}) = dim(G)− 1
and k ≥ 2, B′ = B0 ∪ {vi} is a basis of G containing T , which is a contradiction.

On the contrary, suppose that f(G \ {vi}) ≥ k for some 1 ≤ i ≤ k + 1. Therefore, for every
T ′ ⊂ Tv \ {vi} of cardinality k − 1, there are at least two basis B1 and B2 of G \ {vi} that
T ′ ⊂ Bj , for j = 1, 2. By Claim 1, |Bj ∩ T \ {vi}| = k − 1, therefore, Bj ∪ {vi} for j = 1, 2 are
two basis of G containing T ′ ∪ {vi} and |T ′ ∪ {vi}| = k, which is a contradiction.

3 Graphs with prescribed dimensions, forcing dimensions, basis numbers and or-
ders

In Theorem 4, it is shown that for every 0 ≤ a ≤ b and b ≥ 1, there exists a connected graph G
with f(G) = a and dim(G) = b. By using the similar technique of Theorem 4, we prove that
for every 0 ≤ a ≤ b, b ≥ 1, and for every sufficiently large n, there is a connected graph G of
order n with f(G) = a and dim(G) = b. First we need the following theorem.

Let G be a k-dimensional graph such that it has a unique basis. Such graph is called uniquely
k-dimensional graph [2]. Obviously, for every uniquely k-dimensional graph G, bas(G) = f(G) =
0. It is proved that for every k, k ≥ 2, and every n ≥ d 5k2 +1e, there is a uniquely k-dimensional
graph of order n.

Theorem 12. [2] For every k, k ≥ 2, there exists a uniquely k-dimensional graph of order n
for every n ≥ d 5k2 + 1e.

Theorem 13. For every a, b, 0 ≤ a ≤ b, b ≥ 1, {a, b} 6= {0, 1}, and for every n ≥ d 5(b−a)2 +
1e+ a, there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b.

Proof: By Theorem 12, let H be a uniquely (b−a)-dimensional graph of order n0 ≥ d 5(b−a)2 +1e.
First we construct a graph G of order n0 + a with V (G) = V (H)∪X, where X = {x1, . . . , xa},
such that each xi (1 ≤ i ≤ a) has the same neighborhood as u in H and the induced subgraph
{u, x1, . . . , xa} is complete, where u ∈ V (H) \B0 and B0 is the unique basis of H.

We first show that B1 = B0 ∪X is a basis of G and therefore, dim(G) = b. Since H has a
unique basis, Tu = {u} in H. Thus, X ∪ {u} is a twin class and B0 is the unique basis of H,

I. rH(v|B0) = rG(v|B0) for every v ∈ V (H);

II. |B ∩ (X ∪ {u})| ≥ a, for each basis B of G;
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III. B0 ⊂ B, for each basis B of G. (Since B \X is a resolving set of H.)
Therefore B0 ∪X is a basis of G and dim(G) = b.
We are now prepared to show that f(G) = a. Let B be a basis of G. Since B0 must belong

to B, it follows that B is the unique basis containing B \ B0 . Thus, fG(B) ≤ |B \ B0| =
b − (b − a) = a. This is true for every basis B of G and so f(G) ≤ a. On the other hand, by
Theorem 5, since X ∪ {u} is a twin class, f(G) ≥ a. Therefore, f(G) = a.

In [12], the properties of k-dimensional graphs in which every k subset of vertices is a metric
basis are studied. Such graphs are called randomly k-dimensional graphs. It is obvious that for
every randomly k-dimensional graph G, bas(G) = f(G) = dim(G) = k.

Example 1. Let n ≥ 2 be an integer. Every complete graph Kn is a randomly (n − 1)-
dimensional graph and bas(Kn) = f(Kn) = dim(Kn) = n− 1.

Theorem 14. For every a, n, 0 ≤ a ≤ n, there exists a connected graph G of order n with
bas(G) = 0 and f(G) = dim(G) = a.

Proof: Let H be a cycle of order n − a + 1. First we construct a graph G of order n with
V (G) = V (H) ∪X, where X = {x1, . . . , xa−1}, such that each xi (1 ≤ i ≤ a− 1) has the same
neighborhood as u in H and the induced subgraph {u, x1, . . . , xa−1} is complete, where u ∈
V (H). Let v ∈ V (G) such that d(u, v) = bn−a+1

2 c. It is easy to check that f(G) = dim(G) = a
and there is no basis containing v. Thus, bas(G) = 0.

Theorem 15. For every a, n, 0 ≤ a ≤ n, there exists a connected graph G of order n with
bas(G) = 1 and f(G) = dim(G) = a.

Proof: Let H = (u1, u2, u3, . . . , un−a+1) be a path of order n−a+1. First we construct a graph
G of order n with V (G) = V (H)∪X, whereX = {x1, . . . , xa−1}, such that each xi (1 ≤ i ≤ a−1)
has the same neighborhood as u2 in H and the induced subgraph {u2, x1, . . . , xa−1} is complete.
Since the twin class Tu2

has a vertices, dim(G) ≥ f(G) ≥ a − 1. It is easy to check that
every B ⊂ V (G) of cardinality a with |B ∩ Tu2 | = a − 1 is a resolving set of G. Hence
f(G) = dim(G) = a and for every v ∈ V (G) there is some basis containing v. For each
{ui, uj} ⊂ V (H) \ {u2}, i, j 6= 2, there is no basis B such that {ui, uj} ⊂ B. Thus, bas(G) = 1.

The following question is an open problem in this area.

Problem 1. For which a, b, c of integers with 0 ≤ a ≤ b ≤ c, does there exist a nontrivial
connected graph G with bas(G) = a, f(G) = b, and dim(G) = c?
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