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A general form of the Second Main Theorem for hypersurfaces
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Abstract

We prove a general form of the Second Main Theorem for algebraically nondegener-
ate holomorphic mappings into a smooth complex projective variety intersecting arbitrary
hypersurfaces (rather than just the hypersurfaces in general position) and truncated mul-
tiplicities.
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1 Introduction and statements

Let f be a holomorphic mapping of C into CPN , with a reduced representation f = (f0 : · · · :
fN ). The characteristic function Tf (r) of f is defined by

Tf (r) :=
1

2π

∫ 2π

0

log ‖f(reiθ)‖dθ, where ‖f‖ := max{|f0|, . . . , |fN |}.

Let M be a positive integer or +∞, and let ν be a divisor on C. Set ν[M ](z) := min{ν(z),M}.
The truncated counting function to level M of ν is defined by

N [M ]
ν (r) :=

r∫
1

∑
|z|<t ν

[M ](z)

t
dt (1 < r < +∞).

Let ϕ be a nonzero holomorphic function on C. Denote by νϕ be the zero divisor of ϕ. Set

N
[M ]
ϕ (r) := N

[M ]
νϕ (r). For brevity we will omit the character [M ] in the counting function and in

the divisor if M = +∞.
Let D be a hypersurface in CPN of degree d ≥ 1. Let Q ∈ C[x0, . . . , xN ] be the homogeneous

polynomial of degree d defining D. Set

ν
[M ]
D := ν

[M ]
Q(f), N

[M ]
f (r,D) := N

[M ]
Q(f)(r) and λD(f) := log

‖f‖d · ‖Q‖
|Q(f)|

,
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where ‖Q‖ is the maximum of absolute values of the coefficients of Q.
Let V ⊂ CPN be a smooth complex projective variety of dimension n ≥ 1. Let D1, . . . , Dq

(V 6⊂ Dj), be hypersurfaces in CPN . We say that the hypersurfaces D1, . . . , Dq are in general
position in V if for any distinct indices 1 ≤ j1, . . . , jk ≤ q, (1 ≤ k ≤ n + 1) there exist
hypersurfaces S1, . . . , S(n+1−k) in CPN such that Dj1 ∩ · · · ∩Djk ∩S1 ∩ · · · ∩S(n+1−k) ∩V = ∅.

As usual, by the notation “‖P” we mean the assertion P holds for all r ∈ [1,+∞) excluding

a Borel subset E of (1,+∞) with

∫
E

dr < +∞.

In 1997, Vojta [5] established a general form of the Second Main Theorem.
Latter, Ru [3] generalized the result of Vojta to the case where intesection multiplicities are

truncated. He proved that.

Theorem A. Let f be a linearly nondegenerate holomorphic mapping of C into CPn and let
{Hj}qj=1 be arbitrary hyperplanes in CPn. Let ψ and φ be increasing functions in R+ with∫∞
e

dr
rψ(r) <∞, and

∫∞
e

dr
φ(r) =∞.

Then the inequality∫ 2π

0

max
K∈K

∑
j∈K

λHj (f(reiθ))
dθ

2π
+NW (f)(r)

≤ (n+ 1)Tf (r) +
n(n+ 1)

2
log

Tf (r)ψ(Tf (r))

φ(r)
+O(1),

holds for all r outside a set E with
∫
E

dr
φ(r) <∞. Here K is the set of all subsets K ⊂ {1, . . . , q}

such that the hyperplanes Hj , j ∈ K are in general position, and W (f) is the Wronskian of f.
We would like to emphasize here that in the above theorem of Ru, the hyperplanesH1, . . . ,Hq

are not assumed to be in general position.
Recently, the Second Main Theorem has been established for holomorphic maps in a projec-

tive variety intersecting hypersurfaces by Ru [4], Dethloff -Tan-Thai [1]. In 2009, Ru [4] proved
that.

Theorem B. Let V ⊂ CPN be a smooth complex projective variety of dimension n ≥ 1.
Let f be an algebraically nondegenerate holomorphic mapping of C into V. Let D1, . . . , Dq be
hypersurfaces in CPN of degree dj in general position in V. Then for every ε > 0,∥∥∥(q − n− 1− ε)Tf (r) ≤

q∑
j=1

1

dj
N(r,Dj).

We note that in Theorem B, the multiplicities of intersections are not truncated (all of them
are taken in to the account of counting functions). Motivated by the case of hyperplanes, in this
paper we generalize Theorem B to the case of arbitrary hypersurfaces, and the multiplicities
of intersections are truncated (the multiplicities are taken in to the account do not exceed a
common positive integer). In the case where hypersurfaces are in general position, from our
below theorem we get a slight improvement of Theorem B that mulitiplicities in the counting
functions are truncated by a positive integer. We will prove the following theorem.
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Theorem 1. Let V ⊂ CPN be a smooth complex projective variety of dimension n ≥ 1. Let f
be an algebraically nondegenerate holomorphic mapping of C into V. Let D1, . . . , Dq (V 6⊂ Dj)
be arbitrary hypersurfaces in CPn of degree dj . Then, for every ε > 0, there exists a positive
integer M depending on ε, dj , q, n, deg V such that

∥∥∥∫ 2π

0

max
K∈K

∑
j∈K

1

dj
λDj (f(reiθ))

dθ

2π
+

∫ r

1

dt

t
max
K∈K

∑
j∈K,|z|<t

1

dj

(
νDj (z)− ν[M ]

Dj
(z)
)

≤ (n+ 1 + ε)Tf (r) (1.1)

where K is the set of all subsets K ⊂ {1, . . . , q} such that the hypersurfaces {Dj , j ∈ K} are
in general position in V.

The proof of our theorem consists of two parts: In the first parts (section 3 until inequality
(3.3)), by using the technique of Min Ru in [4], we approximate the first term of inequality
(1.1) by an integration of a summation of linear forms. In the second part (from (3.3)), we
apply the Hilbert weights to estimating the second term of (1.1) which gives a truncation for
intersection multiplicities. This technique is completed different from the one used in the case
of hyperplanes.

2 Some lemmas

Let X ⊂ CPN be a projective variety of dimension n and degree 4. Let IX be the prime
ideal in C[x0, . . . , xN ] defining X. Denote by C[x0, . . . , xN ]m the vector space of homogeneous
polynomials in C[x0, . . . , xN ] of degree m (including 0). Put IX(m) := C[x0, . . . , xN ]m ∩ IX .

The Hilbert function HX of X is defined by

HX(m) := dimC[x0, . . . , xN ]m�IX(m).

For each tuple c = (c0, . . . , cN ) ∈ RN+1
≥0 , and m ∈ N, we define the m-th Hilbert weight

SX(m, c) of X with respect to c by

SX(m, c) := max

HX(m)∑
i=1

Ii · c,

where Ii = (Ii0, . . . , IiN ) ∈ NN+1
0 and the maximum is taken over all sets {xIi = xIi00 · · ·x

IiN
N }

whose residue classes modulo IX(m) form a basis of the vector space C[x0, . . . , xN ]m�IX(m).

Lemma 1 ([4], Lemma 3.2.). Let X ⊂ CPN be an algebraic variety of dimension n and degree
4. Let m > 4 be an integer and let c = (c0, . . . , cN ) ∈ RN+1

≥0 . Let {i0, . . . , in} be a subset of

{0, . . . , N} such that {x = (x0 : · · · : xN ) ∈ CPN : xi0 = · · · = xin = 0} ∩X = ∅. Then

1

mHX(m)
SX(m, c) ≥ 1

(n+ 1)
(ci0 + · · ·+ cin)− (2n+ 1)4

m
· max
0≤i≤N

ci.
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Lemma 2 ([2], Lemma 3.2.13). Let f be a linearly nondegenerate holomorphic mapping of C
into CPN with the reduced representation f = (f0 : · · · : fN ). Let W (f) = W (f0, . . . , fN ) be the
Wronskian of f. Then

ν f0···fN
W (f)

≤
N∑
i=0

min{νfi , N}.

3 Proof of Theorem 1.

Let Qj , 1 ≤ j ≤ q, be homogeneous polynomials in C[x0, . . . , xN ] of degree dj defining Dj .
Denote by R the set of all subsets R ⊂ {1, . . . , q} such that #R = n+ 1 and ∩j∈RDj ∩ V = ∅.
Claim: If R 6= ∅ and d1 = · · · = dq := d, then for every ε > 0, there exists a positive integer
M depending on ε, d, q, n,deg V, such that

∥∥∥∫ 2π

0

max
R∈R

∑
j∈R

1

d
λDj (f(reiθ))

dθ

2π
+

∫ r

1

dt

t
max
R∈R

∑
j∈R,|z|<t

1

d

(
νDj (z)− ν[M ]

Dj
(z)
)

≤ (n+ 1 + ε)Tf (r). (3.1)

Since R 6= ∅, we have that ∩qj=1Dj ∩ V = ∅. We define a map Φ : V −→ CP q−1 by Φ(x) =
(Q1(x) : · · · : Qq(x)). Then Φ is a finite morphism and Y := imΦ is a complex projective
subvariety of CP q−1 and dimY = n and 4 := deg Y ≤ dn · deg V.

For a positive integer m, denote by {I1, . . . , Iqm} the set of all Ii := (Ii1, . . . , Iiq)Nq0 with
Ii1 + · · ·+ Iiq = m. We have qm :=

(
q+m−1
m

)
.

Let F be a holomorphic mapping of C into CP qm−1 with the reduced representation F =(
QI111 (f) · · ·QI1qq (f) : · · · : QIqm1

1 (f) · · ·QIqmq
q (f)

)
. Let P be the smallest sub-space in CP qm−1

containing ImF. Then by an argument as in [4], page 261, we have dimP = HY (m) − 1. We
define hyperplanes Hj (j = 1, . . . , qm) in the complex projective space P by Hj := {(z1 : · · · :
zqm) ∈ CP qm−1 : zj = 0} ∩ P.

Denote by L the set of all subsets J of {1, . . . , qm} such that #J = HY (m) and the hy-
perplanes Hj , j ∈ J, are in general position in P. Then L is also the set of all subsets J of
{1, . . . , qm} such that {yIj , j ∈ J} (y = (y1, . . . , yq)) is a basis of C[y1, . . . , yq]�IY (m).

Similarly to (3.19) in [4], for every z ∈ C, we have

max
R∈R

1

(n+ 1)

∑
j∈R

λDj (f(z)) ≤ 1

mHY (m)
max
L∈L

∑
i∈L

λHi
(F (z)) + d log ‖f(z)‖

− 1

m
log ‖F (z)‖+

(2n+ 1)4
m

∑
1≤j≤q

λDj
(f(z)) +O(1).
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Therefore, by Theorem A (for F and ε = 1), we have∥∥∥ ∫ 2π

0

max
R∈R

∑
j∈R

λDj (f(reiθ))
dθ

2π
≤ n+ 1

mHY (m)

∫ 2π

0

max
L∈L

∑
i∈L

λHi(F (reiθ))
dθ

2π

+ d(n+ 1)Tf (r)− n+ 1

m
TF (r)

+
(2n+ 1)(n+ 1)4

m

∑
1≤j≤q

(
d · Tf (r)−Nf (r,Dj)

)
+O(1)

≤ (n+ 1)(HY (m) + 1)

mHY (m)
TF (r)− n+ 1

mHY (m)
NW (F )(r)

+ d(n+ 1)Tf (r)− n+ 1

m
TF (r)

+
(2n+ 1)(n+ 1)dq4

m
Tf (r) +O(1)

≤ n+ 1

mHY (m)
TF (r)− n+ 1

mHY (m)
NW (F )(r)

+ d(n+ 1)Tf (r) +
(2n+ 1)(n+ 1)dq4

m
Tf (r) +O(1). (3.2)

For an arbitrary ε > 0, we choose m such that (2n+1)(n+1)dq4
m < ε

4 and (n+1)d
HY (m) <

ε
4 . Then,

by (3.2) we get∥∥∥ ∫ 2π

0

max
R∈R

∑
j∈R

λDj
(f(reiθ))

dθ

2π
≤
(
(n+ 1)d+

ε

2

)
Tf (r)− n+ 1

mHY (m)
NW (F )(r). (3.3)

For each J := {j1, . . . , jHY (m)} ∈ L, then there exists a constant cJ 6= 0 such that

W (F ) = cJ ·W (Q
Ij11

1 (f) · · ·QIj1q
q (f), . . . , Q

IjHY (m)1

1 (f) · · ·Q
IjHY (m)q

q (f)).

On the other hand, by Lemma 2,

ν
Q

Ij11
1 (f)···Q

Ij1q
q (f)···Q

IjHY (m)1

1 (f)···Q
IjHY (m)q

q (f)

W

(
Q

Ij11
1 (f)···Q

Ij1q
q (f),...,Q

IjHY (m)1

1 (f)···Q
IjHY (m)q

q (f)

) ≤
∑

1≤i≤HY (m)

ν
[HY (m)−1]

Q
Iji1
1 (f)···Q

Ijiq
q (f)

.

Hence, for all J ∈ L, we have

νW (F ) ≥ ν
Q

Ij11
1 (f)···Q

Ij1q
q (f)···Q

IjHY (m)1

1 (f)···Q
IjHY (m)q

q (f)
−

∑
1≤i≤HY (m)

ν
[HY (m)−1]

Q
Iji1
1 (f)···Q

Ijiq
q (f)

≥
∑

1≤j≤q

∑
i∈J

Iij
(
νQj(f) − ν

[HY (m)−1]
Qj(f)

)
. (3.4)
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For every z ∈ C, let cz := (c1,z, . . . , cq,z) where cj,z := νQj(f)(z)− ν
[HY (m)−1]
Qj(f)

(z). Then, by

definition of the Hilbert weight, there exists Jz ∈ L such that

SY (m, cz) =
∑
i∈Jz

Ii · cz =
∑

1≤j≤q

∑
i∈Jz

Iij
(
νQj(f)(z)− ν

[HY (m)−1]
Qj(f)

(z)
)
.

Then, by Lemma 1, for very R ∈ R we have

1

mHY (m)

∑
1≤j≤q

∑
i∈Jz

Iij
(
νQj(f)(z)− ν

[HY (m)−1]
Qj(f)

(z)
)

≥ 1

n+ 1

∑
j∈R

(
νQj(f)(z)− ν

[HY (m)−1]
Qj(f)

(z)
)

− (2n+ 1)4
m

max
1≤j≤q

(
νQj(f)(z)− ν

[HY (m)−1]
Qj(f)

(z)
)

≥ 1

n+ 1

∑
j∈R

(
νQj(f)(z)− ν

[HY (m)−1]
Qj(f)

(z)
)
− (2n+ 1)4

m

∑
1≤j≤q

νQj(f)(z).

Combining with (3.4), for every R ∈ R and z ∈ C, we have

1

mHY (m)
νW (F )(z) ≥

1

n+ 1

∑
j∈R

(
νQj(f)(z)− ν

[HY (m)−1]
Qj(f)

(z)
)

− (2n+ 1)4
m

∑
1≤j≤q

νQj(f)(z).

This implies that

n+ 1

mHY (m)
νW (F ) ≥ max

R∈R

∑
j∈R

(
νQj(f) − ν

[HY (m)−1]
Qj(f)

)
− (n+ 1)(2n+ 1)4

m

∑
1≤j≤q

νQj(f).

Therefore,

n+ 1

mHY (m)
NW (F )(r) ≥

∫ r

1

dt

t
max
R∈R

∑
j∈R,|z|<t

(
νQj(f)(z)− ν

[HY (m)−1]
Qj(f)

(z)
)

− (n+ 1)(2n+ 1)4
m

∑
1≤j≤q

Nf (r,Dj)
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≥
∫ r

1

dt

t
max
R∈R

∑
j∈R,|z|<t

(
νQj(f)(z)− ν

[HY (m)−1]
Qj(f)

(z)
)

− (n+ 1)(2n+ 1)dq4
m

∑
1≤j≤q

Tf (r)−O(1)

≥
∫ r

1

dt

t
max
R∈R

∑
j∈R,|z|<t

(
νDj

(z)− ν[HY (m)−1]
Dj

(z)
)
− ε

4
Tf (r).

Combining with (3.3) we get∥∥∥ ∫ 2π

0

max
R∈R

∑
j∈R

λDj (f(reiθ))
dθ

2π
+

∫ r

1

dt

t
max
R∈R

∑
j∈R,|z|<t

(
νDj (z)− ν[HY (m)−1]

Dj
(z)
)

≤
(
(n+ 1)d+ ε

)
Tf (r).

So, we get (3.1).
We now prove the theorem for the general case. Denote by K′ the set of all K ∈ K

such that K does not contain any other set in K. For each K ∈ K′, we choose hyperplanes
H(K,1), . . . H(K,n+1−#K) in CPN such that

(∩D∈KD) ∩H(K,1) ∩ · · · ∩H(K,n+1−#L) ∩ V = ∅.

Set Q := {D1, . . . , Dq}∪{H(K,i), K ∈ K′, 1 ≤ i ≤ n+ 1−#K}. Denote by d the least common

multiple of d1, . . . , dq and put d∗j = d
dj
. Set {D̃1, . . . , D̃p} := {Dd∗j

1 , . . . , D
d∗j
q } ∪ {Hd

(K,i), K ∈
K′, 1 ≤ i ≤ n + 1 − #K}. Denote by R̃ the set of all subsets R̃ ⊂ {1, . . . , p} such that

#R̃ = n + 1 and ∩j∈R̃D̃j ∩ V = ∅. It is clear that for each K ∈ K there exists R̃K ∈ R̃ such

that {Dd∗j
j , j ∈ K} ⊂ {D̃i, i ∈ R̃K}.

We now apply (3.1) for hypersurfaces D̃1, . . . , D̃p, and get that∥∥∥ ∫ 2π

0

max
K∈K

∑
j∈K

1

dj
λDj (f(reiθ))

dθ

2π
+

∫ r

1

dt

t
max
K∈K

∑
j∈K,|z|<t

1

dj

(
νDj (z)− ν[M ]

Dj
(z)
)

≤
∫ 2π

0

max
K∈K

∑
j∈K

1

d
λ
D

d∗
j

j

(f(reiθ))
dθ

2π
+

∫ r

1

dt

t
max
K∈K

∑
j∈K,|z|<t

1

d

(
ν
D

d∗
j

j

(z)− ν[M ]

D
d∗
j

j

(z)
)

≤
∫ 2π

0

max
R̃∈R̃

∑
j∈R̃

1

d
λ
D̃j

(f(reiθ))
dθ

2π
+

∫ r

1

dt

t
max
R̃∈R̃

∑
j∈R,|z|<t

1

d

(
ν
D̃j

(z)− ν[M ]

D̃j
(z)
)

(3.1)

≤ (n+ 1 + ε)Tf (r),

where the positive integer M depends on ε, d, q, n,deg V. This completes the proof of Theorem
1. �
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