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On the Forcing Dimension of a Graph
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Abstract

A set W C V(G) is called a resolving set, if for each two distinct vertices u,v € V(QG)
there exists w € W such that d(u,w) # d(v,w), where d(z,y) is the distance between
the vertices z and y. A resolving set for G with minimum cardinality is called a metric
basis. The forcing dimension f(G,dim) (or f(G)) of G is the smallest cardinality of a
subset S C V(G) such that there is a unique basis containing S. The forcing dimensions
of some well-known graphs are determined. In this paper, among some other results, it is
shown that for large enough integer n and all integers a,b with 0 < a <b<mandb>1,
there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b if

{a,b} # {0, 1}.
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1 Introduction

Throughout the paper, G = (V, E) is a finite, simple, and connected graph of order n. The
distance between two vertices u and v, denoted by d(u,v), is the length of a shortest path
between v and v in G. The diameter of G is diam(G) = max{d(u,v) | u,v € V(G)}. The
girth of G is the length of a shortest cycle in G. The set of all adjacent vertices to a vertex
v is denoted by N(v) and |N(v)| is the degree of a vertex v, deg(v). The maximum degree
and the minimum degree of a graph G, are denoted by A(G) and §(G), respectively. The
notations u ~ v and u « v denote the adjacency and non-adjacency relations between u and
v, respectively. The Cartesian product of two graphs G and H, denoted by GUH, is the graph
with vertex set V(G) x V(H) and two vertices (u,v) and (z,y) are adjacent if and only if either
u=zand vy € E(H) or uz € E(G) and v = y.
For an ordered set W = {wy,ws,...,wi} C V(G) and a vertex v of G, the k-vector

r(w|W) = (d(v,wy),d(v,ws),...,d(v,wg))

is called the metric representation of v with respect to W. The set W is called a resolving set for
G if distinct vertices have different metric representations. A resolving set for G with minimum
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cardinality is called a metric basis, and its cardinality is the metric dimension of G, denoted by
dim(QG). If dim(G) = k, then G is said to be k-dimensional. A basis number of G, bas(G), is
the maximum 7 such that every r-set S of vertices of G is a subset of some basis of G.

In [16], Slater introduced the idea of a resolving set and used a locating set and the location
number for what we call a resolving set and the metric dimension, respectively. He described the
usefulness of these concepts when working with U.S. Sonar and Coast Guard Loran stations.
Independently, Harary and Melter [10] discovered the concept of the location number as well
and called it the metric dimension. For more results related to these concepts see [5, 6, 8, 13].
The concept of a resolving set has various applications in diverse areas including coin weigh-
ing problems [15], network discovery and verification [3], robot navigation [13], mastermind
game [5], problems of pattern recognition and image processing [14], and combinatorial search
and optimization [15].

It is obvious that to see whether a given set W is a resolving set, it is sufficient to consider
the vertices in V(G)\W, because w € W is the unique vertex in G for which d(w,w) = 0.
When W is a resolving set for GG, we say that W resolves GG. In general, we say an ordered set
W resolves a set T C V(G), if for each two distinct vertices u,v € T, r(u|W) # r(v|W).

The following bound is the known upper bound for the metric dimension.

Theorem 1. [7] If G is a connected graph of order n and diameter d, then dim(G) <n —d.

For a basis W of G, a subset S of W is called a forcing subset of W if W is the unique
basis containing S. The forcing number fo(W,dim) of W in G is the minimum cardinality of
a forcing subset for W, while the forcing dimension f(G,dim) (or f(G)) of G is the smallest
forcing number among all bases of G.

It is immediate that f(G) = 0 if and only if G has a unique basis. If G has no unique basis
but contains a vertex belonging to only one basis, then f(G) = 1. Moreover, if for every basis
W of G and every proper subset S of W, the set W is not the unique basis containing S, then
f(G) = dim(G).

Theorem 2. [9] Let G be a nontrivial connected graph. If G is a complete graph, cycle, or
tree, then f(G) = dim(G).

Theorem 3. [9] Let G be a connected graph of order n > 2 with dim(G) = n —2. If G =
K,.s (r,s >1) or G =K, + K, (r>1,s8>2), then f(G) = dim(G). If G = K, + (K1 U
K;) (r,s > 1), then f(G) = dim(G) — 1.

Obviously, if G is a graph with f(G) = a and dim(G) = b, then 0 < a <band b > 1. In
[9], it is determined which pairs a, b of integers with 0 < a < b and b > 1 are realizable as the
forcing dimension and dimension of some nontrivial connected graph.

Theorem 4. [9] For all integers a,b with 0 < a < b and b > 1, there exists a nontrivial
connected graph G with f(G) = a and dim(G) = b if and only if {a,b} # {0,1}.

In this paper, some lower bounds for the forcing dimension of graphs are obtained. It is
shown that for all integers a,b with 0 < a < b and b > 1, and for every sufficiently large
n, there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b if

{a,b} # {0,1}.
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2 Some lower bounds

In this section we obtain some lower bounds for the forcing dimension of graphs.

Two vertices u,v € V(QG) are called twin vertices if N(u) \ {v} = N(v) \ {u}. It is known
that, if u and v are twin vertices, then every resolving set W for G contains at least one of the
vertices u and v. Moreover, if u ¢ W then (W \ {v}) U {u} is also a resolving set for G [11].
A twin class of a vertex v, T, is {u € V(G) | v and v are twin vertices.}. Note that, for every
u,v € V(G), v € T, and if u € Ty, then T,, = T,,. Let T(G) be a set of all twin classes of G
with at least two elements, T(G) = {T, | v € V(G), |T,| > 2}.

Lemma 1. For every twin class T of G with at least two elements, there is a basis B of G,
such that |[BNT|=1|T| — 1.

Proof: We know that for every twin class 7' and every basis B of G, |[BNT| > |T| — 1. Let
veV(Q), T =1T,, |T,| > 2 and By be a basis of G such that BoNT, = T,. By the definition of
basis and property of twin vertices, since |T,| > 2, there is a unique vertex u € V(G) \ By such
that r(u|Bo \ {v}) = r(v|Bo \ {v}). Therefore, B = (By \ {v}) U{u} is a basis of G containing
exactly |T,| — 1 elements of T;,. Thus, |BNT|=|T| — 1. d

Theorem 5. Let G be a connected graph.

Y (TI-1) < f(G).

TeT(G)

Proof: Let G be a connected graph, > rer(q) (IT| — 1) > f(G) and S C V(G) of cardinality
f(G) such that there is a unique basis B of G containing S. Twin classes being pairwise disjoint,
there exists a vertex v € V(G) such that |T,| > 2 and |SNT,| < |T,| —2. There are at least two
vertices ui,us € T, such that u; ¢ S for ¢ = 1,2. Since B is the unique basis containing S and
by the proof of Lemma 1, we have |[BNT,| = |T,,| — 1. Suppose that T}, \ B = {us}. Therefore,
(B\ {u1}) U{us} or (B\ {ua2})U{us} is a basis of G containing S, which is a contradiction.
0

Theorem 6. If G = Ky, n,,... n,., then dim(G) = f(G) =i_ n; —r.
Proof: It is easy to check that } o7 (IT] — 1) = >y ni — r. Therefore by Theorem 5,
f(G) <37 ni—r. Forevery i, 1 <i <r,let V; be the i'h part of V(G), then we remove

an arbitrary vertex of V;, call new subset as V;. Obviously, B = U]_;V/ is a metric basis of G.
Thus, dim(G) = f(G) = >i_,ni — . O

Theorem 7. Let M be a matching in a K,, n > 3. If G = K, \ M, then dim(G) = f(G).
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Proof: Let M be a matching in K,, of size r and G = K, \ M . Assume that M =
{uiv; | 1 < i < r} and w € V(G) be a vertex that is unsaturated by M. Therefore,
B = V(G) \ {w,u1,ug,...,u,} is a metric basis of G, so dim(G) = n —r — 1. Note that
T(G) = {{ur, v}, {uz,va}, ..., {ur,v.}, V(G)\V(M)}. Thus by Theorem 5, f(G) > n—(r+1).
Since f(G) < dim(G), we have dim(G) = f(G) =n—r —1. O

Theorem 8. [1] Let M be a perfect matching in a K, n > 2. If G = K,,, \ M, then
dim(G) =n — 1.

Theorem 9. Let M be a perfect matching in a Ky, n > 3. If G = Ky, \ M, then dim(G) =
f(G).

Proof: Let G be a regular bipartite graph with V1(G) = {x1,...,2n}, V2(G) = {y1,-- -, Yn},
and E(G) = {z;y; | i # j}. Let B C V(G) be an arbitrary metric basis of G, so |[W|=n — 1.
It is easily seen that, |BN{z;,y;,2;,y;}| > 1 and |[BN{x;,y;}| <1, foreachi,j, 1 <i<j<n.
Therefore, dim(G) = f(G). O

Theorem 10. Let ny and ny be two positive integers.
dim(P,,0P,,) = f(Pn,0P,,) = 2.

Proof: Let V(P1) = {ui,uz,...,un, }, V(P2) = {v1,02,...,0n,}, E(Pn;) = {wuigr | i =
1,...,n1—1}, and E(P,,) = {vvig1 |1 =1,...,na—1}. It is easily seen that, dim(P,,0F,,) =
2 and P,,0P,, has exactly four metric bases as follows: {(u1,v1), (u1,vn,)}, {(u1,v1), (tn,,v1)},

{(unl ) Unz)a (uh Unz)}v and {(uﬂu ) UnQ)? (um ) Ul)}'
Therefore, dim(P,,0P,,) = f(P,,0P,,) = 2. 0

Proposition 1. Let G be a connected graph.
bas(G) < f(G).

Proof: Suppose that there exists a connected graph G with f(G) < bas(G). Let S be a subset
of V(QG) of size f(G) such that there is a unique basis containing S. Since f(G) < bas(G), for
every subset S’ of V/(G)\ S such that [SUS’| = bas(G), there is a basis B such that SUS’ C B,
which is a contradiction. 0

Theorem 11. Let G be a connected graph and f(G) =k > 2. If T = {vy,va,...,
Uk, Ukt1} @8 a twin class, then f(G\{v;}) =k—1for1 <i<k+1.

Proof: By Theorem 5, G has just one twin class with at least two elements, that is 7. Without
loss of generality, let S = T\ {vgy1} be a forcing subset of a basis of G. First, we show that
for every basis B of G, T ¢ B. On the contrary, suppose that there exists a basis B of G
such that T C B. Since T is a twin class, there exists a unique vertex v € V(G) \ B such that
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r(u|B\{vk+1}) = 7(vk41|B\{vk+1}). Therefore, B’ = (B\ {vk+1})U{u} is a basis of G. Thus,
S C BN B’, which is a contradiction.

For every k-subset of T, there is a unique basis of G containing that subset. On the
contrary and without loss of generality, assume that there are two bases B; and Bs of G such
that {va,v3,..., 0641} C B1 N Ba. Since T € B;, B} = (B; \ {vk+1}) U{v1}, for i = 1,2, is a
basis of G. Thus, S C Bi N By, which is a contradiction.

Note that by Theorem 5, f(G\ {vi}) > X pver (T —1) =k -1 for 1 <i <k +1.

Claim 1: For every basis B of G\ {v;}, |[BN (T \ {v;})| = k — 1. Suppose that By is a basis
of G\ {v;} for some 1 <i < k+ 1 such that T\ {v;} C By. Since dim(G \ {v;}) = dim(G) — 1
and k > 2, B’ = By U {v;} is a basis of G containing T', which is a contradiction.

On the contrary, suppose that f(G \ {v;}) > k for some 1 <1i < k + 1. Therefore, for every
T C T, \ {vi} of cardinality k — 1, there are at least two basis By and By of G \ {v;} that
T' C Bj, for j =1,2. By Claim 1, |[B; N T\ {v;}| = k — 1, therefore, B; U {v;} for j = 1,2 are
two basis of G containing 7" U {v;} and |T" U {v;}| = k, which is a contradiction. O

3 Graphs with prescribed dimensions, forcing dimensions, basis numbers and or-
ders

In Theorem 4, it is shown that for every 0 < a < b and b > 1, there exists a connected graph G
with f(G) = a and dim(G) = b. By using the similar technique of Theorem 4, we prove that
for every 0 < a < b, b > 1, and for every sufficiently large n, there is a connected graph G of
order n with f(G) = a and dim(G) = b. First we need the following theorem.

Let G be a k-dimensional graph such that it has a unique basis. Such graph is called uniquely
k-dimensional graph [2]. Obviously, for every uniquely k-dimensional graph G, bas(G) = f(G) =
0. It is proved that for every k, k > 2, and every n > f% +1], there is a uniquely k-dimensional
graph of order n.

Theorem 12. [2] For every k, k > 2, there exists a uniquely k-dimensional graph of order n
for every n > [38 +1].

Theorem 13. For every a,b, 0 < a <b, b > 1, {a,b} # {0,1}, and for every n > fS(bT_a) +
1] 4 a, there exists a nontrivial connected graph G of order n with f(G) = a and dim(G) = b.
Proof: By Theorem 12, let H be a uniquely (b—a)-dimensional graph of order ng > (@—l—ﬂ.
First we construct a graph G of order ng + a with V(G) = V(H)U X, where X = {z1,...,2.},
such that each x; (1 < i < a) has the same neighborhood as v in H and the induced subgraph
{u,x1,...,24} is complete, where u € V(H) \ By and By is the unique basis of H.

We first show that By = By U X is a basis of G and therefore, dim(G) = b. Since H has a
unique basis, Ty, = {u} in H. Thus, X U {u} is a twin class and By is the unique basis of H,

L. rg(v|By) = ra(v|By) for every v € V(H);
II. |IBN (X U{u})| > a, for each basis B of G;
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III. By C B, for each basis B of G. (Since B\ X is a resolving set of H.)

Therefore By U X is a basis of G and dim(G) = b.

We are now prepared to show that f(G) = a. Let B be a basis of G. Since By must belong
to B, it follows that B is the unique basis containing B \ By . Thus, fq(B) < |B\ Bo| =
b— (b—a) = a. This is true for every basis B of G and so f(G) < a. On the other hand, by
Theorem 5, since X U {u} is a twin class, f(G) > a. Therefore, f(G) = a. g

In [12], the properties of k-dimensional graphs in which every k subset of vertices is a metric
basis are studied. Such graphs are called randomly k-dimensional graphs. It is obvious that for
every randomly k-dimensional graph G, bas(G) = f(G) = dim(G) = k.

Example 1. Let n > 2 be an integer. FEvery complete graph K, is a randomly (n — 1)-

dimensional graph and bas(K,) = f(K,) = dim(K,) =n — 1.

Theorem 14. For every a,n, 0 < a < n, there exists a connected graph G of order n with
bas(G) =0 and f(G) = dim(G) = a.

Proof: Let H be a cycle of order n — a + 1. First we construct a graph G of order n with
V(G)=V(H)UX, where X = {z1,...,24-1}, such that each z; (1 <i < a — 1) has the same

neighborhood as w in H and the induced subgraph {u,z1,...,z4—1} is complete, where u €
V(H). Let v € V(G) such that d(u,v) = | 2=2+L]. It is easy to check that f(G) = dim(G) = a
and there is no basis containing v. Thus, bas(G) = 0. 0

Theorem 15. For every a,n, 0 < a < n, there exists a connected graph G of order n with
bas(G) =1 and f(G) = dim(G) = a.

Proof: Let H = (u1,us,us,...,Un—q+1) be a path of order n—a+1. First we construct a graph
G of order n with V(G) = V(H)UX, where X = {z1,...,24-1}, such that each x; (1 <i < a—1)
has the same neighborhood as uz in H and the induced subgraph {us, x1,...,2,_1} is complete.
Since the twin class T, has a vertices, dim(G) > f(G) > a — 1. It is easy to check that
every B C V(G) of cardinality a with |B N T,,| = a — 1 is a resolving set of G. Hence
f(G) = dim(G) = a and for every v € V(G) there is some basis containing v. For each
{us,u;} CV(H)\ {uz2}, 1,75 # 2, there is no basis B such that {u;,u;} C B. Thus, bas(G) = 1.
0

The following question is an open problem in this area.

Problem 1. For which a,b,c of integers with 0 < a < b < ¢, does there exist a nontrivial
connected graph G with bas(G) = a, f(G) =b, and dim(G) = c?
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