Laguerre characterization and rigidity of hypersurfaces in \mathbb{R}^{n}

by
Yanyan Li ${ }^{[1]}$ and Shichang $\operatorname{SHU}^{[2]}$

Abstract

Let $x: M \rightarrow \mathbb{R}^{n}$ be an $(n-1)$-dimensional hypersurface in $\mathbb{R}^{n}, \mathbf{L}$ be the Laguerre tensor, \mathbf{B} be the Laguerre second fundamental form and \mathbf{C} be the Laguerre form of the immersion x. The purpose of this paper is to investigate Laguerre characterization and rigidity of hypersurfaces in \mathbb{R}^{n}. We firstly obtain the classification of Laguerre isoparametric hypersurfaces with three distinct Laguerre principal curvatures one of which is simple and then we obtain a Laguerre rigidity result of hypersurfaces in \mathbb{R}^{n}.

Key Words: Laguerre tensor, Laguerre second fundamental form, Laguerre form, Laguerre metric.
2010 Mathematics Subject Classification: Primary 53A40, Secondary 53B25.

1 Introduction

In Laguerre geometry, T. Li and C. Wang [4] studied invariants of hypersurfaces in Euclidean space \mathbb{R}^{n} under the Laguerre transformation group. The Laguerre transformations are the Lie sphere transformations which take oriented hyperplanes in \mathbb{R}^{n} to oriented hyperplanes and preserve the tangential distance.

Let $U \mathbb{R}^{n}$ be the unit tangent bundle over \mathbb{R}^{n}. An oriented sphere in \mathbb{R}^{n} centered at p with radius r can be regarded as the oriented sphere $\{(x, \xi) \mid x-p=r \xi\}$ in $U \mathbb{R}^{n}$, where x is the position vector and ξ the unit normal vector of the sphere. An oriented hyperplane in \mathbb{R}^{n} with constant unit normal vector ξ and constant real number c can be regarded as the oriented hyperplane $\{(x, \xi) \mid x \cdot \xi=c\}$ in $U \mathbb{R}^{n}$. A diffeomorphism $\phi: U \mathbb{R}^{n} \rightarrow U \mathbb{R}^{n}$ which takes oriented spheres to oriented spheres, oriented hyperplanes to oriented hyperplanes, preserving the tangential distance of any two spheres, is called a Laguerre transformation. All Laguerre transformations in $U \mathbb{R}^{n}$ form a group of dimension $(n+1)(n+2) / 2$, called Laguerre transformation group. An oriented hypersurface $x: M \rightarrow \mathbb{R}^{n}$ can be identified as the submanifold $(x, \xi): M \rightarrow U \mathbb{R}^{n}$, where ξ is the unit normal of x. Two hypersurfaces $x, x^{*}: M \rightarrow \mathbb{R}^{n}$ are called Laguerre equivalent, if there is a Laguerre transformation $\phi: U \mathbb{R}^{n} \rightarrow U \mathbb{R}^{n}$ such that $\left(x^{*}, \xi^{*}\right)=\phi \circ(x, \xi)$ (see [5]).

In [4], T. Li and C. Wang gave a complete Laguerre invariant system for hypersurfaces in \mathbb{R}^{n}. They proved that two umbilical free oriented hypersurfaces in \mathbb{R}^{n} with non-zero principal
curvatures are Laguerre equivalent if and only if they have the same Laguerre metric g and Laguerre second fundamental form \mathbf{B}. We should notices that the Laguerre geometry of surfaces in \mathbb{R}^{3} has been studied by Blaschke in [1] and other authors in [2], [3], [6].

Let \mathbb{R}_{2}^{n+3} be the space \mathbb{R}^{n+3} equipped with the inner product $\langle X, Y\rangle=-X_{1} Y_{1}+X_{2} Y_{2}+$ $\cdots+X_{n+2} Y_{n+2}-X_{n+3} Y_{n+3}$. Let C^{n+2} be the light-cone in \mathbb{R}^{n+3} given by $C^{n+2}=\{X \in$ $\left.\mathbb{R}_{2}^{n+3} \mid\langle X, X\rangle=0\right\}$. Let $L \mathbb{G}$ be the subgroup of the orthogonal group $O(n+1,2)$ on \mathbb{R}_{2}^{n+3} given by $L \mathbb{G}=\{T \in O(n+1,2) \mid \zeta T=\zeta\}$, where $\zeta=(1,-1, \mathbf{0}, 0)$ and $\mathbf{0} \in \mathbb{R}^{n}$ is a light-like vector in \mathbb{R}_{2}^{n+3}.

Let $x: M \rightarrow \mathbb{R}^{n}$ be an umbilic free hypersurface with non-zero principal curvatures, and $\xi: M \rightarrow S^{n-1}$ be its unit normal vector. Let $\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ be the orthonormal basis for $T M$ with respect to $d x \cdot d x$, consisting of unit principal vectors. The structure equations of $x: M \rightarrow \mathbb{R}^{n}$ are (see [5])

$$
\begin{equation*}
e_{j}\left(e_{i}(x)\right)=\sum_{k} \Gamma_{i j}^{k} e_{k}(x)+k_{i} \delta_{i j} \xi, \quad e_{i}(\xi)=-k_{i} e_{i}(x), \quad i, j, k=1, \ldots, n-1 \tag{1.1}
\end{equation*}
$$

where $k_{i} \neq 0$ is the principal curvature corresponding to e_{i}. Let

$$
\begin{equation*}
r_{i}=\frac{1}{k_{i}}, \quad r=\frac{r_{1}+r_{2}+\cdots+r_{n-1}}{n-1} \tag{1.2}
\end{equation*}
$$

be the curvature radii and mean curvature radius of x respectively. We define $Y=\rho(x \cdot \xi,-x$. $\xi, \xi, 1): M \rightarrow C^{n+2} \subset \mathbb{R}_{2}^{n+3}$, where $\rho=\sqrt{\sum_{i}\left(r_{i}-r\right)^{2}}>0$. From [4], we know that the Laguerre metric g of the immersion x can be defined by $g=\langle d Y, d Y\rangle$. Let $\left\{E_{1}, E_{2}, \ldots, E_{n-1}\right\}$ be an orthonormal basis for g with dual basis $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n-1}\right\}$. The Laguerre tensor \mathbf{L}, the Laguerre second fundamental form \mathbf{B} and the Laguerre form \mathbf{C} of the immersion x are defined by

$$
\begin{equation*}
\mathbf{L}=\sum_{i, j=1}^{n-1} L_{i j} \omega_{i} \otimes \omega_{j}, \quad \mathbf{B}=\sum_{i, j=1}^{n-1} B_{i j} \omega_{i} \otimes \omega_{j}, \quad \mathbf{C}=\sum_{i=1}^{n-1} C_{i} \omega_{i} \tag{1.3}
\end{equation*}
$$

respectively, where $L_{i j}, B_{i j}$ and C_{i} are defined by formulas (2.10)-(2.12) in Section 2. We should notices that $g, \mathbf{L}, \mathbf{B}$ and \mathbf{C} are Laguerre invariants (see [4]).

From [7], we know that an eigenvalue of the Laguerre tensor is called a Laguerre eigenvalue of x. A hypersurface with vanishing Laguerre form is called a Laguerre isotropic hypersurface if the Laguerre eigenvalues of x are equal. An eigenvalue of the Laguerre second fundamental form is called a Laguerre principal curvature of x. An umbilic free hypersurface $x: M \rightarrow \mathbb{R}^{n}$ with non-zero principal curvatures and vanishing Laguerre form $\mathbf{C} \equiv 0$ is called a Laguerre isoparametric hypersurface if the Laguerre principal curvatures of x are constants.

We define the Laguerre embedding $\tau: U \mathbb{R}_{0}^{n} \rightarrow U \mathbb{R}^{n}$ (see [4]). Let \mathbb{R}_{1}^{n+1} be the Minkowski space with the inner product $\langle X, Y\rangle=X_{1} Y_{1}+\cdots+X_{n} Y_{n}-X_{n+1} Y_{n+1}$. Let $\nu=(1, \mathbf{0}, 1)$ be the light-like vector in $\mathbb{R}_{1}^{n+1}, \mathbf{0} \in \mathbb{R}^{n-1}$. Let \mathbb{R}_{0}^{n} be the degenerate hyperplane in \mathbb{R}_{1}^{n+1} defined by $\mathbb{R}_{0}^{n}=\left\{X \in \mathbb{R}_{1}^{n+1} \mid\langle X, \nu\rangle=0\right\}$. We define

$$
\begin{equation*}
U \mathbb{R}_{0}^{n}=\left\{(x, \xi) \in \mathbb{R}_{1}^{n+1} \times \mathbb{R}_{1}^{n+1} \mid\langle x, \nu\rangle=0,\langle\xi, \xi\rangle=0,\langle\xi, \nu\rangle=1\right\} \tag{1.4}
\end{equation*}
$$

The Laguerre embedding $\tau: U \mathbb{R}_{0}^{n} \rightarrow U \mathbb{R}^{n}$ is defined by

$$
\begin{equation*}
\tau(x, \xi)=\left(x^{\prime}, \xi^{\prime}\right) \in U \mathbb{R}^{n} \tag{1.5}
\end{equation*}
$$

where $x=\left(x_{1}, x_{0}, x_{1}\right) \in \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R}, \xi=\left(\xi_{1}+1, \xi_{0}, \xi_{1}\right) \in \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R}$ and

$$
\begin{equation*}
x^{\prime}=\left(-\frac{x_{1}}{\xi_{1}}, x_{0}-\frac{x_{1}}{\xi_{1}} \xi_{0}\right), \quad \xi^{\prime}=\left(1+\frac{1}{\xi_{1}}, \frac{\xi_{0}}{\xi_{1}}\right) . \tag{1.6}
\end{equation*}
$$

Let $x: M \rightarrow \mathbb{R}_{0}^{n}$ be a space-like oriented hypersurface in the degenerate hyperplane \mathbb{R}_{0}^{n}. Let ξ be the unique vector in \mathbb{R}_{1}^{n+1} satisfying $\langle\xi, d x\rangle=0,\langle\xi, \xi\rangle=0,\langle\xi, \nu\rangle=1$. From $\tau(x, \xi)=\left(x^{\prime}, \xi^{\prime}\right) \in U \mathbb{R}^{n}$, we may obtain a hypersurface $x^{\prime}: M \rightarrow \mathbb{R}^{n}$.

We should notice that it is one of the important aims to characterize hypersurfaces in terms of Laguerre invariants. Concerning this topic, recently, T. Li, H. Li and C. Wang [5] and [7] studied the Laguerre geometry of hypersurfaces with parallel Laguerre second fundamental form or constant Laguerre eigenvalues in \mathbb{R}^{n}.

Theorem 1.1 ([5]) Let $x: M \rightarrow \mathbb{R}^{n}$ be an umbilic free hypersurface with non-zero principal curvatures. If the Laguerre second fundamental form of x is parallel, then x is Laguerre equivalent to an open part of one of the following hypersurfaces:
(1) the oriented hypersurface $x: S^{k-1} \times H^{n-k} \rightarrow \mathbb{R}^{n}$ given by Example 2.1; or
(2) the image of τ of the oriented hypersurface $x: \mathbb{R}^{n-1} \rightarrow \mathbb{R}_{0}^{n}$ given by Example 2.2.

In this paper, we firstly classify completely the Laguerre isoparametric hypersurfaces with three distinct Laguerre principal curvatures one of which is simple and then we obtain a Laguerre rigidity result of hypersurfaces in \mathbb{R}^{n}. More precisely, we obtain the following:

Theorem 1.2 Let $x: M \rightarrow \mathbb{R}^{n}(n \geq 4)$ be an $(n-1)$-dimensional Laguerre isoparametric hypersurface with three distinct Laguerre principal curvatures one of which is simple. Then x is Laguerre equivalent to an open part of the image of τ of the oriented hypersurface $x: \mathbb{R}^{n-1} \rightarrow \mathbb{R}_{0}^{n}$ given by Example 2.2.

Theorem 1.3 Let $x: M \rightarrow \mathbb{R}^{n}(n \geq 4)$ be an $(n-1)$-dimensional umbilic free hypersurface with non-zero principal curvatures and vanishing Laguerre form. If the square of the norm of Laguerre tensor satisfies

$$
\begin{equation*}
|\mathbf{L}|^{2} \leq \frac{(n-1) R^{2}}{4(n-2)^{2}(n-3)^{2}} \tag{1.7}
\end{equation*}
$$

then x is Laguerre equivalent to an open part of the oriented hypersurface $x: S^{n-2} \times H^{1} \rightarrow \mathbb{R}^{n}$ given by Example 2.1, where $R \geq 0$ is the Laguerre scalar curvature of x.

Remark 1.4 From Example 2.1 in section 2, we see that the pinching constant for $|\mathbf{L}|^{2}$ in Theorem 1.3 is optimal.

2 Laguerre fundamental formulas and examples

In this section, we review the Laguerre invariants and fundamental formulas on Laguerre geometry of hypersurfaces in \mathbb{R}^{n}, for more details, see [4].

Let $x: M \rightarrow \mathbb{R}^{n}$ be an $(n-1)$-dimensional umbilical free hypersurface with vanishing Laguerre form in \mathbb{R}^{n}. Let $\left\{E_{1}, \ldots, E_{n-1}\right\}$ denote a local orthonormal frame for Laguerre metric $g=\langle d Y, d Y\rangle$ with dual frame $\left\{\omega_{1}, \ldots, \omega_{n-1}\right\}$. Putting $Y_{i}=E_{i}(Y)$, then we have

$$
\begin{align*}
& N=\frac{1}{n-1} \Delta Y+\frac{1}{2(n-1)^{2}}\langle\Delta Y, \Delta Y\rangle Y \tag{2.1}\\
& \langle Y, Y\rangle=\langle N, N\rangle=0,\langle Y, N\rangle=-1 \tag{2.2}
\end{align*}
$$

and the following orthogonal decomposition:

$$
\begin{equation*}
\mathbb{R}_{2}^{n+3}=\operatorname{Span}\{Y, N\} \oplus \operatorname{Span}\left\{Y_{1}, \ldots, Y_{n-1}\right\} \oplus \mathbb{V} \tag{2.3}
\end{equation*}
$$

where $\left\{Y, N, Y_{1}, \ldots, Y_{n-1}, \eta, \wp\right\}$ forms a moving frame in \mathbb{R}_{2}^{n+3} and $\mathbb{V}=\{\eta, \wp\}$ is called Laguerre normal bundle of x. We use the following range of indices throughout this paper:

$$
1 \leq i, j, k, l, m \leq n-1
$$

The structure equations on x with respect to the Laguerre metric g can be written as

$$
\begin{align*}
& d Y=\sum_{i} \omega_{i} Y_{i} \tag{2.4}\\
& d N=\sum_{i} \psi_{i} Y_{i}+\varphi \eta \tag{2.5}\\
& d Y_{i}=-\psi_{i} Y-\omega_{i} N+\sum_{j} \omega_{i j} Y_{j}+\omega_{i n+1} \eta \tag{2.6}\\
& d \wp=-\varphi Y-\sum_{i} \omega_{i n+1} Y_{i} \tag{2.7}
\end{align*}
$$

where $\left\{\psi_{i}, \omega_{i j}, \omega_{i n+1}, \varphi\right\}$ are 1-forms on x with

$$
\begin{equation*}
\omega_{i j}+\omega_{j i}=0, \quad d \omega_{i}=\sum_{j} \omega_{i j} \wedge \omega_{j} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi_{i}=\sum_{j} L_{i j} \omega_{j}, \quad L_{i j}=L_{j i}, \quad \omega_{i n+1}=\sum_{j} B_{i j} \omega_{j}, \quad B_{i j}=B_{j i}, \quad \varphi=\sum_{i} C_{i} \omega_{i} \tag{2.9}
\end{equation*}
$$

We define $\tilde{E}_{i}=r_{i} e_{i}, 1 \leq i \leq n-1$, then $\left\{\tilde{E}_{1}, \ldots, \tilde{E}_{n-1}\right\}$ is an orthonormal basis for $I I I=d \xi \cdot d \xi$ and $\left\{E_{i}=\rho^{-1} \tilde{E}_{i}\right\}$ is an orthonormal basis for the Laguerre metric g with dual frame $\left\{\omega_{1}, \ldots, \omega_{n-1}\right\} . L_{i j}, B_{i j}$ and C_{i} are locally defined functions and satisfy

$$
\begin{align*}
& L_{i j}=\rho^{-2}\left\{\operatorname{Hess}_{i j}(\log \rho)-\tilde{E}_{i}(\log \rho) \tilde{E}_{j}(\log \rho)+\frac{1}{2}\left(|\nabla \log \rho|^{2}-1\right) \delta_{i j}\right\}, \tag{2.10}\\
& B_{i j}=\rho^{-1}\left(r_{i}-r\right) \delta_{i j} \tag{2.11}\\
& C_{i}=-\rho^{-2}\left\{\tilde{E}_{i}(r)-\tilde{E}_{i}(\log \rho)\left(r_{i}-r\right)\right\}, \tag{2.12}
\end{align*}
$$

where $g=\sum_{i}\left(r_{i}-r\right)^{2} I I I=\rho^{2} I I I, r_{i}$ and r are defined by (1.2), $\operatorname{Hess}_{i j}$ and ∇ are the Hessian matrix and the gradient with respect to the third fundamental form $I I I=d \xi \cdot d \xi$ of x (see [4]).

Defining the covariant derivative of $C_{i}, L_{i j}, B_{i j}$ by

$$
\begin{align*}
& \sum_{j} C_{i, j} \omega_{j}=d C_{i}+\sum_{j} C_{j} \omega_{j i} \tag{2.13}\\
& \sum_{k} L_{i j, k} \omega_{k}=d L_{i j}+\sum_{k} L_{i k} \omega_{k j}+\sum_{k} L_{k j} \omega_{k i} \tag{2.14}\\
& \sum_{k} B_{i j, k} \omega_{k}=d B_{i j}+\sum_{k} B_{i k} \omega_{k j}+\sum_{k} B_{k j} \omega_{k i} \tag{2.15}
\end{align*}
$$

We have from [4] that

$$
\begin{gather*}
d \omega_{i j}=\sum_{k} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l}, \quad R_{i j k l}=-R_{j i k l} \tag{2.16}\\
\sum_{i} B_{i i}=0, \quad \sum_{i, j} B_{i j}^{2}=1, \quad \sum_{i} B_{i j, i}=(n-2) C_{j}, \quad \operatorname{tr} \mathbf{L}=-\frac{R}{2(n-2)} . \tag{2.17}\\
L_{i j, k}=L_{i k, j}, \tag{2.18}\\
C_{i, j}-C_{j, i}=\sum_{k}\left(B_{i k} L_{k j}-B_{j k} L_{k i}\right) \tag{2.19}\\
B_{i j, k}-B_{i k, j}=C_{j} \delta_{i k}-C_{k} \delta_{i j} \tag{2.20}\\
R_{i j k l}=L_{j k} \delta_{i l}+L_{i l} \delta_{j k}-L_{i k} \delta_{j l}-L_{j l} \delta_{i k} \tag{2.21}
\end{gather*}
$$

where $R_{i j k l}$ and R denote the Laguerre curvature tensor and the Laguerre scalar curvature with respect to the Laguerre metric g on x. Since the Laguerre form $\mathbf{C} \equiv 0$, we have for all indices i, j, k

$$
\begin{equation*}
B_{i j, k}=B_{i k, j}, \quad \sum_{k} B_{i k} L_{k j}=\sum_{k} B_{k j} L_{k i} \tag{2.22}
\end{equation*}
$$

Defining the second covariant derivative of $B_{i j}$ by

$$
\begin{equation*}
\sum_{l} B_{i j, k l} \omega_{l}=d B_{i j, k}+\sum_{l} B_{l j, k} \omega_{l i}+\sum_{l} B_{i l, k} \omega_{l j}+\sum_{l} B_{i j, l} \omega_{l k} \tag{2.23}
\end{equation*}
$$

we have the Ricci identity

$$
\begin{equation*}
B_{i j, k l}-B_{i j, l k}=\sum_{m} B_{m j} R_{m i k l}+\sum_{m} B_{i m} R_{m j k l} \tag{2.24}
\end{equation*}
$$

We recall the following examples of hypersurfaces in \mathbb{R}^{n} and calculate their Laguerre invariants.

Example 2.1([5]) Let $x: S^{k-1} \times H^{n-k} \rightarrow \mathbb{R}^{n}$ be an umbilic free hypersurface in \mathbb{R}^{n} defined by

$$
x(u, v, w)=\left(\frac{u}{w}(1+w), \frac{v}{w}\right)
$$

where $H^{n-k}=\left\{(v, w) \in \mathbb{R}_{1}^{n-k+1} \mid v \cdot v-w^{2}=-1, w>0\right\}$ denotes the hyperbolic space embedded in the Minkowski space \mathbb{R}_{1}^{n-k+1}. From [5], we know that x has two distinct Laguerre principal curvatures $B_{1}=-\sqrt{\frac{n-k}{(k-1)(n-1)}}, B_{2}=\sqrt{\frac{k-1}{(n-k)(n-1)}}$, the Laguerre form is zero and the Laguerre second fundamental form of x is parallel. The Laguerre metric is

$$
g=\frac{(k-1)(n-k)}{n-1}\left(d u \cdot d u+d v \cdot d v-d w^{2}\right)=g_{1}+g_{2}
$$

where $g_{1}=\frac{(k-1)(n-k)}{n-1} d u \cdot d u$ and $g_{2}=\frac{(k-1)(n-k)}{n-1}\left(d v \cdot d v-d w^{2}\right)$. We know that the sectional curvatures of g_{1} and g_{2} are $\frac{n-1}{(k-1)(n-k)}$ and $-\frac{n-1}{(k-1)(n-k)}$, respectively. Thus, from (2.21), we see that

$$
\begin{aligned}
L_{i j} & =-\frac{n-1}{2(k-1)(n-k)} \delta_{i j}, \quad 1 \leq i, j \leq k-1 \\
L_{i j} & =\frac{n-1}{2(k-1)(n-k)} \delta_{i j}, \quad k \leq i, j \leq n-1
\end{aligned}
$$

that is $x: S^{k-1} \times H^{n-k} \rightarrow \mathbb{R}^{n}$ has two constant distinct Laguerre eigenvalues $-\frac{n-1}{2(k-1)(n-k)}$ and $\frac{n-1}{2(k-1)(n-k)}$ with multiplicities $k-1$ and $n-k$, respectively. We see that $x: S^{n-2} \times H^{1} \rightarrow \mathbb{R}^{n}$ has two distinct Laguerre eigenvalues $-\frac{n-1}{2(n-2)}$ and $\frac{n-1}{2(n-2)}$ with multiplicities $n-2$ and 1, by (2.17) and a direct calculation, we have $|\mathbf{L}|^{2}=\frac{(n-1) R^{2}}{4(n-2)^{2}(n-3)^{2}}$.

Example 2.2([5]) For any positive integers m_{1}, \ldots, m_{s} with $m_{1}+\cdots+m_{s}=n-1$ and any non-zero constants $\lambda_{1}, \ldots, \lambda_{s}$, we define $x: \mathbb{R}^{n-1} \rightarrow \mathbb{R}_{0}^{n}$ to be a spacelike oriented hypersurface in \mathbb{R}_{0}^{n} given by

$$
x=\left\{\frac{\lambda_{1}\left|u_{1}\right|^{2}+\cdots+\lambda_{s}\left|u_{s}\right|^{2}}{2}, u_{1}, u_{2}, \ldots, u_{s}, \frac{\lambda_{1}\left|u_{1}\right|^{2}+\cdots+\lambda_{s}\left|u_{s}\right|^{2}}{2}\right\}
$$

where $\left(u_{1}, \ldots, u_{s}\right) \in \mathbb{R}^{m_{1}} \times \cdots \times \mathbb{R}^{m_{s}}=\mathbb{R}^{n-1}$ and $\left|u_{i}\right|^{2}=u_{i} \cdot u_{i}, i=1, \ldots, s$. Then $\tau \circ(x, \xi)=\left(x^{\prime}, \xi^{\prime}\right): \mathbb{R}^{n-1} \rightarrow U \mathbb{R}^{n}$, and we obtain the hypersurfaces $x^{\prime}: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n}$. From [5], we know that x has $s(s \geq 3)$ distinct Laguerre principal curvatures $B_{i}=\frac{r_{i}-r}{\sqrt{\sum_{i}\left(r_{i}-r\right)^{2}}}, 1 \leq i \leq s$, where $r_{i}=\frac{1}{k_{j}}, r=\frac{k_{1} r_{1}+k_{2} r_{2}+\cdots+k_{s} r_{s}}{n-1}$ and $k_{i} \neq 0$ is the principal curvature corresponding to e_{i}. Also from [5], we know that the Laguerre form is zero, $L_{i j}=0$ for $1 \leq i, j \leq n-1$ and the Laguerre second fundamental form of x is parallel.

Lemma 2.3([9]) Let A and B be $m \times m$-symmetric matrices satisfying $\operatorname{tr} A=0, \operatorname{tr} B=0$ and $A B-B A=0$. Then,

$$
\left|\operatorname{tr} B^{2} A\right| \leq \frac{m-2}{\sqrt{m(m-1)}}\left(\operatorname{tr} B^{2}\right)\left(\operatorname{tr} A^{2}\right)^{1 / 2}
$$

and the equality in the right (left) hand side holds if and only if $(m-1)$ of the eigenvalues x_{i} of B and the corresponding eigenvalues y_{i} of A satisfy $\left|x_{i}\right|=\frac{\left(\operatorname{tr} B^{2}\right)^{1 / 2}}{\sqrt{m(m-1)}}, \quad x_{i} x_{j} \geq 0, \quad y_{i}=$ $-\frac{\left(\operatorname{tr} A^{2}\right)^{1 / 2}}{\sqrt{m(m-1)}}, \quad\left(y_{i}=\frac{\left(\operatorname{tr} A^{2}\right)^{1 / 2}}{\sqrt{m(m-1)}}\right)$.

3 Proofs of theorems

Let L and B denote the $(n-1) \times(n-1)$-symmetric matrices $\left(L_{i j}\right)$ and $\left(B_{i j}\right)$, respectively, where $L_{i j}$ and $B_{i j}$ are defined by (2.10), (2.11). From (2.22), we know that $B L=L B$. Thus, we may choose a local orthonormal basis $\left\{E_{1}, E_{2}, \ldots, E_{n-1}\right\}$ such that

$$
L_{i j}=L_{i} \delta_{i j}, \quad B_{i j}=B_{i} \delta_{i j}
$$

where L_{i} and B_{i} are the Laguerre eigenvalues and the Laguerre principal curvatures of the immersion x.

Throughout this section, we shall make the following convention on the ranges of indices:

$$
\begin{aligned}
& 1 \leq a, b \leq m_{1}, \quad m_{1}+1 \leq p, q \leq m_{1}+m_{2} \\
& m_{1}+m_{2}+1 \leq \alpha, \beta \leq m_{1}+m_{2}+m_{3}=n-1, \quad 1 \leq i, j, k \leq n-1
\end{aligned}
$$

We may prove the following Proposition firstly.
Proposition 3.1 Let $x: M \rightarrow \mathbb{R}^{n}(n \geq 4)$ be an $(n-1)$-dimensional Laguerre isoparametric hypersurface with three distinct Laguerre principal curvatures one of which is simple. If the Laguerre second fundamental form of x is not parallel, then there is no such hypersurface in \mathbb{R}^{n}.

Proof: Let B_{1}, B_{2} and B_{3} be the three constant Laguerre principal curvatures of x with multiplicities m_{1}, m_{2} and m_{3}. From (2.15), we have

$$
\begin{equation*}
B_{i j, k}=\Gamma_{i k}^{j}\left(B_{i}-B_{j}\right) \tag{3.1}
\end{equation*}
$$

where $\Gamma_{i k}^{j}$ is the Levi-Civita connection for the Laguerre metric g given by

$$
\omega_{i j}=\sum_{k} \Gamma_{i k}^{j} \omega_{k}, \quad \Gamma_{i k}^{j}=-\Gamma_{j k}^{i} .
$$

It follows that

$$
\begin{equation*}
B_{a b, k}=B_{p q, k}=B_{\alpha \beta, k}=0 \text { for any } a, b, p, q, \alpha, \beta, k \tag{3.2}
\end{equation*}
$$

If the Laguerre second fundamental form of x is not parallel, we see that the only possible nonzero elements in $\left\{B_{i j, k}\right\}$ are of the form $\left\{B_{a p, \alpha}\right\}$. Since $n \geq 4$, without loss of generality, we may assume that $m_{1} \geq m_{2} \geq m_{3}$ and $m_{3}=1$.

From (2.16), (2.8) and $\omega_{i j}=\sum_{k} \Gamma_{i k}^{j} \omega_{k}$, the curvature tensor of x may be given by (see [8])

$$
\begin{align*}
R_{i j k l}= & E_{l}\left(\Gamma_{i k}^{j}\right)-E_{k}\left(\Gamma_{i l}^{j}\right)+\sum_{m} \Gamma_{i m}^{j} \Gamma_{l k}^{m} \tag{3.3}\\
& -\sum_{m} \Gamma_{i m}^{j} \Gamma_{k l}^{m}+\sum_{m} \Gamma_{i k}^{m} \Gamma_{m l}^{j}-\sum_{m} \Gamma_{i l}^{m} \Gamma_{m k}^{j} .
\end{align*}
$$

Thus, from (3.1) and (3.2), we have

$$
\begin{align*}
& \Gamma_{a b}^{p}=\Gamma_{a b}^{\alpha}=0, \quad \Gamma_{p q}^{a}=\Gamma_{p q}^{\alpha}=0, \quad \Gamma_{\alpha \beta}^{a}=\Gamma_{\alpha \beta}^{p}=0 \tag{3.4}\\
& \Gamma_{a \alpha}^{p}=\frac{B_{a p, \alpha}}{B_{1}-B_{2}}, \quad \Gamma_{\alpha p}^{a}=\frac{B_{\alpha a, p}}{B_{3}-B_{1}}, \quad \Gamma_{p a}^{\alpha}=\frac{B_{p \alpha, a}}{B_{2}-B_{3}} . \tag{3.5}
\end{align*}
$$

From (3.4) and (3.5), we have

$$
\begin{align*}
& \Gamma_{n-1 n-1}^{a}=\Gamma_{n-1 n-1}^{p}=0, \quad \Gamma_{a a}^{n-1}=\Gamma_{p p}^{n-1}=0 . \tag{3.6}\\
& \Gamma_{a n-1}^{p}=\frac{B_{a p, n-1}}{B_{1}-B_{2}}, \quad \Gamma_{n-1 b}^{p}=\frac{B_{b p, n-1}}{B_{3}-B_{2}}, \quad \Gamma_{b q}^{n-1}=\frac{B_{b q, n-1}}{B_{1}-B_{3}} \tag{3.7}\\
& \Gamma_{q b}^{n-1}=\frac{B_{b q, n-1}}{B_{2}-B_{3}}
\end{align*}
$$

Thus, we have

$$
\begin{align*}
R_{a p b q}= & E_{q}\left(\Gamma_{a b}^{p}\right)-E_{b}\left(\Gamma_{a q}^{p}\right)+\sum_{m} \Gamma_{a m}^{p} \Gamma_{q b}^{m} \tag{3.8}\\
& -\sum_{m} \Gamma_{a m}^{p} \Gamma_{b q}^{m}+\sum_{m} \Gamma_{a b}^{m} \Gamma_{m q}^{p}-\sum_{m} \Gamma_{a q}^{m} \Gamma_{m b}^{p} \\
= & \Gamma_{a n-1}^{p} \Gamma_{q b}^{n-1}-\Gamma_{a n-1}^{p} \Gamma_{b q}^{n-1}-\Gamma_{a q}^{n-1} \Gamma_{n-1 b}^{p} \\
= & \frac{B_{a p, n-1} B_{b q, n-1}+B_{a q, n-1} B_{b p, n-1}}{\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right)} .
\end{align*}
$$

On the other hand, from (2.21), we have

$$
\begin{equation*}
R_{a p b q}=-\left(L_{a}+L_{p}\right) \delta_{a b} \delta_{p q} \tag{3.9}
\end{equation*}
$$

It follows from (3.8) and (3.9) that

$$
\begin{align*}
& B_{a p, n-1} B_{b q, n-1}+B_{a q, n-1} B_{b p, n-1} \tag{3.10}\\
& \quad=-\left(L_{a}+L_{p}\right)\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right) \delta_{a b} \delta_{p q}
\end{align*}
$$

If $a=b$, we have

$$
\begin{equation*}
2 B_{a p, n-1} B_{a q, n-1}=-\left(L_{a}+L_{p}\right)\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right) \delta_{p q} \tag{3.11}
\end{equation*}
$$

If $p=q$, we have

$$
\begin{equation*}
2 B_{a p, n-1} B_{b p, n-1}=-\left(L_{a}+L_{p}\right)\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right) \delta_{a b} \tag{3.12}
\end{equation*}
$$

If $m_{1}=1$, it follows that $2 B_{1 p, n-1} B_{1 q, n-1}=-\left(L_{1}+L_{p}\right)\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right) \delta_{p q}$. Since the Laguerre second fundamental form of x is not parallel, we may prove that there exists exactly one p, such that $B_{1 p, n-1} \neq 0$. In fact, if there exists more than one p, for example $p_{1}, p_{2},\left(p_{1} \neq p_{2}\right)$ such that $B_{1 p_{1}, n-1} \neq 0, B_{1 p_{2}, n-1} \neq 0$, this is a contradiction with $B_{1 p_{1}, n-1} B_{1 p_{2}, n-1}=0$.

If $m_{2}=1$, it follows that $2 B_{a m_{1}+1, n-1} B_{b m_{1}+1, n-1}=-\left(L_{a}+L_{m_{1}+1}\right)\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right) \delta_{a b}$. The same reason implies that there exists exactly one a, such that $B_{a m_{1}+1, n-1} \neq 0$.

If $m_{1} \geq 2$ and $m_{2} \geq 2$, we may prove that there exists exactly one a and exactly one p such that $B_{a p, n-1} \neq 0$. In fact, if there exists more than one a, for example $a_{1}, a_{2},\left(a_{1} \neq a_{2}\right)$ such that $B_{a_{1} p, n-1} \neq 0, B_{a_{2} p, n-1} \neq 0$. From (3.12), we see that $B_{a_{1} p, n-1} B_{a_{2} p, n-1}=0$, a contradiction. The same reason implies that there exists exactly one p, such that $B_{a p, n-1} \neq 0$. Thus, we conclude.

Combining with the above three cases, we see that if $m_{1} \geq 1$ and $m_{2} \geq 1$, there exists exactly one a and exactly one p, say a_{1} and p_{1}, such that

$$
\begin{equation*}
B_{a_{1} p_{1}, n-1} \neq 0, \quad B_{a p, n-1}=0, \quad \text { for } a \neq a_{1}, \forall p, \quad \text { or for } p \neq p_{1}, \forall a \tag{3.13}
\end{equation*}
$$

By (3.11) and (3.13), we get

$$
\begin{align*}
& -L_{a_{1}}-L_{p_{1}}=\frac{2 B_{a_{1} p_{1}, n-1}^{2}}{\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right)} \tag{3.14}\\
& -L_{a}-L_{p_{1}}=0, \quad a \neq a_{1} \tag{3.15}\\
& -L_{a_{1}}-L_{p}=0, \quad p \neq p_{1}, \tag{3.16}\\
& -L_{a}-L_{p}=0, \quad a \neq a_{1}, \quad p \neq p_{1} \tag{3.17}
\end{align*}
$$

From (3.1)-(3.3), (2.21) and by reasoning as above, we get

$$
\begin{align*}
& -L_{a_{1}}-L_{n-1}=\frac{2 B_{a_{1} p_{1}, n-1}^{2}}{\left(B_{1}-B_{2}\right)\left(B_{3}-B_{2}\right)} \tag{3.18}\\
& -L_{a}-L_{n-1}=0, \quad a \neq a_{1} \tag{3.19}\\
& -L_{p_{1}}-L_{n-1}=\frac{2 B_{a_{1} p_{1}, n-1}^{2}}{\left(B_{2}-B_{1}\right)\left(B_{3}-B_{1}\right)}, \tag{3.20}\\
& -L_{p}-L_{n-1}=0 \quad p \neq p_{1} . \tag{3.21}
\end{align*}
$$

By (3.14), (3.18) and (3.20), we obtain that $L_{n-1}=\frac{2 B_{a_{1} p_{1}, n-1}}{\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right)}$.
If $m_{2} \geq 2$, then there exists some $p\left(p \neq p_{1}\right)$ such that (3.17) and (3.21) hold. From (3.17), (3.19) and (3.21), we see that $L_{n-1}=0$, a contradiction. Thus, it follows that $m_{2}=1$. By (3.18)-(3.20), we know that x has Laguerre eigenvalues

$$
\begin{align*}
L_{a} & =-\frac{2 B_{a_{1} p_{1}, n-1}}{\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right)}, \quad a \neq a_{1}, \tag{3.22}\\
L_{a_{1}} & =\frac{2 B_{a_{1} p_{1}, n-1}}{\left(B_{2}-B_{1}\right)\left(B_{3}-B_{1}\right)}, \tag{3.23}\\
L_{p_{1}} & =\frac{2 B_{a_{1} p_{1}, n-1}}{\left(B_{1}-B_{2}\right)\left(B_{3}-B_{2}\right)}, \tag{3.24}\\
L_{n-1} & =\frac{2 B_{a_{1} p_{1}, n-1}}{\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right)} . \tag{3.25}
\end{align*}
$$

We may prove that $B_{a_{1} p_{1}, n-1}$ is a constant. In fact, from $\omega_{i j}=\sum_{k} \Gamma_{i k}^{j} \omega_{k},(2.23),(3.1)$ and (3.2), we have

$$
\begin{aligned}
\sum_{l} B_{a b, p l} \omega_{l}= & d B_{a b, p}+\sum_{l} B_{l b, p} \omega_{l a}+\sum_{l} B_{a l, p} \omega_{l b}+\sum_{l} B_{a b, l} \omega_{l p} \\
& =\sum_{l} \frac{B_{n-1 b, p} B_{n-1 a, l}+B_{n-1 a, p} B_{n-1 b, l}}{B_{3}-B_{1}} \omega_{l}
\end{aligned}
$$

Thus

$$
\begin{equation*}
B_{a b, p l}=\frac{B_{n-1 b, p} B_{n-1 a, l}+B_{n-1 a, p} B_{n-1 b, l}}{B_{3}-B_{1}}, \quad \forall a, b, p, l \tag{3.26}
\end{equation*}
$$

By reasoning as above, we also have

$$
\begin{align*}
& B_{p q, a l}=\frac{B_{n-1 a, p} B_{n-1 l, q}+B_{n-1 a, q} B_{n-1 l, p}}{B_{3}-B_{2}}, \forall a, p, q, l, \tag{3.27}\\
& B_{n-1 n-1, a p}=0, \forall a, p \tag{3.28}
\end{align*}
$$

From (2.24), we have $B_{i j, k l}-B_{i j, l k}=\left(B_{i}-B_{j}\right) R_{i j k l}$. By (2.21) and $L_{i j}=L_{i} \delta_{i j}$, we know that if three of $\{i, j, k, l\}$ are distinct, then $R_{i j k l}=0$. Thus, if three of $\{i, j, k, l\}$ are distinct, we have

$$
\begin{equation*}
B_{i j, k l}=B_{i j, l k} \tag{3.29}
\end{equation*}
$$

From (2.23), (3.1) and (3.2), we have

$$
\begin{align*}
d B_{a_{1} p_{1}, n-1} & =\sum_{l} B_{a_{1} p_{1}, n-1 l} \omega_{l}=B_{a_{1} p_{1}, n-1 a_{1}} \omega_{a_{1}} \tag{3.30}\\
& +\sum_{l=a, a \neq a_{1}} B_{a_{1} p_{1}, n-1 l} \omega_{l}+B_{a_{1} p_{1}, n-1 p_{1}} \omega_{p_{1}} \\
& +\sum_{l=p, p \neq p_{1}} B_{a_{1} p_{1}, n-1 l} \omega_{l}+B_{a_{1} p_{1}, n-1 n-1} \omega_{n-1}
\end{align*}
$$

Thus, it follows from (3.26)-(3.29) that $d B_{a_{1} p_{1}, n-1}=0$, that is, $B_{a_{1} p_{1}, n-1}$ is constant. Thus, we see that x has constant Laguerre eigenvalues

$$
L_{a}\left(a \neq a_{1}\right), \quad L_{a_{1}}, \quad L_{p_{1}}, \quad L_{n-1}
$$

If $m_{1} \geq 2$, then there exists some $a\left(a \neq a_{1}\right)$ such that (3.15), (3.19) and (3.22) hold. From (3.15) and (3.19), we see that $L_{p_{1}}=L_{n-1}$, that is, from (3.24) and (3.25), we have

$$
\begin{equation*}
2 B_{1}-B_{2}-B_{3}=0 \tag{3.31}
\end{equation*}
$$

We may prove that $L_{a_{1}} \neq L_{p_{1}}$. In fact, if $L_{a_{1}}=L_{p_{1}}$, we have

$$
\begin{equation*}
2 B_{3}-B_{1}-B_{2}=0 \tag{3.32}
\end{equation*}
$$

Combining with (3.31), we see that $B_{1}=B_{2}=B_{3}$, a contradiction. It may be easily checked that $L_{a} \neq L_{a_{1}}, L_{a} \neq L_{p_{1}}$, this shows that x has three distinct constant Laguerre eigenvalues

$$
L_{a}\left(a \neq a_{1}\right), \quad L_{a_{1}}, \quad L_{p_{1}}=L_{n-1}
$$

and therefore is not a Laguerre isotropic hypersurface. But from a result of [7] (see Proposition 6.1 in [7]), we know that if x has constant Laguerre eigenvalues, then it must have only two distinct constant Laguerre eigenvalues, a contradiction. Thus, it follows that $m_{1}=1$. Combining with $m_{3}=1$ and $m_{2}=1$, we see that $n=4$. This shows that x has constant Laguerre eigenvalues

$$
\begin{aligned}
L_{1} & =\frac{2 B_{12,3}}{\left(B_{2}-B_{1}\right)\left(B_{3}-B_{1}\right)} \\
L_{2} & =\frac{2 B_{12,3}}{\left(B_{1}-B_{2}\right)\left(B_{3}-B_{2}\right)} \\
L_{3} & =\frac{2 B_{12,3}}{\left(B_{1}-B_{3}\right)\left(B_{2}-B_{3}\right)}
\end{aligned}
$$

If $L_{1}=L_{2}=L_{3}$, we easily see that $B_{1}=B_{2}=B_{3}$, a contradiction. Thus x is not a Laguerre isotropic hypersurface. From Proposition 6.1 in [7], we know that two of L_{1}, L_{2}, L_{3} must be equal and be equal to the opposite number of the third, that is, x must have two constant Laguerre eigenvalues which are opposite numbers. Without loss of generality, we may assume that $L_{1}=L_{2}=-L_{3}$, from the above three equation of L_{1}, L_{2}, L_{3}, we also see that $B_{1}=B_{2}=B_{3}$, a contradiction. Thus, if the Laguerre second fundamental form of x is not parallel, there is no Laguerre isoparametric hypersurface with three distinct Laguerre principal curvatures one of which is simple. This completes the proof of Proposition 3.1.

Proof of Theorem 1.2: If the Laguerre second fundamental form of x is parallel, since x has three distinct constant Laguerre principal curvatures, from Theorem 1.1, Example 2.1 and Example 2.2, we know that x is Laguerre equivalent to an open part of the image of τ of the oriented hypersurface $x: \mathbb{R}^{n-1} \rightarrow \mathbb{R}_{0}^{n}$ given by Example 2.2.

If the Laguerre second fundamental form of x is not parallel, from Proposition 3.1, we know that there is no Laguerre isoparametric hypersurface with three distinct Laguerre principal curvatures one of which is simple. This completes the proof of Theorem 1.2.
Proof of Theorem 1.3: Putting $\tilde{L}=\left(\tilde{L}_{i j}\right)$ with $\tilde{L}_{i j}=L_{i j}-\frac{1}{n-1} \operatorname{tr} L \delta_{i j}$, thus

$$
\begin{equation*}
\operatorname{tr} \tilde{L}=0, \quad B \tilde{L}=\tilde{L} B, \quad \operatorname{tr}\left(\tilde{L} B^{2}\right)=\operatorname{tr}\left(L B^{2}\right)-\frac{1}{n-1} \operatorname{tr} L \tag{3.33}
\end{equation*}
$$

and

$$
\begin{equation*}
|L|^{2}=\sum_{i, j}\left(L_{i j}\right)^{2}=\sum_{i, j}\left(\tilde{L}_{i j}\right)^{2}+\frac{1}{n-1}(\operatorname{tr} L)^{2}=|\tilde{L}|^{2}+\frac{1}{n-1}(\operatorname{tr} L)^{2} . \tag{3.34}
\end{equation*}
$$

From (1.7), (2.17) and (3.34), we see that

$$
|\tilde{L}|^{2}=|L|^{2}-\frac{1}{n-1}(\operatorname{tr} L)^{2} \leq \frac{R^{2}}{(n-1)(n-2)(n-3)^{2}}
$$

Since we assume that $R \geq 0$, it follows that

$$
\begin{equation*}
|\tilde{L}| \leq \frac{R}{(n-3) \sqrt{(n-1)(n-2)}} \tag{3.35}
\end{equation*}
$$

From $(2.21),(2.22),(2.24),(3.33),(3.35)$, Lemma 2.3 and by a direct calculation, we have

$$
\begin{align*}
0 & =\frac{1}{2} \Delta \sum_{i, j} B_{i j}^{2}=\sum_{i, j, k} B_{i j, k}^{2}+\sum_{i, j} B_{i j} \Delta B_{i j} \tag{3.36}\\
& =\sum_{i, j, k} B_{i j, k}^{2}-(n-1) \operatorname{tr}\left(L B^{2}\right)-\operatorname{tr} L \\
& =\sum_{i, j, k} B_{i j, k}^{2}-(n-1)\left(\operatorname{tr}\left(\tilde{L} B^{2}\right)+\frac{1}{n-1} \operatorname{tr} L\right)-\operatorname{tr} L \\
& \geq \sum_{i, j, k} B_{i j, k}^{2}-(n-1)\left\{\frac{n-3}{\sqrt{(n-1)(n-2)}}|\tilde{L}|+\frac{1}{n-1} \operatorname{tr} L\right\}-\operatorname{tr} L \\
& =\sum_{i, j, k} B_{i j, k}^{2}+\left\{\frac{R}{n-2}-(n-3) \sqrt{\frac{n-1}{n-2}}|\tilde{L}|\right\} \geq 0
\end{align*}
$$

Thus, the equalities in (3.36) hold. We have $B_{i j, k}=0$, that is, the Laguerre second fundamental form of x is parallel. Further, the inequality in the right hand side of Lemma 2.3 becomes equality. Thus, we know that x has two distinct constant Laguerre principal curvatures. From Theorem 1.1, Example 2.1 and Example 2.2, we know that x is Laguerre equivalent to an open part of the oriented hypersurface $x: S^{n-2} \times H^{1} \rightarrow \mathbb{R}^{n}$ given by Example 2.1. This completes the proof of Theorem 1.3.

Acknowledgement. Project supported by NSF of Shaanxi Education Department (11JK0479, 2010JK893) and NSF of Xianyang Normal University (14XSYK004).

References

[1] W. Blaschke, Vorlesungenüber Differential geometrie, Springer, Berlin Heidelberg New York, Vol.3, (1929).
[2] E. Musso and L. Nicolodi, A variational problem for surfaces in Laguerre geometry, Trans. Amer. Math. soc., 348 (1996), 4321-4337.
[3] E. Musso and L. Nicolodi, Laguerre geometry of surfaces with plane lines of curvature, Abh. Math. sem. Univ. Hamburg, 69 (1999), 123-138.
[4] T.Z. Li and C.P. Wang, Laguerre geometry of hypersurfaces in \mathbb{R}^{n}, Manuscripta Math., 122 (2007), 73-95.
[5] T.Z. Li, H.Z. Li and C.P. Wang, Classification of hypersurfaces with parallel Laguerre second fundamental form in \mathbb{R}^{n}, Differential Geom. and its Appl., 28 (2010), 148-157.
[6] T.Z. Li, Laguerre geometry of surfaces in \mathbb{R}^{3}, Acta Mathematica Sinica, English Series, 2 (2005), 1525-1534.
[7] T.Z. Li, H.Z. Li and C.P. Wang, Classification of hypersurfaces with constant Laguerre eigenvalues in \mathbb{R}^{n}, Science China Mathematics, 54 (2011), 1129-1144.
[8] P. Miyaoka, Minimal hypersurfaces in the space form with three principal curvatures , Math. Z., 170 (1980), 137-151.
[9] W. Santos, Submanifolds with parallel mean curvature vector in shperes, Tohoku Math. J., 46 (1994), 403-415.

Received: 10.09.2013
Accepted: 12.11.2013
Institute of Mathematics and Information Science, Xianyang Normal University, Xianyang 712000 P.R. China
E-mail: ${ }^{[1]}$ muzilyy@163.com
${ }^{[2]}$ shushichang@126.com (corresponding author)

