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Abstract

Let x : M → Rn be an (n − 1)-dimensional hypersurface in Rn, L be the Laguerre
tensor, B be the Laguerre second fundamental form and C be the Laguerre form of the
immersion x. The purpose of this paper is to investigate Laguerre characterization and
rigidity of hypersurfaces in Rn. We firstly obtain the classification of Laguerre isoparamet-
ric hypersurfaces with three distinct Laguerre principal curvatures one of which is simple
and then we obtain a Laguerre rigidity result of hypersurfaces in Rn.
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1 Introduction

In Laguerre geometry, T. Li and C. Wang [4] studied invariants of hypersurfaces in Euclidean
space Rn under the Laguerre transformation group. The Laguerre transformations are the
Lie sphere transformations which take oriented hyperplanes in Rn to oriented hyperplanes and
preserve the tangential distance.

Let URn be the unit tangent bundle over Rn. An oriented sphere in Rn centered at p with
radius r can be regarded as the oriented sphere {(x, ξ)|x−p = rξ} in URn, where x is the position
vector and ξ the unit normal vector of the sphere. An oriented hyperplane in Rn with constant
unit normal vector ξ and constant real number c can be regarded as the oriented hyperplane
{(x, ξ)|x · ξ = c} in URn. A diffeomorphism φ : URn → URn which takes oriented spheres
to oriented spheres, oriented hyperplanes to oriented hyperplanes, preserving the tangential
distance of any two spheres, is called a Laguerre transformation. All Laguerre transformations
in URn form a group of dimension (n+ 1)(n+ 2)/2, called Laguerre transformation group. An
oriented hypersurface x : M → Rn can be identified as the submanifold (x, ξ) : M → URn,
where ξ is the unit normal of x. Two hypersurfaces x, x∗ : M → Rn are called Laguerre
equivalent, if there is a Laguerre transformation φ : URn → URn such that (x∗, ξ∗) = φ ◦ (x, ξ)
(see [5]).

In [4], T. Li and C. Wang gave a complete Laguerre invariant system for hypersurfaces in
Rn. They proved that two umbilical free oriented hypersurfaces in Rn with non-zero principal
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curvatures are Laguerre equivalent if and only if they have the same Laguerre metric g and
Laguerre second fundamental form B. We should notices that the Laguerre geometry of surfaces
in R3 has been studied by Blaschke in [1] and other authors in [2], [3], [6].

Let Rn+3
2 be the space Rn+3 equipped with the inner product 〈X,Y 〉 = −X1Y1 + X2Y2 +

· · · + Xn+2Yn+2 − Xn+3Yn+3. Let Cn+2 be the light-cone in Rn+3 given by Cn+2 = {X ∈
Rn+3

2 |〈X,X〉 = 0}. Let LG be the subgroup of the orthogonal group O(n+ 1, 2) on Rn+3
2 given

by LG = {T ∈ O(n+ 1, 2)|ζT = ζ}, where ζ = (1,−1,0, 0) and 0 ∈ Rn is a light-like vector in
Rn+3

2 .
Let x : M → Rn be an umbilic free hypersurface with non-zero principal curvatures, and

ξ : M → Sn−1 be its unit normal vector. Let {e1, e2, . . . , en−1} be the orthonormal basis for
TM with respect to dx · dx, consisting of unit principal vectors. The structure equations of
x : M → Rn are (see [5])

ej(ei(x)) =
∑
k

Γkijek(x) + kiδijξ, ei(ξ) = −kiei(x), i, j, k = 1, . . . , n− 1, (1.1)

where ki 6= 0 is the principal curvature corresponding to ei. Let

ri =
1

ki
, r =

r1 + r2 + · · ·+ rn−1
n− 1

, (1.2)

be the curvature radii and mean curvature radius of x respectively. We define Y = ρ(x · ξ,−x ·
ξ, ξ, 1) : M → Cn+2 ⊂ Rn+3

2 , where ρ =
√∑

i(ri − r)2 > 0. From [4], we know that the
Laguerre metric g of the immersion x can be defined by g = 〈dY, dY 〉. Let {E1, E2, . . . , En−1}
be an orthonormal basis for g with dual basis {ω1, ω2, . . . , ωn−1}. The Laguerre tensor L, the
Laguerre second fundamental form B and the Laguerre form C of the immersion x are defined
by

L =

n−1∑
i,j=1

Lijωi ⊗ ωj , B =

n−1∑
i,j=1

Bijωi ⊗ ωj , C =

n−1∑
i=1

Ciωi, (1.3)

respectively, where Lij , Bij and Ci are defined by formulas (2.10)–(2.12) in Section 2. We
should notices that g, L, B and C are Laguerre invariants (see [4]).

From [7], we know that an eigenvalue of the Laguerre tensor is called a Laguerre eigenvalue
of x. A hypersurface with vanishing Laguerre form is called a Laguerre isotropic hypersurface
if the Laguerre eigenvalues of x are equal. An eigenvalue of the Laguerre second fundamental
form is called a Laguerre principal curvature of x. An umbilic free hypersurface x : M → Rn
with non-zero principal curvatures and vanishing Laguerre form C ≡ 0 is called a Laguerre
isoparametric hypersurface if the Laguerre principal curvatures of x are constants.

We define the Laguerre embedding τ : URn0 → URn(see [4]). Let Rn+1
1 be the Minkowski

space with the inner product 〈X,Y 〉 = X1Y1 + · · · + XnYn − Xn+1Yn+1. Let ν = (1,0, 1) be
the light-like vector in Rn+1

1 , 0 ∈ Rn−1. Let Rn0 be the degenerate hyperplane in Rn+1
1 defined

by Rn0 = {X ∈ Rn+1
1 |〈X, ν〉 = 0}. We define

URn0 = {(x, ξ) ∈ Rn+1
1 × Rn+1

1 |〈x, ν〉 = 0, 〈ξ, ξ〉 = 0, 〈ξ, ν〉 = 1}. (1.4)

The Laguerre embedding τ : URn0 → URn is defined by

τ(x, ξ) = (x′, ξ′) ∈ URn, (1.5)
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where x = (x1, x0, x1) ∈ R× Rn−1 × R, ξ = (ξ1 + 1, ξ0, ξ1) ∈ R× Rn−1 × R and

x′ =

(
−x1
ξ1
, x0 −

x1
ξ1
ξ0

)
, ξ′ =

(
1 +

1

ξ1
,
ξ0
ξ1

)
. (1.6)

Let x : M → Rn0 be a space-like oriented hypersurface in the degenerate hyperplane Rn0 .
Let ξ be the unique vector in Rn+1

1 satisfying 〈ξ, dx〉 = 0, 〈ξ, ξ〉 = 0, 〈ξ, ν〉 = 1. From
τ(x, ξ) = (x′, ξ′) ∈ URn, we may obtain a hypersurface x′ : M → Rn.

We should notice that it is one of the important aims to characterize hypersurfaces in terms
of Laguerre invariants. Concerning this topic, recently, T. Li, H. Li and C. Wang [5] and [7]
studied the Laguerre geometry of hypersurfaces with parallel Laguerre second fundamental form
or constant Laguerre eigenvalues in Rn.

Theorem 1.1 ([5]) Let x : M → Rn be an umbilic free hypersurface with non-zero prin-
cipal curvatures. If the Laguerre second fundamental form of x is parallel, then x is Laguerre
equivalent to an open part of one of the following hypersurfaces:

(1) the oriented hypersurface x : Sk−1 ×Hn−k → Rn given by Example 2.1; or
(2) the image of τ of the oriented hypersurface x : Rn−1 → Rn0 given by Example 2.2.

In this paper, we firstly classify completely the Laguerre isoparametric hypersurfaces with
three distinct Laguerre principal curvatures one of which is simple and then we obtain a La-
guerre rigidity result of hypersurfaces in Rn. More precisely, we obtain the following:

Theorem 1.2 Let x : M → Rn(n ≥ 4) be an (n − 1)-dimensional Laguerre isoparametric
hypersurface with three distinct Laguerre principal curvatures one of which is simple. Then x is
Laguerre equivalent to an open part of the image of τ of the oriented hypersurface x : Rn−1 → Rn0
given by Example 2.2.

Theorem 1.3 Let x : M → Rn(n ≥ 4) be an (n − 1)-dimensional umbilic free hypersur-
face with non-zero principal curvatures and vanishing Laguerre form. If the square of the norm
of Laguerre tensor satisfies

|L|2 ≤ (n− 1)R2

4(n− 2)2(n− 3)2
, (1.7)

then x is Laguerre equivalent to an open part of the oriented hypersurface x : Sn−2×H1 → Rn
given by Example 2.1, where R ≥ 0 is the Laguerre scalar curvature of x.

Remark 1.4 From Example 2.1 in section 2, we see that the pinching constant for |L|2
in Theorem 1.3 is optimal.

2 Laguerre fundamental formulas and examples

In this section, we review the Laguerre invariants and fundamental formulas on Laguerre ge-
ometry of hypersurfaces in Rn, for more details, see [4].



70 Yanyan Li and Shichang Shu

Let x : M → Rn be an (n − 1)-dimensional umbilical free hypersurface with vanishing
Laguerre form in Rn. Let {E1, . . . , En−1} denote a local orthonormal frame for Laguerre metric
g = 〈dY, dY 〉 with dual frame {ω1, . . . , ωn−1}. Putting Yi = Ei(Y ), then we have

N =
1

n− 1
∆Y +

1

2(n− 1)2
〈∆Y,∆Y 〉Y, (2.1)

〈Y, Y 〉 = 〈N,N〉 = 0, 〈Y,N〉 = −1, (2.2)

and the following orthogonal decomposition:

Rn+3
2 = Span{Y,N} ⊕ Span{Y1, . . . , Yn−1} ⊕ V, (2.3)

where {Y,N, Y1, . . . , Yn−1, η, ℘} forms a moving frame in Rn+3
2 and V = {η, ℘} is called Laguerre

normal bundle of x . We use the following range of indices throughout this paper:

1 ≤ i, j, k, l,m ≤ n− 1.

The structure equations on x with respect to the Laguerre metric g can be written as

dY =
∑
i

ωiYi, (2.4)

dN =
∑
i

ψiYi + ϕη, (2.5)

dYi = −ψiY − ωiN +
∑
j

ωijYj + ωin+1η, (2.6)

d℘ = −ϕY −
∑
i

ωin+1Yi, (2.7)

where {ψi, ωij , ωin+1, ϕ} are 1-forms on x with

ωij + ωji = 0, dωi =
∑
j

ωij ∧ ωj , (2.8)

and
ψi =

∑
j

Lijωj , Lij = Lji, ωin+1 =
∑
j

Bijωj , Bij = Bji, ϕ =
∑
i

Ciωi. (2.9)

We define Ẽi = riei, 1 ≤ i ≤ n − 1, then {Ẽ1, . . . , Ẽn−1} is an orthonormal basis for
III = dξ · dξ and {Ei = ρ−1Ẽi} is an orthonormal basis for the Laguerre metric g with dual
frame {ω1, . . . , ωn−1}. Lij , Bij and Ci are locally defined functions and satisfy

Lij = ρ−2
{

Hessij(log ρ)− Ẽi(log ρ)Ẽj(log ρ) +
1

2

(
|∇ log ρ|2 − 1

)
δij

}
, (2.10)

Bij = ρ−1(ri − r)δij , (2.11)

Ci = −ρ−2
{
Ẽi(r)− Ẽi(log ρ)(ri − r)

}
, (2.12)
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where g =
∑
i(ri− r)2III = ρ2III, ri and r are defined by (1.2), Hessij and ∇ are the Hessian

matrix and the gradient with respect to the third fundamental form III = dξ · dξ of x(see [4]).
Defining the covariant derivative of Ci, Lij , Bij by∑

j

Ci,jωj = dCi +
∑
j

Cjωji, (2.13)

∑
k

Lij,kωk = dLij +
∑
k

Likωkj +
∑
k

Lkjωki, (2.14)∑
k

Bij,kωk = dBij +
∑
k

Bikωkj +
∑
k

Bkjωki. (2.15)

We have from [4] that

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl, Rijkl = −Rjikl, (2.16)

∑
i

Bii = 0,
∑
i,j

B2
ij = 1,

∑
i

Bij,i = (n− 2)Cj , trL = − R

2(n− 2)
. (2.17)

Lij,k = Lik,j , (2.18)

Ci,j − Cj,i =
∑
k

(BikLkj −BjkLki), (2.19)

Bij,k −Bik,j = Cjδik − Ckδij , (2.20)

Rijkl = Ljkδil + Lilδjk − Likδjl − Ljlδik, (2.21)

where Rijkl and R denote the Laguerre curvature tensor and the Laguerre scalar curvature with
respect to the Laguerre metric g on x. Since the Laguerre form C ≡ 0, we have for all indices
i, j, k

Bij,k = Bik,j ,
∑
k

BikLkj =
∑
k

BkjLki. (2.22)

Defining the second covariant derivative of Bij by∑
l

Bij,klωl = dBij,k +
∑
l

Blj,kωli +
∑
l

Bil,kωlj +
∑
l

Bij,lωlk, (2.23)

we have the Ricci identity

Bij,kl −Bij,lk =
∑
m

BmjRmikl +
∑
m

BimRmjkl. (2.24)

We recall the following examples of hypersurfaces in Rn and calculate their Laguerre invari-
ants.
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Example 2.1([5]) Let x : Sk−1 × Hn−k → Rn be an umbilic free hypersurface in Rn
defined by

x(u, v, w) =
( u
w

(1 + w),
v

w

)
,

where Hn−k = {(v, w) ∈ Rn−k+1
1 |v·v−w2 = −1, w > 0} denotes the hyperbolic space embedded

in the Minkowski space Rn−k+1
1 . From [5], we know that x has two distinct Laguerre principal

curvatures B1 = −
√

n−k
(k−1)(n−1) , B2 =

√
k−1

(n−k)(n−1) , the Laguerre form is zero and the Laguerre

second fundamental form of x is parallel. The Laguerre metric is

g =
(k − 1)(n− k)

n− 1

(
du · du+ dv · dv − dw2

)
= g1 + g2,

where g1 = (k−1)(n−k)
n−1 du · du and g2 = (k−1)(n−k)

n−1
(
dv · dv − dw2

)
. We know that the sectional

curvatures of g1 and g2 are n−1
(k−1)(n−k) and − n−1

(k−1)(n−k) , respectively. Thus, from (2.21), we see

that

Lij = − n− 1

2(k − 1)(n− k)
δij , 1 ≤ i, j ≤ k − 1,

Lij =
n− 1

2(k − 1)(n− k)
δij , k ≤ i, j ≤ n− 1,

that is x : Sk−1×Hn−k → Rn has two constant distinct Laguerre eigenvalues − n−1
2(k−1)(n−k) and

n−1
2(k−1)(n−k) with multiplicities k − 1 and n− k, respectively. We see that x : Sn−2 ×H1 → Rn

has two distinct Laguerre eigenvalues − n−1
2(n−2) and n−1

2(n−2) with multiplicities n − 2 and 1, by

(2.17) and a direct calculation, we have |L|2 = (n−1)R2

4(n−2)2(n−3)2 .

Example 2.2([5]) For any positive integers m1, . . . ,ms with m1 + · · ·+ms = n− 1 and any
non-zero constants λ1, . . . , λs, we define x : Rn−1 → Rn0 to be a spacelike oriented hypersurface
in Rn0 given by

x =

{
λ1|u1|2 + · · ·+ λs|us|2

2
, u1, u2, . . . , us,

λ1|u1|2 + · · ·+ λs|us|2

2

}
,

where (u1, . . . , us) ∈ Rm1 × · · · × Rms = Rn−1 and |ui|2 = ui · ui, i = 1, . . . , s. Then
τ ◦ (x, ξ) = (x′, ξ′) : Rn−1 → URn, and we obtain the hypersurfaces x′ : Rn−1 → Rn. From [5],
we know that x has s(s ≥ 3) distinct Laguerre principal curvatures Bi = ri−r√∑

i(ri−r)2
, 1 ≤ i ≤ s,

where ri = 1
ki

, r = k1r1+k2r2+···+ksrs
n−1 and ki 6= 0 is the principal curvature corresponding to ei.

Also from [5], we know that the Laguerre form is zero, Lij = 0 for 1 ≤ i, j ≤ n − 1 and the
Laguerre second fundamental form of x is parallel.

Lemma 2.3([9]) Let A and B be m ×m-symmetric matrices satisfying trA = 0, trB = 0
and AB −BA = 0. Then,

|trB2A| ≤ m− 2√
m(m− 1)

(trB2)(trA2)1/2,
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and the equality in the right (left) hand side holds if and only if (m − 1) of the eigenvalues

xi of B and the corresponding eigenvalues yi of A satisfy |xi| = (trB2)1/2√
m(m−1)

, xixj ≥ 0, yi =

− (trA2)1/2√
m(m−1)

, (yi = (trA2)1/2√
m(m−1)

).

3 Proofs of theorems

Let L and B denote the (n − 1) × (n − 1)-symmetric matrices (Lij) and (Bij), respectively,
where Lij and Bij are defined by (2.10), (2.11). From (2.22), we know that BL = LB. Thus,
we may choose a local orthonormal basis {E1, E2, . . . , En−1} such that

Lij = Liδij , Bij = Biδij ,

where Li and Bi are the Laguerre eigenvalues and the Laguerre principal curvatures of the
immersion x.

Throughout this section, we shall make the following convention on the ranges of indices:

1 ≤ a, b ≤ m1, m1 + 1 ≤ p, q ≤ m1 +m2,

m1 +m2 + 1 ≤ α, β ≤ m1 +m2 +m3 = n− 1, 1 ≤ i, j, k ≤ n− 1.

We may prove the following Proposition firstly.

Proposition 3.1 Let x : M → Rn(n ≥ 4) be an (n − 1)-dimensional Laguerre isoparamet-
ric hypersurface with three distinct Laguerre principal curvatures one of which is simple. If the
Laguerre second fundamental form of x is not parallel, then there is no such hypersurface in Rn.

Proof: Let B1, B2 and B3 be the three constant Laguerre principal curvatures of x with
multiplicities m1, m2 and m3. From (2.15), we have

Bij,k = Γjik(Bi −Bj), (3.1)

where Γjik is the Levi-Civita connection for the Laguerre metric g given by

ωij =
∑
k

Γjikωk, Γjik = −Γijk.

It follows that
Bab,k = Bpq,k = Bαβ,k = 0 for any a, b, p, q, α, β, k. (3.2)

If the Laguerre second fundamental form of x is not parallel, we see that the only possible
nonzero elements in {Bij,k} are of the form {Bap,α}. Since n ≥ 4, without loss of generality,
we may assume that m1 ≥ m2 ≥ m3 and m3 = 1.

From (2.16), (2.8) and ωij =
∑
k Γjikωk, the curvature tensor of x may be given by (see [8])

Rijkl =El(Γ
j
ik)− Ek(Γjil) +

∑
m

ΓjimΓmlk (3.3)

−
∑
m

ΓjimΓmkl +
∑
m

ΓmikΓjml −
∑
m

Γmil Γ
j
mk.
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Thus, from (3.1) and (3.2), we have

Γpab = Γαab = 0, Γapq = Γαpq = 0, Γaαβ = Γpαβ = 0, (3.4)

Γpaα =
Bap,α
B1 −B2

, Γaαp =
Bαa,p
B3 −B1

, Γαpa =
Bpα,a
B2 −B3

. (3.5)

From (3.4) and (3.5), we have

Γan−1n−1 = Γpn−1n−1 = 0, Γn−1aa = Γn−1pp = 0. (3.6)

Γpan−1 =
Bap,n−1
B1 −B2

, Γpn−1b =
Bbp,n−1
B3 −B2

, Γn−1bq =
Bbq,n−1
B1 −B3

, (3.7)

Γn−1qb =
Bbq,n−1
B2 −B3

.

Thus, we have

Rapbq =Eq(Γ
p
ab)− Eb(Γ

p
aq) +

∑
m

ΓpamΓmqb (3.8)

−
∑
m

ΓpamΓmbq +
∑
m

ΓmabΓ
p
mq −

∑
m

ΓmaqΓ
p
mb

=Γpan−1Γn−1qb − Γpan−1Γn−1bq − Γn−1aq Γpn−1b

=
Bap,n−1Bbq,n−1 +Baq,n−1Bbp,n−1

(B1 −B3)(B2 −B3)
.

On the other hand, from (2.21), we have

Rapbq = −(La + Lp)δabδpq. (3.9)

It follows from (3.8) and (3.9) that

Bap,n−1Bbq,n−1 +Baq,n−1Bbp,n−1 (3.10)

=− (La + Lp)(B1 −B3)(B2 −B3)δabδpq.

If a = b, we have

2Bap,n−1Baq,n−1 = −(La + Lp)(B1 −B3)(B2 −B3)δpq. (3.11)

If p = q, we have

2Bap,n−1Bbp,n−1 = −(La + Lp)(B1 −B3)(B2 −B3)δab. (3.12)

If m1 = 1, it follows that 2B1p,n−1B1q,n−1 = −(L1 + Lp)(B1 −B3)(B2 −B3)δpq. Since the
Laguerre second fundamental form of x is not parallel, we may prove that there exists exactly one
p, such that B1p,n−1 6= 0. In fact, if there exists more than one p, for example p1, p2, (p1 6= p2)
such that B1p1,n−1 6= 0, B1p2,n−1 6= 0, this is a contradiction with B1p1,n−1B1p2,n−1 = 0.
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If m2 = 1, it follows that 2Bam1+1,n−1Bbm1+1,n−1 = −(La+Lm1+1)(B1−B3)(B2−B3)δab.
The same reason implies that there exists exactly one a, such that Bam1+1,n−1 6= 0.

If m1 ≥ 2 and m2 ≥ 2, we may prove that there exists exactly one a and exactly one p
such that Bap,n−1 6= 0. In fact, if there exists more than one a, for example a1, a2, (a1 6= a2)
such that Ba1p,n−1 6= 0, Ba2p,n−1 6= 0. From (3.12), we see that Ba1p,n−1Ba2p,n−1 = 0, a
contradiction. The same reason implies that there exists exactly one p, such that Bap,n−1 6= 0.
Thus, we conclude.

Combining with the above three cases, we see that if m1 ≥ 1 and m2 ≥ 1, there exists
exactly one a and exactly one p, say a1 and p1, such that

Ba1p1,n−1 6= 0, Bap,n−1 = 0, for a 6= a1,∀p, or for p 6= p1,∀a. (3.13)

By (3.11) and (3.13), we get

− La1 − Lp1 =
2B2

a1p1,n−1

(B1 −B3)(B2 −B3)
, (3.14)

− La − Lp1 = 0, a 6= a1, (3.15)

− La1 − Lp = 0, p 6= p1, (3.16)

− La − Lp = 0, a 6= a1, p 6= p1. (3.17)

From (3.1)–(3.3), (2.21) and by reasoning as above, we get

− La1 − Ln−1 =
2B2

a1p1,n−1

(B1 −B2)(B3 −B2)
, (3.18)

− La − Ln−1 = 0, a 6= a1 (3.19)

− Lp1 − Ln−1 =
2B2

a1p1,n−1

(B2 −B1)(B3 −B1)
, (3.20)

− Lp − Ln−1 = 0 p 6= p1. (3.21)

By (3.14), (3.18) and (3.20), we obtain that Ln−1 =
2Ba1p1,n−1

(B1−B3)(B2−B3)
.

If m2 ≥ 2, then there exists some p(p 6= p1) such that (3.17) and (3.21) hold. From (3.17),
(3.19) and (3.21), we see that Ln−1 = 0, a contradiction. Thus, it follows that m2 = 1. By
(3.18)–(3.20), we know that x has Laguerre eigenvalues

La = − 2Ba1p1,n−1
(B1 −B3)(B2 −B3)

, a 6= a1, (3.22)

La1 =
2Ba1p1,n−1

(B2 −B1)(B3 −B1)
, (3.23)

Lp1 =
2Ba1p1,n−1

(B1 −B2)(B3 −B2)
, (3.24)

Ln−1 =
2Ba1p1,n−1

(B1 −B3)(B2 −B3)
. (3.25)
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We may prove that Ba1p1,n−1 is a constant. In fact, from ωij =
∑
k Γjikωk, (2.23), (3.1) and

(3.2), we have ∑
l

Bab,plωl =dBab,p +
∑
l

Blb,pωla +
∑
l

Bal,pωlb +
∑
l

Bab,lωlp

=
∑
l

Bn−1b,pBn−1a,l +Bn−1a,pBn−1b,l
B3 −B1

ωl.

Thus

Bab,pl =
Bn−1b,pBn−1a,l +Bn−1a,pBn−1b,l

B3 −B1
, ∀ a, b, p, l. (3.26)

By reasoning as above, we also have

Bpq,al =
Bn−1a,pBn−1l,q +Bn−1a,qBn−1l,p

B3 −B2
, ∀ a, p, q, l, (3.27)

Bn−1n−1,ap = 0, ∀ a, p. (3.28)

From (2.24), we have Bij,kl−Bij,lk = (Bi−Bj)Rijkl. By (2.21) and Lij = Liδij , we know that
if three of {i, j, k, l} are distinct, then Rijkl = 0. Thus, if three of {i, j, k, l} are distinct, we
have

Bij,kl = Bij,lk. (3.29)

From (2.23), (3.1) and (3.2), we have

dBa1p1,n−1 =
∑
l

Ba1p1,n−1lωl = Ba1p1,n−1a1ωa1 (3.30)

+
∑

l=a,a6=a1

Ba1p1,n−1lωl +Ba1p1,n−1p1ωp1

+
∑

l=p,p 6=p1

Ba1p1,n−1lωl +Ba1p1,n−1n−1ωn−1.

Thus, it follows from (3.26)–(3.29) that dBa1p1,n−1 = 0, that is, Ba1p1,n−1 is constant. Thus,
we see that x has constant Laguerre eigenvalues

La(a 6= a1), La1 , Lp1 , Ln−1.

If m1 ≥ 2, then there exists some a(a 6= a1) such that (3.15), (3.19) and (3.22) hold. From
(3.15) and (3.19), we see that Lp1 = Ln−1, that is, from (3.24) and (3.25), we have

2B1 −B2 −B3 = 0. (3.31)

We may prove that La1 6= Lp1 . In fact, if La1 = Lp1 , we have

2B3 −B1 −B2 = 0. (3.32)
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Combining with (3.31), we see that B1 = B2 = B3, a contradiction. It may be easily checked
that La 6= La1 , La 6= Lp1 , this shows that x has three distinct constant Laguerre eigenvalues

La(a 6= a1), La1 , Lp1 = Ln−1,

and therefore is not a Laguerre isotropic hypersurface. But from a result of [7] (see Proposition
6.1 in [7]), we know that if x has constant Laguerre eigenvalues, then it must have only two
distinct constant Laguerre eigenvalues, a contradiction. Thus, it follows that m1 = 1. Com-
bining with m3 = 1 and m2 = 1, we see that n = 4. This shows that x has constant Laguerre
eigenvalues

L1 =
2B12,3

(B2 −B1)(B3 −B1)
,

L2 =
2B12,3

(B1 −B2)(B3 −B2)
,

L3 =
2B12,3

(B1 −B3)(B2 −B3)
.

If L1 = L2 = L3, we easily see that B1 = B2 = B3, a contradiction. Thus x is not a
Laguerre isotropic hypersurface. From Proposition 6.1 in [7], we know that two of L1, L2, L3

must be equal and be equal to the opposite number of the third, that is, x must have two
constant Laguerre eigenvalues which are opposite numbers. Without loss of generality, we may
assume that L1 = L2 = −L3, from the above three equation of L1, L2, L3, we also see that
B1 = B2 = B3, a contradiction. Thus, if the Laguerre second fundamental form of x is not
parallel, there is no Laguerre isoparametric hypersurface with three distinct Laguerre principal
curvatures one of which is simple. This completes the proof of Proposition 3.1. 2

Proof of Theorem 1.2: If the Laguerre second fundamental form of x is parallel, since x
has three distinct constant Laguerre principal curvatures, from Theorem 1.1, Example 2.1 and
Example 2.2, we know that x is Laguerre equivalent to an open part of the image of τ of the
oriented hypersurface x : Rn−1 → Rn0 given by Example 2.2.

If the Laguerre second fundamental form of x is not parallel, from Proposition 3.1, we know
that there is no Laguerre isoparametric hypersurface with three distinct Laguerre principal
curvatures one of which is simple. This completes the proof of Theorem 1.2. 2

Proof of Theorem 1.3: Putting L̃ = (L̃ij) with L̃ij = Lij − 1
n−1 trLδij , thus

trL̃ = 0, BL̃ = L̃B, tr(L̃B2) = tr(LB2)− 1

n− 1
trL, (3.33)

and

|L|2 =
∑
i,j

(Lij)
2 =

∑
i,j

(L̃ij)
2 +

1

n− 1
(trL)2 = |L̃|2 +

1

n− 1
(trL)2. (3.34)

From (1.7), (2.17) and (3.34), we see that

|L̃|2 = |L|2 − 1

n− 1
(trL)2 ≤ R2

(n− 1)(n− 2)(n− 3)2
.
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Since we assume that R ≥ 0, it follows that

|L̃| ≤ R

(n− 3)
√

(n− 1)(n− 2)
. (3.35)

From (2.21), (2.22), (2.24), (3.33), (3.35), Lemma 2.3 and by a direct calculation, we have

0 =
1

2
∆
∑
i,j

B2
ij =

∑
i,j,k

B2
ij,k +

∑
i,j

Bij∆Bij (3.36)

=
∑
i,j,k

B2
ij,k − (n− 1)tr(LB2)− trL

=
∑
i,j,k

B2
ij,k − (n− 1)

(
tr(L̃B2) +

1

n− 1
trL

)
− trL

≥
∑
i,j,k

B2
ij,k − (n− 1)

{
n− 3√

(n− 1)(n− 2)
|L̃|+ 1

n− 1
trL

}
− trL

=
∑
i,j,k

B2
ij,k +

{
R

n− 2
− (n− 3)

√
n− 1

n− 2
|L̃|

}
≥ 0.

Thus, the equalities in (3.36) hold. We have Bij,k = 0, that is, the Laguerre second fundamen-
tal form of x is parallel. Further, the inequality in the right hand side of Lemma 2.3 becomes
equality. Thus, we know that x has two distinct constant Laguerre principal curvatures. From
Theorem 1.1, Example 2.1 and Example 2.2, we know that x is Laguerre equivalent to an open
part of the oriented hypersurface x : Sn−2 ×H1 → Rn given by Example 2.1. This completes
the proof of Theorem 1.3. 2
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