Cohomology groups of configuration spaces of Riemann surfaces

by
Haniya Azam

Abstract

The \mathcal{S}_{n} representation theory for the Križ model for configuration spaces of 2,3 and 4 points on Riemann surfaces is studied. Betti numbers are computed for the ordered and unordered configuration spaces of the torus and surfaces of higher genus.

Key Words: Configuration spaces, Riemann surfaces, Križ model, representations of the symmetric group.
2010 Mathematics Subject Classification: Primary 55R80, Secondary 55P62.

1 Introduction

The ordered configuration space of n points $F(X, n)$, of a topological space X is defined as

$$
F(X, n)=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n} \mid x_{i} \neq x_{j} \text { for } i \neq j\right\} .
$$

The symmetric group on n letters \mathcal{S}_{n} acts freely on $F(X, n)$ and its orbit space, denoted $C(X, n)$, is called the space of unordered configurations of n points on X. In this paper we are interested in computing the Betti numbers of the ordered and unordered 2 and 3-point configuration space of Riemann surfaces $X=\mathbb{T}^{2}, \mathcal{M}_{g}$ of genus $g>1$ and also the Betti numbers of $C\left(\mathbb{T}^{2}, 4\right)$. I. Kriz [9] constructed a rational model $E(X, n)$ for $F(X, n)$ which is quasi-isomorphic to the model related to Fulton-MacPherson's compactification [7] of $F(X, n)$, for any complex projective smooth variety $X\left(\operatorname{dim}_{\mathbb{C}} X=m\right)$.

We describe the Križ model in the case of Riemann surfaces. Let the well-known cohomology bases for \mathbb{T}^{2} and \mathcal{M}_{g} be ordered as follows, $\mathcal{B}_{H^{*}\left(\mathbb{T}^{2}\right)}=\{1<a<b<w\}$ and $\mathcal{B}_{H^{*}\left(\mathcal{M}_{g}\right)}=$ $\left\{1<a_{1}<\ldots<a_{g}<b_{1}<\ldots<b_{g}<w\right\}$ with generators $a, b,\left\{a_{i}\right\}_{i=1}^{g},\left\{b_{i}\right\}_{i=1}^{g}$ in degree one and w denoting the fundamental class in both cases. The relations are given by $a b=w=-b a$ and $a_{i} b_{j}=\delta_{i j} w=-b_{j} a_{i}$. Let $p_{i}^{*}: H^{*}(X) \rightarrow H^{*}\left(X^{n}\right)$ and $p_{i j}^{*}: H^{*}\left(X^{2}\right) \rightarrow H^{*}\left(X^{n}\right)$ for $i \neq j$ be pullbacks of the projections p_{i} and $p_{i j}$. As an algebra $E(X, n)$ is isomorphic to the exterior algebra on generators $G_{i j}, 1 \leq i, j \leq n$, and $G_{i j}$ are of degree 1, with coefficients in $H^{*}(X)^{\otimes n}$ modulo the following relations:

$$
\begin{aligned}
G_{j i} & =G_{i j} & & \\
p_{j}^{*}(x) G_{i j} & =p_{i}^{*}(x) G_{i j}, & & (i<j), x \in H^{*}(X) \\
G_{i k} G_{j k} & =G_{i j} G_{j k}-G_{i j} G_{i k}, & & (i<j<k)
\end{aligned}
$$

The differential d is given by

$$
\left.d\right|_{H^{*}(X)^{\otimes n}}=0 \text { and } d\left(G_{i j}\right)=p_{i j}^{*}(\Delta)
$$

where Δ is the class of the diagonal:

$$
\begin{array}{ll}
\Delta=1 \otimes w+b \otimes a-a \otimes b+w \otimes 1 & \in H^{*}\left(\mathbb{T}^{2} ; \mathbb{Q}\right)^{\otimes 2} \\
\Delta=1 \otimes w+\sum_{i=1}^{g} b_{i} \otimes a_{i}-\sum_{i=1}^{g} a_{i} \otimes b_{i}+w \otimes 1 & \in H^{*}\left(\mathcal{M}_{g} ; \mathbb{Q}\right)^{\otimes 2}
\end{array}
$$

The Križ model $(E(X, n), d)$ is a differential bigraded algebra (DGBA), the exterior degree is given by the number of exterior generators $G_{i j}$, and the second degree is given by the total degree of the monomial. We denote by $E_{q}^{k}(X, n)$ or simply E_{q}^{k} the bigraded component of the Kriz model with total degree k and exterior degree q; the multiplication $E_{q}^{k} \otimes E_{q^{\prime}}^{k^{\prime}} \rightarrow E_{q+q^{\prime}}^{k+k^{\prime}}$ is homogeneous and the differential $d: E_{q}^{k} \rightarrow E_{q-1}^{k+1}$ has bidegree $\binom{+1}{-1}$. Using the bigrading we will write the double Poincaré polynomial as $P_{E_{*}^{*}(F(X, n))}(t, s)=\sum_{k, q \geq 0}\left(\operatorname{dim} E_{q}^{k}\right) t^{k} s^{q}$. Fixing an ordered basis of $H^{*}(X ; \mathbb{Q})$ for any X, Bezrukavnikov [2] described a monomial basis for the Kriz model:

$$
\left\{x_{h_{1}} \otimes x_{h_{2}} \otimes \ldots \otimes x_{h_{n}} G_{i_{1} j_{1}} G_{i_{2} j_{2}} \ldots G_{i_{q} j_{q}} \mid i_{a}<j_{a}, x_{h_{a}}=1 \text { if } h_{a}=j_{r}, 1 \leq r \leq q\right\}
$$

where $x_{h_{a}}$ are monomials in the ordered basis of $H^{*}(X ; \mathbb{Q})$ and $1 \leq j_{1}<j_{2}<\ldots<j_{q} \leq n$. All monomial bases considered in this paper are of this form.

The group \mathcal{S}_{n} acts on the Križ model by DGBA automorphisms, the \mathcal{S}_{n}-action on $E(X, n)$ (see [7],[9]) is defined as:

$$
\pi\left(\left(p_{1}^{*}\left(x_{h_{1}}\right) \ldots p_{n}^{*}\left(x_{h_{n}}\right)\right) G_{I_{*} J_{*}}\right)=\left(p_{\pi(1)}^{*}\left(x_{h_{1}}\right) \ldots p_{\pi(n)}^{*}\left(x_{h_{n}}\right)\right) G_{\pi\left(I_{*}\right) \pi\left(J_{*}\right)}
$$

for any $\pi \in \mathcal{S}_{n}$. Using standard notation (see [6]) the irreducible \mathcal{S}_{n}-module corresponding to partition $\lambda \vdash n$ is denoted by $V(\lambda)$. The action leaves bihomogeneous components E_{q}^{k} invariant; its isotypical component corresponding to the partition λ of n will be denoted by $E_{q}^{k}(V(\lambda))$. The symmetric Poincaré polynomial for $F(X, n)$ is defined as the formal sum with polynomial coefficients

$$
S P_{F(X, n)}(t, s)=\sum_{\lambda \vdash n}\left(\sum_{k, q} m_{q, \lambda}^{k} t^{k} s^{q}\right) V(\lambda),
$$

where $m_{q, \lambda}^{k}$ is the multiplicity of the irreducible representation $V(\lambda)$ in the bigaraded component of cohomology $H_{q}^{k}=H_{q}^{k}(F(X, n))$.

In [3], Bödigheimer and Cohen calculated the rational cohomology of unordered configuration spaces of a surface with one puncture. Fairly recently, the integral cohomology of punctured
surfaces was studied by Napolitano in [10], from the stability point of view. Brown and White [5] computed the Betti numbers of $F(X, 3)$ for X-an orientable surface, and as an application gave a lower bound for the number of equilibrium positions for equally charged particles on a surface. The cohomology algebras of ordered configuration spaces of spheres with integral coefficients were computed by Feichtner and Ziegler in [8]. In this paper we describe the symmetric structure of the cohomology $H^{*}\left(F\left(\mathcal{M}_{g}, n\right)\right)$ and we also obtain the Betti numbers for the unordered configuration space as the \mathcal{S}_{n}-invariant part of the rational cohomology of $F\left(\mathcal{M}_{g}, n\right)$. The bigraded cohomology groups of the exceptional case $g=0, H_{*}^{*}\left(F\left(S^{2}, n\right)\right)$, are computed in [1].

In section 3 we describe the \mathcal{S}_{2}-structure of the Križ model for $\mathcal{M}_{g},(g \geq 1)$ and obtain the symmetric Poincaré polynomial for $F\left(\mathcal{M}_{g}, 2\right)$:

Proposition 1. The symmetric Poincaré polynomial of $F\left(\mathcal{M}_{g}, 2\right), g \geq 1$, is given by

$$
S P_{H^{*}\left(F\left(\mathcal{M}_{g}, 2\right)\right)}(t, s)=\left(1+2 g t+\left(2 g^{2}-g\right) t^{2}\right) V(2)+\left(2 g t+\left(2 g^{2}+g+1\right) t^{2}+2 g t^{3}\right) V(1,1)
$$

In section 4 we fully describe the \mathcal{S}_{3}-structure of $E\left(\mathcal{M}_{g}, 3\right)$ for $g \geq 1$ and compute the differentials for subcomplexes corresponding to each isotypical component $V(3)$ and $V(2,1)$ separately, to obtain the following:

Theorem 2. The symmetric Poincaré polynomial for $F\left(\mathcal{M}_{g}, 3\right)$) for $g \geq 2$ is:

$$
\begin{aligned}
S P_{H^{*}\left(F\left(\mathcal{M}_{g}, 3\right)\right)}(s, t)= & {\left[1+2 g t+\left(2 g^{2}-g\right) t^{2}+\frac{2}{3}\left(2 g^{3}-3 g^{2}+4 g\right) t^{3}+\right.} \\
& \left.+\left(\left(2 g^{2}+g+1\right) t^{3}+2 g t^{4}\right) s\right] V(3)+ \\
& +\left[2 g t+4 g^{2} t^{2}+\frac{2}{3}\left(4 g^{3}-g\right) t^{3}\right] V(2,1)+ \\
& +\left[\left(2 g^{2}+g\right) t^{2}+\frac{2}{3}\left(2 g^{3}+3 g^{2}+4 g\right) t^{3}+\left(2 g^{2}+g\right) t^{4}\right] V(1,1,1)
\end{aligned}
$$

For $g=1$ we have:

$$
S P_{H^{*}\left(F\left(\mathbb{T}^{2}, 3\right)\right.}(s, t)=(1+t)^{2}\left(1+2 s t^{2}\right) V(3)+2 t(1+t)^{2} V(2,1)+3 t^{2}(1+t)^{2} V(1,1,1)
$$

Lastly, computations for the unordered configuration space of four points on a Riemann surface of genus one give:

Proposition 3. The double Poincaré polynomial of the unordered 4-point configuration space of \mathbb{T}^{2} is:

$$
P_{H^{*}\left(C\left(\mathbb{T}^{2}, 4\right)\right)}(s, t)=1+2 t+t^{2}+\left(2 t^{2}+5 t^{3}+4 t^{4}+t^{5}\right) s
$$

2 Some useful results

Here we state some general results for any complex projective variety X from [1] to be used for computations in the following sections.

Proposition 4. [1] For any $q=0,1, \ldots, n-1$ and any k in the interval $[(2 m-1) q, 2 m n-q]$, the following is an isomorphism of \mathcal{S}_{n}-modules

$$
E_{q}^{k}(X, n) \cong E_{q}^{2 m n+2 q(m-1)-k}(X, n)
$$

The following propositions give the vanishing of cohomology at the "border" of the trapezoid (see [1]) formed by plotting the bigraded components of $E(X, n)$, and describes some interior acyclic subcomplexes.

Proposition 5. [1] The differentials in the Križ model of a projective manifold different from $\mathbb{C} P^{1}$ are injective for any q in the interval $[1, n-1]$:

$$
d: E_{q}^{q(2 m-1)}(X, n) \mapsto E_{q-1}^{q(2 m-1)+1}(X, n)
$$

Proposition 6. [1] The top differentials in the Križ model are injective for any k in the interval $[(n-1)(2 m-1), n(2 m-1)+1]:$

$$
d: E_{n-1}^{k}(X, n) \mapsto E_{n-2}^{k+1}(X, n)
$$

Proposition 7. [1] All cohomology groups of the subcomplex

$$
0 \rightarrow E_{n-1}^{n(2 m-1)+1}(X, n) \rightarrow E_{n-2}^{n(2 m-1)+2}(X, n) \rightarrow \ldots \rightarrow E_{0}^{2 n m}(X, n) \rightarrow 0
$$

are zero.
For a fixed non empty subset $A \subset\{1,2, \ldots, n\}$ of cardinality $|A|=a \geq 2$ and a fixed sequence β of length $b=n-a, \beta=\left(x_{1}, x_{2}, \ldots, x_{b}\right)$, where all the elements x_{j} belong to the fixed basis \mathcal{B} and are different from w, we denote the increasing sequence of elements in $\{1,2, \ldots, n\} \backslash A$ by $b_{1}<b_{2}<\ldots<b_{b}$, the product $\prod_{j=1}^{b} p_{b_{j}}^{*}\left(x_{j}\right)$ by $p^{*}(\beta)$, and its degree $\sum_{j=1}^{b} \operatorname{deg}\left(x_{j}\right)$ by $|\beta|$. Now we define subspace

$$
\begin{gathered}
E_{*}^{T o p}(A, \beta)=\sum_{q=0}^{a-1} E_{q}^{2 m a-q+|\beta|}(A, \beta) \\
\text { by } \left.\quad E_{q}^{2 m a-q+|\beta|}(A, \beta)=\mathbb{Q}\left\langle\prod_{i \in A \backslash J_{*}} p_{i}^{*}(w) p^{*}(\beta) G_{I_{*} J_{*}}\right| I_{*} \cup J_{*} \subset A,\left|J_{*}\right|=q\right\rangle .
\end{gathered}
$$

Proposition 8. [1] For any A and β as above, the space $E_{*}^{T o p}(A, \beta)$ is an acyclic subcomplex of the Križ model.

3 Cohomology of 2-points configuration spaces

In this section we study the \mathcal{S}_{2} action on the Križ model for $F\left(\mathcal{M}_{g}, 2\right)$ for genus $g \geq 1$. A simple application of Proposition 6 gives the Poincaré polynomial of $F\left(\mathcal{M}_{g}, 2\right)$.
Proposition 9. The \mathcal{S}_{2} decomposition of $E_{0}^{k}\left(\mathcal{M}_{g}, 2\right)$ is given as:

k	0	1	2	3	4	
E_{0}^{k}	1	$2 g$	$2 g^{2}-g+1$	$2 g$	1	$V(2)$
		$2 g$	$2 g^{2}+g+1$	$2 g$		$V(1,1)$

Proof: Finding explicit bases for the modules we get the required multiplicities. The component $E_{0}^{0} \cong\langle 1 \otimes 1\rangle \cong V(2)$. The \mathcal{S}_{2}-decomposition of E_{0}^{1} is given by $\left\langle a_{i} \otimes 1+1 \otimes a_{i}\right\rangle \oplus\left\langle b_{i} \otimes 1+\right.$ $\left.1 \otimes b_{i}\right\rangle \cong 2 g V(2)$ and $\left\langle a_{i} \otimes 1-1 \otimes a_{i}\right\rangle \oplus\left\langle b_{i} \otimes 1-1 \otimes b_{i}\right\rangle \cong 2 g V(1,1)$ for $1 \leq i \leq g$.
Similarly, E_{0}^{2} is isomorphic to the direct sum of
$\langle w \otimes 1+1 \otimes w\rangle \oplus\left\langle a_{i} \otimes a_{j}-a_{j} \otimes a_{i}\right\rangle \oplus\left\langle b_{i} \otimes b_{j}-b_{j} \otimes b_{i}\right\rangle \oplus\left\langle a_{i} \otimes b_{j}-b_{j} \otimes a_{i}\right\rangle \cong\left(2 g^{2}-g+1\right) V(2)$ and $\langle w \otimes 1-1 \otimes w\rangle \oplus\left\langle a_{i} \otimes a_{i}\right\rangle \oplus\left\langle b_{i} \otimes b_{i}\right\rangle \oplus\left\langle a_{i} \otimes a_{j}+a_{j} \otimes a_{i}\right\rangle \oplus\left\langle b_{i} \otimes b_{j}+b_{j} \otimes b_{i}\right\rangle \oplus\left\langle a_{i} \otimes b_{j}+b_{j} \otimes a_{i}\right\rangle \cong$ $\left(2 g^{2}+g+1\right) V(1,1)$, for $1 \leq i, j \leq g$. The \mathcal{S}_{2}-decomposition for components E_{0}^{k} for $k=3,4$ is obtained using Proposition 4.

Proposition 10. In exterior degree one, the \mathcal{S}_{2} decomposition of $E\left(\mathcal{M}_{g}, 2\right)$ is given as follows:

k	1	2	3	
E_{1}^{k}	1	$2 g$	1	$V(2)$

Proof: The components are $E_{1}^{1} \cong\left\langle G_{12}\right\rangle \cong V(2)$ and $E_{1}^{2} \cong\left\langle a_{i} \otimes 1 G_{12}\right\rangle \oplus\left\langle b_{i} \otimes 1 G_{12}\right\rangle \cong 2 g V(2)$, for $1 \leq i \leq g$. Also $E_{1}^{3} \cong E_{1}^{1}$ by Proposition 4 .

The following diagrams for irreducible \mathcal{S}_{2}-submodules $V(\lambda), \lambda \vdash 2$, show the corresponding multiplicities of the bigraded components of the Križ model, where dots denote the absence of the modules $V(\lambda)$ from $E_{*}^{*}\left(\mathcal{M}_{g}, 2\right)$, the circles denote their appearance and the bullets show components from which some part survives to contribute to cohomology.

Proof of Proposition 1.1. All differentials $E_{1}^{k} \xrightarrow{d} E_{1}^{k+1}$, are injective. This follows from direct computation or by using Proposition 6.

Corollary 11. The double Poincaré Polynomial of $C\left(\mathcal{M}_{g}, 2\right), g \geq 1$, is

$$
P_{H^{*}\left(C\left(\mathcal{M}_{g}, 2\right)\right)}(t, s)=1+2 g t+\left(2 g^{2}-g\right) t^{2}
$$

Proof: This is obtained as a consequence of the transfer theorem which equates the cohomology of $C\left(\mathcal{M}_{g}, 2\right)$ to the \mathcal{S}_{2}-invariant part of the cohomology of $F\left(\mathcal{M}_{g}, 2\right)$.

Corollary 12. The double Poincaré Polynomial of $F\left(\mathcal{M}_{g}, 2\right), g \geq 1$, is

$$
P_{H^{*}\left(F\left(\mathcal{M}_{g}, 2\right)\right)}(t, s)=1+4 g t+\left(4 g^{2}+1\right) t^{2}+2 g t^{3}
$$

4 Cohomology of 3-points configuration spaces

In this section we describe the \mathcal{S}_{3}-structure of the Križ model $E_{*}^{*}\left(\mathcal{M}_{g}, 3\right)$ for the ordered 3-point configuration spaces for surfaces. Moreover we compute the Betti numbers for $H^{*}\left(F\left(\mathcal{M}_{g}, 3\right) ; \mathbb{Q}\right)$, $H^{*}\left(C\left(\mathcal{M}_{g}, 3\right) ; \mathbb{Q}\right)$.

We first discuss for any space X, the combinatorics of the \mathcal{S}_{3}-structure of the bigraded component corresponding to the exterior degree zero i.e. $E_{0}^{*}(X, 3) \cong H^{*}(X)^{\otimes 3}$. The group \mathcal{S}_{3} acts on the \mathbb{Q}-span of monomials $x_{a} \otimes x_{b} \otimes x_{c} \in H(X)^{* \otimes 3}$ and gives the following decomposition, which depends on the degree $\left|x_{a}\right|$ of the factors:

Lemma 13. We have
1)For $a=b=c, \mathbb{Q}\left\langle x_{a} \otimes x_{a} \otimes x_{a}\right\rangle \cong \begin{cases}V(3) & \text { if }\left|x_{a}\right| \text { is even } \\ V(1,1,1) & \text { if }\left|x_{a}\right| \text { is odd, }\end{cases}$
2) For $a \neq b, \sum_{\sigma \in \mathcal{S}_{3}} \sigma \cdot \mathbb{Q}\left\langle x_{a} \otimes x_{a} \otimes x_{b}\right\rangle \cong \begin{cases}V(3) \oplus V(2,1) & \text { if }\left|x_{a}\right| \text { is even } \\ V(2,1) \oplus V(1,1,1) & \text { if }\left|x_{a}\right| \text { is odd, }\end{cases}$
3) For $a \neq b \neq c, \sum_{\sigma \in \mathcal{S}_{3}} \sigma \cdot \mathbb{Q}\left\langle x_{a} \otimes x_{b} \otimes x_{c}\right\rangle \cong V(3) \oplus 2 V(2,1) \oplus V(1,1,1)$.

Proof: For 1), we see that the generator $x_{a} \otimes x_{a} \otimes x_{a}$ is invariant under the action of \mathcal{S}_{3} if the degree of x_{a} is even and skew-invariant if it is odd. For the 3 -dimensional subspace in 2), a direct computation of characters gives us the desired decomposition. Lastly, the 6-dimensional subspace in 3) is clearly the regular representation of \mathcal{S}_{3}.

4.1 The \mathcal{S}_{3} structure for $E_{*}^{*}\left(F\left(\mathcal{M}_{g}, 3\right)\right)$

In this section we describe the symmetric structure for the Križ model for the ordered configuration of three points on surfaces $\mathcal{M}_{g}, g \geq 1$.

Proposition 14. The \mathcal{S}_{3} decomposition of $E_{0}^{*}\left(F\left(\mathcal{M}_{g}, 3\right)\right), g \geq 1$, is given by the following table of multiplicities:

k	0	1	2	3	4	5	6	
	1	$2 g$	$\binom{2 g}{2}+1$	$\binom{2 g}{3}+2 g$	$\binom{2 g}{2}+1$	$2 g$	1	$V(3)$
E_{0}^{k}	-	$2 g$	$4 g^{2}+1$	$2\binom{2 g+1}{3}+4 g$	$4 g^{2}+1$	$2 g$	-	$V(2,1)$
	-	-	$\binom{2 g+1}{2}$	$\binom{2 g+2}{3}+2 g$	$\binom{2 g+1}{2}$	-	-	$V(1,1,1)$

Proof: Using Lemma 13 and counting the number of possible types in each degree $0 \leq k \leq 6$, we obtain the result.

Proposition 15. The decomposition of $E_{1}^{*}\left(F\left(\mathcal{M}_{g}, 3\right)\right)$ into \mathcal{S}_{3} - irreducible modules is the following:

k	1	2	3	4	5	
E_{1}^{k}	1	$4 g$	$4 g^{2}+2$	$4 g$	1	$V(3)$
	1	$4 g$	$4 g^{2}+2$	$4 g$	1	$V(2,1)$

Proof: The E_{1}^{1}-component of the model has generators $\left\{G_{12}, G_{13}, G_{23}\right\}$ whose sum,

$$
G=G_{12}+G_{13}+G_{23}
$$

spans the one-dimensional module $V(3)$ and the vectors $\left\{G_{12}-G_{13}, G_{12}-G_{23}\right\}$, form a basis of $V(2,1)$. Consider the \mathcal{S}_{3}-invariant elements in $E_{0}^{1}, \alpha_{1}^{i}=a_{i} \otimes 1 \otimes 1+1 \otimes a_{i} \otimes 1+1 \otimes 1 \otimes a_{i}$, for all $1 \leq i \leq g$. We take the orbit of $\alpha_{1}^{i} G_{12}$ under the action of \mathcal{S}_{3} for all i. Each module, in collection of orbit spans, $\left\langle\alpha_{1}^{i} G_{12},(13) \cdot \alpha_{1}^{i} G_{12},(23) \cdot \alpha_{1}^{i} G_{12}\right\rangle$, for all $1 \leq i \leq g$, and has the \mathcal{S}_{3} decomposition $V(3) \oplus V(2,1)$. The bases is given by

$$
\begin{gathered}
\left\{\alpha_{1}^{i} G=\left(a_{i} \otimes 1 \otimes 1+1 \otimes a_{i} \otimes 1+1 \otimes 1 \otimes a_{i}\right) \cdot\left(G_{12}+G_{13}+G_{23}\right)\right\} \text { and } \\
\left\{\alpha_{1}^{i}\left(G_{12}-G_{13}\right), \alpha_{1}^{i}\left(G_{12}-G_{23}\right)\right\}
\end{gathered}
$$

Next we take the element $\alpha_{2}^{i}=a_{i} \otimes 1 \otimes 1-1 \otimes a_{i} \otimes 1$, for all $1 \leq i \leq g$, and consider the orbit of $\alpha_{2}^{i} G_{13}$ which is 3 -dimensional: its decomposition is $V(3) \oplus V(2,1)$. For each $1 \leq i \leq g$, the elements:

$$
\begin{aligned}
\beta_{1}^{i} & =b_{i} \otimes 1 \otimes 1+1 \otimes b_{i} \otimes 1+1 \otimes 1 \otimes b_{i} \\
\beta_{2}^{i} & =b_{i} \otimes 1 \otimes 1-1 \otimes b_{i} \otimes 1
\end{aligned}
$$

multiplied by G_{12} and G_{13} respectively, give two collections (for each $1 \leq i \leq g$) of orbits which decompose into $V(3) \oplus V(2,1)$. Thus we have $E_{1}^{2} \cong 4 g V(3) \oplus 4 g V(2,1)$.
For E_{1}^{3}, one can take the following bases for irreducible modules:
$\mathbb{Q}\left\langle w \otimes 1 \otimes 1 G_{12}+w \otimes 1 \otimes 1 G_{13}+1 \otimes w \otimes 1 G_{23}\right\rangle \cong V(3)$
$G(w)=\mathbb{Q}\left\langle w \otimes 1 \otimes 1 G_{12}-w \otimes 1 \otimes 1 G_{13}, w \otimes 1 \otimes 1 G_{12}-1 \otimes w \otimes 1 G_{23}\right\rangle \cong V(2,1)$,
$\mathbb{Q}\left\langle 1 \otimes 1 \otimes w G_{12}+1 \otimes w \otimes 1 G_{13}+w \otimes 1 \otimes 1 G_{23}\right\rangle \cong V(3)$
$\mathbb{Q}\left\langle 1 \otimes 1 \otimes w G_{12}-1 \otimes w \otimes 1 G_{13}, 1 \otimes 1 \otimes w G_{12}-w \otimes 1 \otimes 1 G_{23}\right\rangle \cong V(2,1)$,
$\mathbb{Q}\left\langle a_{i} \otimes 1 \otimes a_{j} G_{12}+a_{i} \otimes a_{j} \otimes 1 G_{13}-a_{j} \otimes a_{i} \otimes 1 G_{23}\right\rangle \cong V(3), \quad 1 \leq i, j \leq g$,
$G\left(a_{i} a_{j}\right)=\mathbb{Q}\left\langle a_{i} \otimes 1 \otimes a_{j} G_{12}-a_{i} \otimes a_{j} \otimes 1 G_{13}, a_{i} \otimes 1 \otimes a_{j} G_{12}+a_{j} \otimes a_{i} \otimes 1 G_{23}\right\rangle \cong V(2,1)$,
$\mathbb{Q}\left\langle b_{i} \otimes 1 \otimes b_{j} G_{12}+b_{i} \otimes b_{j} \otimes 1 G_{13}-b_{j} \otimes b_{i} \otimes 1 G_{23}\right\rangle \cong V(3), \quad 1 \leq i, j \leq g$,
$G\left(b_{i} b_{j}\right)=\mathbb{Q}\left\langle b_{i} \otimes 1 \otimes b_{j} G_{12}-b_{i} \otimes b_{j} \otimes 1 G_{13}, b_{i} \otimes 1 \otimes b_{j} G_{12}+b_{j} \otimes b_{i} \otimes 1 G_{23}\right\rangle \cong V(2,1)$,
$\mathbb{Q}\left\langle a_{i} \otimes 1 \otimes b_{j} G_{12}+a_{i} \otimes b_{j} \otimes 1 G_{13}-b_{j} \otimes a_{i} \otimes 1 G_{23}\right\rangle \cong V(3), \quad 1 \leq i, j \leq g$,
$G\left(a_{i} b_{j}\right)=\mathbb{Q}\left\langle a_{i} \otimes 1 \otimes b_{j} G_{12}-a_{i} \otimes b_{j} \otimes 1 G_{13}, a_{i} \otimes 1 \otimes b_{j} G_{12}+b_{j} \otimes a_{i} \otimes 1 G_{23}\right\rangle \cong V(2,1)$,
$\mathbb{Q}\left\langle b_{j} \otimes 1 \otimes a_{i} G_{12}+b_{j} \otimes a_{i} \otimes 1 G_{13}-a_{i} \otimes b_{j} \otimes 1 G_{23}\right\rangle \cong V(3), \quad 1 \leq i, j \leq g$,
$G\left(b_{j} a_{i}\right)=\mathbb{Q}\left\langle b_{j} \otimes 1 \otimes a_{i} G_{12}-b_{j} \otimes a_{i} \otimes 1 G_{13}, b_{j} \otimes 1 \otimes a_{i} G_{12}+a_{i} \otimes b_{j} \otimes 1 G_{23}\right\rangle \cong V(2,1)$.
This implies $E_{1}^{2} \cong\left(4 g^{2}+2\right) V(3) \oplus\left(4 g^{2}+2\right) V(2,1)$.

The following proposition shows the \mathcal{S}_{3} decomposition of E_{2}^{*}

Proposition 16. The \mathcal{S}_{3} decomposition of $E_{2}^{*}\left(F\left(\mathcal{M}_{g}, 3\right)\right)$ is as follows

k	2	3	4	
E_{2}^{k}	1	$2 g$	1	$V(2,1)$

Proof: For E_{2}^{3}, we have the following description:

$$
\begin{aligned}
E_{2}^{3} & \cong \oplus\left[\left(\left\langle\alpha_{1}^{i}\right\rangle \otimes E_{2}^{2}\right) \oplus\left(\left\langle\beta_{1}^{i}\right\rangle \otimes E_{2}^{2}\right)\right] \\
& \cong 2 g(V(3) \otimes V(2,1)) \\
& \cong 2 g V(2,1)
\end{aligned}
$$

where α_{1}^{i} and β_{1}^{i} are elements as described in the proof of the previous proposition.

The following diagrams for irreducible \mathcal{S}_{3}-submodules $V(3), V(2,1)$ and $V(1,1,1)$ show the multiplicities of the irreducible components of E_{*}^{*} :

4.2 Computations of the differential

We can read off a few Betti numbers directly, without any computation, from the diagrams of multiplicities for each of the irreducible modules $V(3), V(2,1)$ and $V(1,1,1)$.

Proposition 17. a) $H_{0}^{0}(3)=V(3)$ and $H_{0}^{1}(3) \cong 2 g V(3)$;
b) $H_{0}^{1}(2,1) \cong 2 g V(2,1), H_{0}^{0}(2,1)=H_{0}^{6}(2,1)=0$;
c) $H_{0}^{2}(1,1,1) \cong H_{0}^{4}(1,1,1) \cong\binom{2 g+1}{2} V(1,1,1), H_{0}^{3}(1,1,1) \cong\left(\binom{2 g+2}{3}+2 g\right) V(1,1,1)$ and $H_{q}^{k}(1,1,1)=$ 0 otherwise.

The next proposition gives cohomology groups as a consequence of differentials positioned on the left, top and right sides of the trapezoid (see [?]).

Proposition 18. a) $H_{0}^{2}(3) \cong\binom{2 g}{2} V(3), H_{1}^{1}(3)=H_{1}^{5}(3)=H_{0}^{6}(3)=0$;
b) $H_{0}^{2}(2,1) \cong 4 g^{2} V(2,1), H_{1}^{1}(2,1)=H_{2}^{2}(2,1)=H_{2}^{3}(2,1)=H_{2}^{4}(2,1)=H_{1}^{5}(2,1)=0$.

Proof: Using Proposition 5, the differential $d: E_{1}^{1}\left(\mathcal{M}_{g}, 3\right) \rightarrow E_{0}^{2}\left(\mathcal{M}_{g}, 3\right)$ is injective. By restricting this differential to the modules $V(3)$ and $V(2,1)$ we obtain the result. The differentials $d: E_{2}^{k}\left(\mathcal{M}_{g}, 3\right) \rightarrow E_{1}^{k+1}\left(\mathcal{M}_{g}, 3\right)$ for $k=2,3,4$ are injective using Proposition 6 and so are their respective restrictions on the modules $V(3)$ and $V(2,1)$. Using Proposition 7 , the "right side" border of the trapezoid is acyclic, which gives us the vanishing of cohomology: $H_{0}^{6}(3)=H_{1}^{5}(3)=0$ and $H_{1}^{5}(2,1)=H_{2}^{4}(2,1)=0$.

For the sub-complexes corresponding to isotypical components $V(3)$ and $V(2,1)$ we compute the remaining differentials separately.

Lemma 19. a) The differential $E_{1}^{2}(3) \rightarrow E_{0}^{3}(3)$ is injective.
b) For $k=3,4$, the differentials $E_{1}^{k}(3) \rightarrow E_{0}^{k+1}(3)$ are surjective.

Proof: a) The differential $E_{1}^{2}(3) \cong 4 g V(3) \rightarrow E_{0}^{3}(3) \cong \frac{2}{3}\left(2 g^{3}-3 g^{2}+4 g\right) V(3)$ is split into two halves:

$$
\begin{aligned}
d: E_{1}^{2}(3) \cap\left(a_{i}, G_{j k}\right)_{(i, j, k)} & \rightarrow E_{0}^{3}(3) \cap\left[\left(a_{i}, w\right) \oplus\left(a_{i}, a_{j}, b_{j}\right)\right]_{(i, j)} \\
d: E_{1}^{2}(3) \cap\left(b_{i}, G_{j k}\right)_{(i, j, k)} & \rightarrow E_{0}^{3}(3) \cap\left[\left(b_{i}, w\right) \oplus\left(a_{i}, b_{i}, b_{j}\right)\right]_{(i, j)}
\end{aligned}
$$

Computing the differentials of the elements from the bases of the first submodule we find: $d\left(a_{l} \otimes 1 \otimes 1 G_{12}+a_{l} \otimes 1 \otimes 1 G_{13}+1 \otimes a_{l} \otimes 1 G_{23}\right)=-\sum_{\sigma \in \mathcal{S}_{3}} \sigma .\left(w \otimes a_{l} \otimes 1\right)$ and
$d\left(1 \otimes 1 \otimes a_{l} G_{12}+1 \otimes a_{l} \otimes 1 G_{13}+a_{l} \otimes 1 \otimes 1 G_{23}\right)=-\sum_{\sigma \in \mathcal{S}_{3}} \sigma .\left(w \otimes a_{l} \otimes 1\right)+\sum_{i=1}^{g} \sum_{\sigma \in \mathcal{S}_{3}} \sigma .\left(a_{i} \otimes b_{i} \otimes a_{l}\right)$.
Hence the rank of differential restricted to one half is $2 g$. Similar computation for the second subspace,
$d\left(b_{l} \otimes 1 \otimes 1 G_{12}+b_{l} \otimes 1 \otimes 1 G_{13}+1 \otimes b_{l} \otimes 1 G_{23}\right)=-\sum_{\sigma \in \mathcal{S}_{3}} \sigma .\left(w \otimes b_{l} \otimes 1\right)$ and
$d\left(1 \otimes 1 \otimes b_{l} G_{12}+1 \otimes b_{l} \otimes 1 G_{13}+b_{l} \otimes 1 \otimes 1 G_{23}\right)=-\sum_{\sigma \in \mathcal{S}_{3}} \sigma .\left(w \otimes b_{l} \otimes 1\right)+\sum_{i=1}^{g} \sum_{\sigma \in \mathcal{S}_{3}} \sigma .\left(a_{i} \otimes b_{i} \otimes b_{l}\right)$, gives the maximal rank of $d: E_{1}^{2}(3) \rightarrow E_{0}^{3}(3)$.
b) For $k=3$, we consider the differential of generators of one-dimensional modules:
$d\left(w \otimes 1 \otimes 1 G_{12}+w \otimes 1 \otimes 1 G_{13}+1 \otimes w \otimes 1 G_{23}\right)=w \otimes w \otimes 1+w \otimes 1 \otimes w+1 \otimes w \otimes w$. $d\left(a_{i} \otimes 1 \otimes a_{j} G_{12}+a_{i} \otimes a_{j} \otimes 1 G_{13}-a_{j} \otimes a_{i} \otimes 1 G_{23}\right)=\sum_{\sigma \in \mathcal{S}_{3}} \sigma \cdot\left(w \otimes a_{i} \otimes a_{j}\right)$,
for $1 \leq i<j \leq g$.
$d\left(b_{i} \otimes 1 \otimes b_{j} G_{12}+b_{i} \otimes b_{j} \otimes 1 G_{13}-b_{j} \otimes b_{i} \otimes 1 G_{23}\right)=\sum_{\sigma \in \mathcal{S}_{3}} \sigma .\left(w \otimes b_{i} \otimes b_{j}\right)$,
for $1 \leq i<j \leq g$.
$d\left(a_{i} \otimes 1 \otimes b_{j} G_{12}+a_{i} \otimes b_{j} \otimes 1 G_{13}-b_{j} \otimes a_{i} \otimes 1 G_{23}\right)=\sum_{\sigma \in \mathcal{S}_{3}} \sigma \cdot\left(w \otimes a_{i} \otimes b_{j}\right)$,
for $1 \leq i, j \leq g$.
$d\left(b_{j} \otimes 1 \otimes a_{i} G_{12}+b_{j} \otimes a_{i} \otimes 1 G_{13}-a_{i} \otimes b_{j} \otimes 1 G_{23}\right)=\sum_{\sigma \in \mathcal{S}_{3}} \sigma \cdot\left(w \otimes b_{j} \otimes a_{i}\right)$,
for $1 \leq i, j \leq g$.
The images above make a basis of the one-dimensional modules in the target space $E_{0}^{4}(3)$ corresponding to the marks $\left(w, a_{i}, a_{j}\right),\left(w, b_{i}, b_{j}\right),\left(w, a_{i}, b_{j}\right)$, and $(w, w, 1)$ respectively, hence d is surjective.

For $k=4$, the surjectivity of $d: E_{1}^{4}(3) \rightarrow E_{0}^{5}(3)$ is a consequence of the acyclicity of the subcomplexes $\bigoplus_{|A|=2} E_{1}^{T o p}\left(A, a_{i}\right)$ and $\bigoplus_{|A|=2} E_{1}^{\text {Top }}\left(A, b_{i}\right)$ (see Proposition 8) for all $1 \leq i, j \leq g$.

We are now able to write the double Poincaré polynomial for $H_{*}^{*}(3)$:
Proposition 20. The double Poincaré polynomial of $H_{*}^{*}(3)$ for $g \geq 2$ is given by

$$
P_{H_{*}^{*}(3)}(s, t)=1+2 g t+\left(2 g^{2}-g\right) t^{2}+\frac{2}{3}\left(2 g^{3}-3 g^{2}-2 g\right) t^{3}+\left(\left(2 g^{2}+g+1\right) t^{3}+2 g t^{4}\right) s
$$

For $g=1$ we have

$$
P_{H_{*}^{*}(3)}(s, t)=1+2 t+t^{2}+\left(2 t^{2}+4 t^{3}+2 t^{4}\right) s=(1+t)^{2}\left(1+2 s t^{2}\right)
$$

The expressions differ due to the additional modules (in the case of $g \geq 2$) in exterior degree 0 and total degree 3. An application of the transfer theorem gives us the Poincaré polynomial of the unordered configuration space for Riemann surfaces.
Corollary 21. The double Poincaré polynomial of $C\left(\mathcal{M}_{g}, 3\right)$) for $g \geq 2$ is:

$$
P_{H_{*}^{*}\left(C\left(\mathcal{M}_{g}, 3\right)\right)}(s, t)=1+2 g t+\left(2 g^{2}-g\right) t^{2}+\frac{2}{3}\left(2 g^{3}-3 g^{2}-2 g\right) t^{3}+\left(\left(2 g^{2}+g+1\right) t^{3}+2 g t^{4}\right) s
$$

For $g=1$ we have

$$
P_{H^{*}\left(C\left(\mathbb{T}^{2}, 3\right)\right.}(s, t)=(1+t)^{2}\left(1+2 s t^{2}\right)
$$

Corollary 22. The Poincaré polynomial of $C\left(\mathcal{M}_{g}, 3\right)$) for $g \geq 2$ is:

$$
P_{H_{*}^{*}\left(C\left(\mathcal{M}_{g}, 3\right)\right)}(t)=1+2 g t+\left(2 g^{2}-g\right) t^{2}+\frac{1}{3}\left(4 g^{3}-g+3\right) t^{3}+2 g t^{4}
$$

For $g=1$ we have

$$
P_{H^{*}\left(C\left(\mathbb{T}^{2}, 3\right)\right.}(t)=1+2 t+3 t^{2}+4 t^{3}+2 t^{4}
$$

In the subcomplex $E_{*}^{*}(2,1)$, the remaining differentials are dealt with in the following lemma.
Lemma 23. a) The differential $E_{1}^{2}(2,1) \rightarrow E_{0}^{3}(2,1)$ is injective.
b) For $k=3,4$, the differentials $E_{1}^{k}(2,1) \rightarrow E_{0}^{k+1}(2,1)$ are surjective.

Proof: a) As in the case for $E_{1}^{2}(3)$, the differential can be split into two halves, one defined on the subspace generated by marks a_{i} and another defined on the subspace generated by marks b_{i}, and each of them can be further split into two families: one, in which the factor of positive degree in the coefficients is in positions i-corresponding to the indices of $G_{i j}$, while in the other family, this factor is not positioned at i or j places. Namely, for all $1 \leq i \leq g$, we obtain a decomposition into irreducible $V(2,1)$ modules:

$$
V(2,1) \cong\left\langle a_{i} \otimes 1 \otimes 1 G_{12}-a_{i} \otimes 1 \otimes 1 G_{13}, a_{i} \otimes 1 \otimes 1 G_{12}-1 \otimes a_{i} \otimes 1 G_{23}\right\rangle
$$

and $V(2,1) \cong\left\langle 1 \otimes 1 \otimes a_{i} G_{12}-1 \otimes a_{i} \otimes 1 G_{13}, 1 \otimes 1 \otimes a_{i} G_{12}-a_{i} \otimes 1 \otimes 1 G_{23}\right\rangle$.
Computing the differential we obtain
$d\left(a_{i} \otimes 1 \otimes 1 G_{12}-a_{i} \otimes 1 \otimes 1 G_{13}\right)=-a_{i} \otimes w \otimes 1-w \otimes a_{i} \otimes 1+a_{i} \otimes 1 \otimes w+w \otimes 1 \otimes a_{i}$, $d\left(a_{i} \otimes 1 \otimes 1 G_{12}-1 \otimes a_{i} \otimes 1 G_{23}\right)=-a_{i} \otimes w \otimes 1-w \otimes a_{i} \otimes 1+1 \otimes a_{i} \otimes w+1 \otimes w \otimes a_{i}$, $d\left(1 \otimes 1 \otimes a_{i} G_{12}-1 \otimes a_{i} \otimes 1 G_{13}\right)=-w \otimes 1 \otimes a_{i}-\sum_{j=1}^{g} b_{j} \otimes a_{j} \otimes a_{i}+\sum_{j=1}^{g} a_{j} \otimes b_{j} \otimes a_{i}-1 \otimes w \otimes$ $a_{i}+w \otimes a_{i} \otimes 1-\sum_{i j=1}^{g} b_{j} \otimes a_{i} \otimes a_{j}+\sum_{j=1}^{g} a_{j} \otimes a_{i} \otimes b_{j}+1 \otimes a_{i} \otimes w$,
$d\left(1 \otimes 1 \otimes a_{i} G_{12}-a_{i} \otimes 1 \otimes 1 G_{23}\right)=-w \otimes 1 \otimes a_{i}-\sum_{j=1}^{g} b_{j} \otimes a_{j} \otimes a_{i}+\sum_{j=1}^{g} a_{j} \otimes b_{j} \otimes a_{i}-1 \otimes w \otimes$ $a_{i}+a_{i} \otimes w \otimes 1+\sum_{j=1}^{g} a_{i} \otimes b_{j} \otimes a_{j}-\sum_{j=1}^{g} a_{i} \otimes a_{j} \otimes b_{j}+a_{i} \otimes 1 \otimes w$.
The composition

$$
\begin{gathered}
\bigoplus_{i} \mathbb{Q}\left\langle a_{i} \otimes 1 \otimes 1 G_{12}-a_{i} \otimes 1 \otimes 1 G_{13}, a_{i} \otimes 1 \otimes 1 G_{12}-1 \otimes a_{i} \otimes 1 G_{23}, 1 \otimes 1 \otimes a_{i} G_{12}-1 \otimes a_{i} \otimes 1 G_{13}\right\rangle \xrightarrow{d} \\
\xrightarrow{d} E_{0}^{3} \xrightarrow{p r} \mathbb{Q}\left\langle w \otimes a_{i} \otimes 1, w \otimes 1 \otimes a_{i}, a_{i} \otimes w \otimes 1\right\rangle
\end{gathered}
$$

for each component corresponding to $1 \leq i \leq g$, has the following 3×3 invertible matrix

$$
\left(\begin{array}{ccc}
-1 & -1 & 1 \\
1 & 0 & -1 \\
-1 & -1 & 0
\end{array}\right)
$$

b) We can compute directly the rank of the differential $d: E_{1}^{3}(2,1) \cong\left(4 g^{2}+2\right) V(2,1) \rightarrow$ $E_{0}^{4}(2,1) \cong\left(4 g^{2}+1\right) V(2,1)$. The subspaces $d(G(w)), d\left(G\left(a_{i} a_{j}\right)\right)$ and $d\left(G\left(b_{i} b_{j}\right)\right)$ are non-zero and included in the $V(2,1)$ components of the subalgebras generated by w, by w and a_{i} and by w and b_{i} respectively, for all $1 \leq i \leq g$. The subspace $d\left(G\left(a_{i} b_{j}\right) \oplus G\left(b_{j} a_{i}\right)\right)$ is not included in these subalgebras. It has dimension four, and it is isomorphic to $2 V(2,1)$, because the composition:

$$
\begin{gathered}
\mathbb{Q}\left\langle a_{i} \otimes 1 \otimes b_{j} G_{12}-a_{i} \otimes b_{j} \otimes 1 G_{13}, a_{i} \otimes 1 \otimes b_{j} G_{12}+b_{j} \otimes a_{i} \otimes 1 G_{23}, b_{j} \otimes 1 \otimes a_{i} G_{12}-b_{j} \otimes a_{i} \otimes 1 G_{13}\right\rangle \xrightarrow{d} \\
\xrightarrow{d} E_{0}^{4} \xrightarrow{p r} \mathbb{Q}\left\langle w \otimes a_{i} \otimes b_{j}, w \otimes b_{j} \otimes a_{i}, a_{i} \otimes w \otimes b_{j}\right\rangle
\end{gathered}
$$

is an isomorphism:

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

For $k=4$, the differential splits into two halves, one with values in subalgebra generated by $\left(a_{i}, w\right)$ and another with values in subalgebra generated by $\left(b_{i}, w\right)$. It is sufficient to show that in each half there is a non-zero differential (for each $1 \leq i \leq g$):

$$
\begin{aligned}
& d\left(w \otimes 1 \otimes a_{i} G_{12}-w \otimes a_{i} \otimes 1 G_{13}\right)=w \otimes a_{i} \otimes w-w \otimes w \otimes a_{i} \\
& d\left(w \otimes 1 \otimes b_{i} G_{12}-w \otimes b_{i} \otimes 1 G_{13}\right)=w \otimes b_{i} \otimes w-w \otimes w \otimes b_{i}
\end{aligned}
$$

We are now able to write the double Poincaré polynomial of $H_{*}^{*}(2,1)$.
Proposition 24. The double Poincaré polynomial of $H_{*}^{*}(2,1)$ for $g \geq 1$ is given by:

$$
P_{H_{*}^{*}(2,1)}(t, s)=2 g t+4 g^{2} t^{2}+\frac{2}{3}\left(4 g^{3}-g\right) t^{3}
$$

Now we can conclude the proof of Theorem 1.2:
Proof of Theorem 1.2. This is a consequence of the Poincaré polynomials of $H_{*}^{*}(3)$ and $H_{*}^{*}(2,1)$ and propositions 17 and 18.

The double Poincaré polynomial is given in the following corollary, and it coincides with the polynomial given in [4].

Corollary 25. The double Poincaré polynomial for $g \geq 2$ is:

$$
P_{H^{*}\left(F\left(\mathcal{M}_{g}, 3\right)\right)}(s, t)=1+6 g t+12 g^{2} t^{2}+\left(8 g^{3}+\left(2 g^{2}+g+1\right) s\right) t^{3}+\left(2 g^{2}+g+2 g s\right) t^{4}
$$

For $g=1$ we have:

$$
\begin{aligned}
P_{H^{*}\left(F\left(\mathbb{T}^{2}, 3\right)\right.}(s, t) & =1+6 t+12 t^{2}+10 t^{3}+3 t^{4}+2 s\left(t^{2}+2 t^{3}+t^{4}\right)= \\
& =(1+t)^{3}(1+3 t)+2(1+t)^{2} t^{2} s
\end{aligned}
$$

Corollary 26. The Poincaré polynomial for $g \geq 2$ is:

$$
P_{H^{*}\left(F\left(\mathcal{M}_{g}, 3\right)\right)}(t)=1+6 g t+12 g^{2} t^{2}+\left(8 g^{3}+2 g^{2}+g+1\right) t^{3}+\left(2 g^{2}+3 g\right) t^{4}
$$

For $g=1$ we have:

$$
P_{H^{*}\left(F\left(\mathbb{T}^{2}, 3\right)\right.}(t)=1+6 t+14 t^{2}+14 t^{3}+5 t^{4}=(1+t)^{2}\left(1+4 t+5 t^{2}\right)
$$

The polynomial above coincides with the one given in [5].

5 Cohomology of the unordered configuration spaces of 4 points on the torus

In this section we compute Betti numbers for the 4-point unordered configuration space of the torus \mathbb{T}^{2}. The structure of the \mathcal{S}_{4}-invariant part of the Križ model $E\left(\mathbb{T}^{2}, 4\right)$, denoted by $E_{*}^{*}(4)$, is given. In the following diagram the numbers denote the multiplicities of the irreducible $V(4)$ module (in this case, equal to dimensions of the corresponding isotypical components).

Proposition 27. The \mathcal{S}_{4} structure of the Kriz̈ model for the torus is given by the following diagram:

Proof: For the component $E_{0}^{*}(4)$, this is done by computing the characters of subspaces directly and using the inner product of characters to obtain multiplicities for $V(4)$. For $E_{1}^{*}(4)$ and for $E_{2}^{*}(4)$ one can compute the sum of the \mathcal{S}_{4}-orbit of the monomials μ in the canonical basis $\sum_{\sigma \in \mathcal{S}_{4}} \sigma \mu$, see Propositions 29 and 30.

The following contributions to cohomology are clear from the diagram (part 1) and using Propositions 5 and 7 we obtain part 2).

Proposition 28. 1) $H_{0}^{0}(4) \cong V(4)$ and $H_{0}^{1}(4) \cong 2 V(4)$.
2) $H_{0}^{2} \cong V(4)$ and $H_{1}^{7}(4)=H_{0}^{8}(4)=0$.

The remaining differentials for the \mathcal{S}_{4}-invariant part are computed as follows:
Proposition 29. The differentials $d: E_{1}^{k} \rightarrow E_{0}^{k+1}$, for total degree $2 \leq k \leq 6$, are surjective.
Proof: We show surjectivity using a direct computation for each degree $2 \leq k \leq 6$. For $k=2$, the differential is surjective because
$d\left(\sum_{\sigma \in \mathcal{S}_{4}} \sigma(a \otimes 1 \otimes 1 \otimes 1) G_{12}\right)=-4 \sum_{\sigma \in \mathcal{A}_{4}} \sigma(a \otimes w \otimes 1 \otimes 1)$,
$d\left(\sum_{\sigma \in \mathcal{S}_{4}} \sigma(b \otimes 1 \otimes 1 \otimes 1) G_{12}\right)=-4 \sum_{\sigma \in \mathcal{A}_{4}} \sigma(b \otimes w \otimes 1 \otimes 1)$.

In total degree $k=3$, consider the differentials of the invariant vectors:

$$
\begin{aligned}
d\left(\sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes 1 \otimes 1) G_{12}\right) & =4 \sum_{\sigma \in \mathcal{A}_{4}} \sigma(w \otimes w \otimes 1 \otimes 1) \\
d\left(\sum_{\sigma \in \mathcal{S}_{4}} \sigma(a \otimes 1 \otimes b \otimes 1) G_{12}\right) & =2 \sum_{\sigma \in \mathcal{S}_{4}} \sigma(a \otimes w \otimes b \otimes 1)
\end{aligned}
$$

For $k=4$, taking the orbits of elements $w \otimes 1 \otimes a \otimes 1 G_{12}$ and $w \otimes 1 \otimes b \otimes 1 G_{12}$, and computing their differentials, we obtain:

$$
\begin{aligned}
d\left(\sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes a \otimes 1) G_{12}\right) & =\sum_{\sigma \in \mathcal{S}_{4}} \sigma(a \otimes w \otimes w \otimes 1), \\
d\left(\sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes b \otimes 1) G_{12}\right) & =\sum_{\sigma \in \mathcal{S}_{4}} \sigma(b \otimes w \otimes w \otimes 1) .
\end{aligned}
$$

For $k=5$, taking differential of the orbits of $w \otimes 1 \otimes w \otimes 1 G_{12}$ and $w \otimes 1 \otimes a \otimes b G_{12}$ we have:
$d\left(\sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes w \otimes 1) G_{12}\right)=2 \sum_{\sigma \in \mathcal{A}_{4}} \sigma(w \otimes w \otimes w \otimes 1)$,
$d\left(\sum_{\sigma \in \mathcal{S}_{4}}^{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes a \otimes b) G_{12}\right)=2 \sum_{\sigma \in \mathcal{A}_{4}}^{\sigma \in \mathcal{A}_{4}} \sigma(w \otimes w \otimes a \otimes b)$.
Lastly, the differential in degree $k=6$ is surjective because:
$d\left(\sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes a \otimes w) G_{12}\right)=-\sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes w \otimes w \otimes a)$,
$d\left(\sum_{\sigma \in \mathcal{S}_{4}}^{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes b \otimes w) G_{12}\right)=-\sum_{\sigma \in \mathcal{S}_{4}}^{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes w \otimes w \otimes b)$.

Proposition 30. The differentials $d: E_{2}^{k} \rightarrow E_{1}^{k+1}$, for total degree $3 \leq k \leq 5$, are injective.
Proof: For $k=3$, the two invariant vectors are:
$(a \otimes 1 \otimes 1 \otimes 1-1 \otimes 1 \otimes a \otimes 1) G_{12} G_{34}+(a \otimes 1 \otimes 1 \otimes 1-1 \otimes a \otimes 1 \otimes 1) G_{13} G_{24}+(a \otimes 1 \otimes 1 \otimes$ $1-1 \otimes a \otimes 1 \otimes 1) G_{23} G_{14}$,
$(b \otimes 1 \otimes 1 \otimes 1-1 \otimes 1 \otimes b \otimes 1) G_{12} G_{34}+(b \otimes 1 \otimes 1 \otimes 1-1 \otimes b \otimes 1 \otimes 1) G_{13} G_{24}+(b \otimes 1 \otimes 1 \otimes 1-$ $1 \otimes b \otimes 1 \otimes 1) G_{23} G_{14}$.
Taking the differential we obtain:
$\sum_{\sigma \in \mathcal{A}_{4}} \sigma(a \otimes 1 \otimes w \otimes 1) G_{12}+\sum_{\sigma \in \mathcal{A}_{4}} \sigma(a \otimes 1 \otimes b \otimes a) G_{12}-\sum_{\sigma \in \mathcal{A}_{4}} \sigma(1 \otimes 1 \otimes a \otimes w) G_{12} \sum_{\sigma \in \mathcal{A}_{4}} \sigma(b \otimes$ $1 \otimes w \otimes 1) G_{12}+\sum_{\sigma \in \mathcal{A}_{4}} \sigma(b \otimes 1 \otimes a \otimes b) G_{12}-\sum_{\sigma \in \mathcal{A}_{4}} \sigma(1 \otimes 1 \otimes b \otimes w) G_{12}$ respectively, hence d is injective.
Consider the differentials of the basis of invariant vectors in $E_{2}^{4}(4)$:
$d\left((w \otimes 1 \otimes 1 \otimes 1-1 \otimes 1 \otimes w \otimes 1) G_{12} G_{34}+(w \otimes 1 \otimes 1 \otimes 1-1 \otimes w \otimes 1 \otimes 1) G_{13} G_{24}+(w \otimes 1 \otimes 1 \otimes 1-1 \otimes w \otimes 1 \otimes\right.$ 1) $\left.G_{23} G_{14}\right)=-\frac{1}{2} \sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes w \otimes 1) G_{12}+\sum_{\sigma \in \mathcal{A}_{4}} \sigma(w \otimes 1 \otimes b \otimes a) G_{12}+\frac{1}{2} \sum_{\sigma \in \mathcal{A}_{4}} \sigma(1 \otimes 1 \otimes w \otimes w) G_{12}$, $d\left(a \otimes 1 \otimes a \otimes 1 G_{12} G_{34}+a \otimes a \otimes 1 \otimes 1 G_{13} G_{24}+a \otimes a \otimes 1 \otimes 1 G_{23} G_{14}\right)=-\sum_{\sigma \in \mathcal{A}_{4}} \sigma(a \otimes 1 \otimes a \otimes w) G_{12}$, $d\left(b \otimes 1 \otimes b \otimes 1 G_{12} G_{34}+b \otimes b \otimes 1 \otimes 1 G_{13} G_{24}+b \otimes b \otimes 1 \otimes 1 G_{23} G_{14}\right)=-\sum_{\sigma \in \mathcal{A}_{4}} \sigma(b \otimes 1 \otimes b \otimes w) G_{12}$, $d\left((a \otimes 1 \otimes b \otimes 1-b \otimes 1 \otimes a \otimes 1) G_{12} G_{34}+(a \otimes b \otimes 1 \otimes 1-b \otimes a \otimes 1 \otimes 1) G_{13} G_{24}+(a \otimes b \otimes 1 \otimes\right.$ $\left.1-b \otimes a \otimes 1 \otimes 1) G_{23} G_{14}\right)=-\frac{1}{2} \sum_{\sigma \in \mathcal{S}_{4}} \sigma(a \otimes 1 \otimes b \otimes w) G_{12}+\frac{1}{2} \sum_{\sigma \in \mathcal{S}_{4}} \sigma(b \otimes 1 \otimes a \otimes w) G_{12}$. Clearly
the rank of d is four. Lastly for total degree $k=5$, we have the following invariant vectors
$(a \otimes 1 \otimes w \otimes 1-w \otimes 1 \otimes a \otimes 1) G_{12} G_{34}+(a \otimes w \otimes 1 \otimes 1-w \otimes a \otimes 1 \otimes 1) G_{13} G_{24}+(a \otimes w \otimes 1 \otimes$ $1-w \otimes a \otimes 1 \otimes 1) G_{23} G_{14}$,
$(b \otimes 1 \otimes w \otimes 1-w \otimes 1 \otimes b \otimes 1) G_{12} G_{34}+(b \otimes w \otimes 1 \otimes 1-w \otimes b \otimes 1 \otimes 1) G_{13} G_{24}+(b \otimes w \otimes 1 \otimes$ $1-w \otimes b \otimes 1 \otimes 1) G_{23} G_{14}$.
Taking the differential we obtain:
$-\frac{1}{2} \sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes a \otimes w)+\frac{1}{2} \sum_{\sigma \in \mathcal{A}_{4}} \sigma(a \otimes 1 \otimes w \otimes w) G_{12}$ and
$-\frac{1}{2} \sum_{\sigma \in \mathcal{S}_{4}} \sigma(w \otimes 1 \otimes b \otimes w)+\frac{1}{2} \sum_{\sigma \in \mathcal{A}_{4}} \sigma(b \otimes 1 \otimes w \otimes w) G_{12}$ respectively, hence the differential is injective.

We can now give the double Poincaré polynomial of $C\left(\mathbb{T}^{2}, 4\right)$:
Proof of Proposition 1.3. By an application of the transfer theorem we have $H_{*}^{*}(4) \cong H^{*}\left(C\left(\mathbb{T}^{2}, 4\right)\right)$.

Corollary 31. The Poincaré polynomial of the unordered 4-point configuration space of \mathbb{T}^{2} is:

$$
P_{H^{*}\left(C\left(\mathbb{T}^{2}, 4\right)\right)}(s, t)=1+2 t+3 t^{2}+5 t^{3}+4 t^{4}+t^{5}
$$

Acknowledgement Research partially supported by Higher Education Commission, Pakistan. I would like to thank Barbu Berceanu for all the fruitful discussions that helped in the completion of this paper.

References

[1] S. Ashraf, H. Azam, B. Berceanu, Representation theory for the Križ model, Algebraic and Geometric Topology vol. 14 (2014) 57-90.
[2] R. Bezrukavnikov, Koszul DG-algebras arising from configuration spaces, Geometric and Functional Analysis vol. 4 no. 2 (1994), 119-135.
[3] C-F Bödigheimer, F. Cohen, Rational cohomology of configuration spaces of surfaces, Lecture Notes in Mathematics 1361, Springer-Verlag Berlin, 1988.
[4] B. Berceanu, M. Markl, S. Papadima, Multiplicative models for configuration spaces of algebraic varieties, Topology, vol. 44 (2005), 415-440.
[5] R. Brown, J. White, Homology and Morse theory of third configuration spaces, Indiana Univ. Math. J., vol. 30 (1981), 501-512.
[6] W. Fulton, J. Harris, First Course in Representation Theory, Graduate Texts in Mathematics 129, Springer-Verlag Berlin, 1991.
[7] W. Fulton, R. MacPherson, A Compactification of configuration Spaces, The Annals of Mathematics, vol. 139 no. 1 (1994), 183-225.
[8] E. M. Feichtner, G. M. Ziegler, The integral cohomology algebras of ordered configuration spaces of spheres, Documenta Mathematica, vol. 5 (2000), 115-139.
[9] I. Kriz, On the Rational Homotopy type of confiuration spaces, The Annals of Mathematics, vol. 139 no. 2 (1994), 227-237.
[10] F. Napolitano, On the configuration spaces on surfaces, J. London Math. Soc., vol. 68 no. 2 (2003), 477-492.

Received: 16.06.2013
Accepted: 25.11.2013
Syed Babar Ali School of Sciences and Engineering,
LUMS, Lahore-Pakistan.
E-mail: centipedes.united@gmail.com

