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Abstract

The partition dimension is a graph parameter akin to the notion of metric dimension
that has attracted some attention in recent years. In this paper, we obtain several tight
bounds on the partition dimension of unicyclic graphs.
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1 Introduction

The concepts of resolvability and location in graphs were described independently by Harary
and Melter [7] and Slater [14], to define the same structure in a graph. After these papers were
published several authors developed diverse theoretical works about this topic, for instance,
[1, 2, 3, 4, 5, 6, 10, 20]. Slater described the usefulness of these ideas into long range aids
to navigation [14]. Also, these concepts have some applications in chemistry for representing
chemical compounds [9] or to problems of pattern recognition and image processing, some of
which involve the use of hierarchical data structures [11]. Other applications of this concept
to navigation of robots in networks and other areas appear in [4, 8, 10]. Some variations
on resolvability or location have been appearing in the literature, like those about resolving
partitions [3, 5, 6, 15, 18, 19].

Given a graph G = (V,E) and a set of vertices S = {v1, v2, . . . , vk} of G, the metric represen-
tation of a vertex v ∈ V with respect to S is the vector r(v|S) = (d(v, v1), d(v, v2), . . . , d(v, vk)),
where d(v, vi)

1 denotes the distance between the vertices v and vi, 1 ≤ i ≤ k. We say that S is
a resolving set if different vertices of G have different metric representations, i.e., for every pair
of vertices u, v ∈ V , r(u|S) 6= r(v|S). The metric dimension2 of G is the minimum cardinality
of any resolving set of G, and it is denoted by dim(G).

1To avoid ambiguity in some cases we will denote the distance between two vertices u, v of a graph G by
dG(u, v).

2Also called locating number.
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Given an ordered partition Π = {P1, P2, . . . , Pt} of the vertices of G, the partition represen-
tation of a vertex v ∈ V with respect to the partition Π is the vector

r(v|Π) = (d(v, P1), d(v, P2), . . . , d(v, Pt)),

where d(v, Pi), with 1 ≤ i ≤ t, represents the distance between the vertex v and the set Pi, i.e.,
d(v, Pi) = minu∈Pi{d(v, u)}. We say that Π is a resolving partition if different vertices of G
have different partition representations, i.e., for every pair of vertices u, v ∈ V , r(u|Π) 6= r(v|Π).
The partition dimension of G is the minimum number of sets in any resolving partition for G
and it is denoted by pd(G).

The partition dimension of graphs was studied in [3, 5, 6, 13, 15, 16, 17, 18, 19]. For
instance, Chappell, Gimbel and Hartman obtained several relationships between metric dimen-
sion, partition dimension, diameter, and other graph parameters [3]. Chartrand, Zhang and
Salehi showed that for every nontrivial graph G it follows that pd(G) ≤ pd(G�K2) (where �
denotes the Cartesian product of graphs) and they also showed that for an induced subgraph H
of a connected graph G the ratio rp = pd(H)/pd(G) can be arbitrarily large [5]. The partition
dimension of some specific families of graphs was studied further in a number of other papers.
For instance, Cayley digraphs were studied by Fehr, Gosselin and Oellermann [6], the infinite
graphs (Z2, ξ4) and (Z2, ξ8) (where the set of vertices is the set of points of the integer lattice
and the set of edges consists of all pairs of vertices whose city block and chessboard distances,
respectively, are 1) were studied by Tomescu [15]. Also infinite graphs were studied in [11].
The corona product graphs were studied by Rodŕıguez-Velázquez, Yero and Kuziak [18] and
the Cartesian product graphs were studied by Yero and Rodŕıguez-Velázquez [19]. Some wheel
related graphs were studied in [17]. Here we study the partition dimension of unicyclic graphs.
A similar study on the metric dimension was previously done by Poisson and Zhang [12].

2 Results

The set of all spanning trees of a connected graph G is denoted by T (G). It was shown in [4]
that if G is a connected unicyclic graph of order at least 3 and T ∈ T (G), then

dim(T )− 2 ≤ dim(G) ≤ dim(T ) + 1. (2.1)

A formula for the dimension of trees that are not paths has been established in [4, 7, 14]. In
order to present this formula, we need additional definitions. A vertex of degree at least 3 in a
graph G will be called a major vertex of G. Any pendant vertex u of G is said to be a terminal
vertex of a major vertex v of G if d(u, v) < d(u,w) for every other major vertex w of G. The
terminal degree of a major vertex v is the number of terminal vertices of v. A major vertex v
of G is an exterior major vertex of G if it has positive terminal degree.

Let n1(G) denote the number of pendant vertices of G, and let ex(G) denote the number of
exterior major vertices of G. We can now state the formula for the dimension of a tree [4, 7, 14]:
if T is a tree that is not a path, then dim(T ) = n1(T )− ex(T ). Thus, by the above result and
(2.1) we have that if G is a connected unicyclic graph of order at least 3 and T ∈ T (G), then

n1(T )− ex(T )− 2 ≤ dim(G) ≤ n1(T )− ex(T ) + 1. (2.2)
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Figure 1: In the left hand side graph vertex 3 is an exterior major vertex of terminal de-
gree two, while 1 and 4 are terminal vertices of 3. For the right hand side graph, Π =
{{3, 5, 7, 9}, {1, 6, 8, 10}, {2, 4, 11}, {12}} is a resolving partition and {1, 3, 5, 7} is a resolving
set.

Example. Let G be a graph obtained in the following way: we begin with a cycle C4 =
u1u2u3u4u1 and, then we add vertices v1, . . . , vk, k ≥ 2, and edges u1vi, 1 ≤ i ≤ k. Thus,
dim(G) = k + 1. Now, let T ∈ T (G) obtained by deleting the edge u4u1 in the cycle. Hence,
we have n1(T ) = k + 1 and ex(T ) = 1. So, the above upper bound is tight.

It is natural to think that the partition dimension and metric dimension are related; it was
shown in [5] that for any nontrivial connected graph G we have

pd(G) ≤ dim(G) + 1. (2.3)

As a consequence of (2.2), if G is a connected unicyclic graph and T ∈ T (G), then

pd(G) ≤ n1(T )− ex(T ) + 2. (2.4)

The following well-known claim is very easy to verify.

Claim 1. Let C be a cycle graph. If x, y, u and v are vertices of C such that x and y are
adjacent and d(u, x) = d(v, x), then d(u, y) 6= d(v, y) and, as a consequence, dim(C) = 2.

Any vertex adjacent to a pendant vertex of a graph G is called a support vertex of G. Let
ρ(G) be the number of support vertices of G adjacent to more than one pendant vertex.

Theorem 1. Let G be a connected unicyclic graph. If every vertex belonging to the cycle of G
has degree greater than two, then dim(G) ≤ n1(G)− ρ(G).

Proof: Let C be the set of vertices belonging to the cycle of G. In order to show that the set
of pendant vertices of G is a resolving set, we only need to show that for every u, v ∈ C we can
find two pendant vertices, x, y, such that if dG(u, x) = dG(v, x), then dG(u, y) 6= dG(v, y). To
begin with, for every pendant vertex w we define wc as the vertex of C such that dG(w,wc) =
dG(w,C).

We take x, y as two pendant vertices of G such that xc and yc are adjacent vertices. Note
that in this case for every u, v ∈ C we have dG(u, x) = dG(u, xc) + dG(xc, x), dG(u, y) =
dG(u, yc) + dG(yc, y), dG(v, x) = dG(v, xc) + dG(xc, x) and dG(v, y) = dG(v, yc) + dG(yc, y). So,
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if dG(u, x) = dG(v, x), we conclude dG(u, y) 6= dG(v, y). Thus, the set of pendant vertices of G
is a resolving set.

If we consider pendant vertices as being equivalent if they have the same support vertex,
then a resolving set of minimum cardinality should contain all but one of these pendant vertices
per equivalent class. Thus, the result follows.

The above bound is tight, it is achieved, for instance, for the right hand side graph in Figure
1. Together with the bound from Equation (2.3), we obtain:

Corollary 1. Let G be a connected unicyclic graph. If every vertex belonging to the cycle of G
has degree greater than two, then pd(G) ≤ n1(G)− ρ(G) + 1.

Note that for the right hand side graph in Figure 1, Corollary 1 leads to pd(G) ≤ 5, while
bound (2.4) only gives pd(G) ≤ 6.

For a connected unicyclic graph G, let κ(G) be the number of exterior major vertices of G,
with terminal degree greater than one and let τ(G) be the maximum terminal degree of any
exterior major vertex of G. Note that for any T ∈ T (G) it holds κ(G) ≤ κ(T ) and τ(G) ≤ τ(T ).

Lemma 1. [5] Let G be a connected graph of order n ≥ 2. Then pd(G) = 2 if and only if
G ∼= Pn.

Theorem 2. Let G be a connected unicyclic graph. (i) If G is a cycle graph or every exterior
major vertex of G has terminal degree one, then pd(G) = 3. (ii) If G contains at least an
exterior major vertex of terminal degree greater than one, then pd(G) ≤ κ(G) + τ(G) + 1.

Proof: Let us prove (i). If G is a cycle graph, then by (2.3), Claim 1 and Lemma 1 we obtain
pd(G) = 3. Now we consider that every exterior major vertex of G = (V,E) has terminal degree
one. Then every exterior major vertex u has degree three and it belongs to the cycle C of G.
Let {c0, c1, . . . , ck−1} be the set of vertices of G belonging to C where ci and ci+1 are adjacent
(the subscripts are taken modulo k). Without loss of generality, we can suppose that c0 has
terminal degree one. For every exterior major vertex ci, Wi will denote the set of vertices
belonging to the path starting at ci and ending at its terminal vertex. For every cj of degree
two we assume Wj = {cj}.
Case A: k even. For k even we claim that Π = {W0, A2, A3} is a resolving partition for G,
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Case 3: x, y ∈ A3. Let x ∈ Wi and y ∈ Wj . If i = j, then d(x,W0) 6= d(y,W0) and
d(x,A2) 6= d(y,A2). Now we consider several subcases.

Subcase 3.1: 0 < i < j < k/2. If d(y,A2) = d(x,A2), then we have d(y, cj) + d(cj , ck/2) =
d(y, ck/2) = d(x, ck/2) = d(x, ci) + d(ci, cj) + d(cj , ck/2). So, d(y, cj) = d(x, ci) + d(ci, cj)
and we obtain the following. d(x, c0) = d(x, ci) + d(ci, c0) = d(y, cj) − d(ci, cj) + d(ci, c0) 6=
d(y, cj) + d(cj , ci) + d(ci, c0) = d(y, c0). Thus, d(x,W0) 6= d(y,W0).

Subcase 3.2: k
2 + 1 < i < j ≤ k− 1. Proceeding analogously to Case 3.1, if d(y,A2) = d(x,A2),

then we obtain that d(x,W0) 6= d(y,W0).

Subcase 3.3: 0 < i < k/2 and k
2 + 1 < j ≤ k − 1. If d(x,A2) = d(y,A2), then we have

d(x, ci) + d(ci, ck/2) = d(x, ck/2) = d(y, ck/2+1) = d(y, cj) + d(cj , c k
2+1). Thus, d(x, c0) =

d(x, ci) + d(ci, c0) = d(y, cj) + d(cj , c k
2+1) − d(ci, ck/2) + d(ci, c0) = d(y, cj) + d(c0, c k

2+1) −
d(c0, cj) − d(ci, ck/2) + d(ci, c0) = d(y, cj) + d(c0, cj) + d(c0, c k

2+1) − 2d(c0, cj) − d(ci, ck/2) +

d(ci, c0) = d(y, c0) +
(
k
2 − 1

)
− 2(k − j)−

(
k
2 − i

)
+ i = d(y, c0) + 2(i+ j)− 2k − 1.

Hence, if i + j ≤ k, then 2(i + j) − 2k − 1 < 0 and, as a consequence, d(x, c0) < d(y, c0).
Analogously, if i + j ≥ k + 1, then 2(i + j) − 2k − 1 > 0, so we have d(x, c0) > d(y, c0). As a
result, d(x,W0) 6= d(y,W0).

Case B: k odd. On the other hand, suppose k is odd. If k = 3, then it is straightforward to
check that {W0,W1,W2} is a resolving partition for G. So we assume k ≥ 5 and we claim that
Π = {B1, B2, B3} is a resolving partition for G, where B1 = W0∪W1, B2 = Wbk/2c∪Wdk/2e and
B3 = V − (B1 ∪B2). To show this we consider two different vertices x, y ∈ V and as above we
take x ∈ Wi and y ∈ Wj . If i = j, then x, y ∈ Bl for some l ∈ {1, 2, 3} and d(x,Br) 6= d(y,Br)
for any r ∈ {1, 2, 3} − {l}. Now on we assume i < j and we differentiate the following three
cases.

Case 1′: x, y ∈ B1. Since i < j and B1 = W0 ∪W1 we have i = 0 and j = 1. If k = 5, then
d(x,B3) = d(y,B3) implies d(x,B2) = d(y,B2) + 2. So we consider k ≥ 7. Now d(x,B3) =
d(y,B3) implies d(x, c0) = d(y, c1). Thus, d(x, cdk/2e) = d(x, c0) + d(c0, cdk/2e) = d(x, c0) +
d(c0, cbk/2c)d(x, c0) + d(c1, cbk/2c) + 1d(y, c1) + d(c1, cbk/2c) + 1 = d(y, cbk/2c) + 1 > d(y, cbk/2c).
Hence, we obtain that d(x,B2) 6= d(y,B2).

Case 2′: x, y ∈ B2. Proceeding analogously to Case 1′, we obtain that if d(x,B3) = d(y,B3),
then d(x,B2) 6= d(y,B2).

Case 3′: x, y ∈ B3. Now we consider the following subcases.

Subcase 3′.1: 1 < i < j < bk/2c. If d(y,B2) = d(x,B2), then we have d(y, cj) + d(cj , cbk/2c) =
d(y, cbk/2c) = d(x, cbk/2c) = d(x, ci) + d(ci, cj) + d(cj , cbk/2c). So, d(y, cj) = d(x, ci) + d(ci, cj)
and we obtain d(y, c1) = d(y, cj) + d(cj , ci) + d(ci, c1) = d(x, ci) + 2d(cj , ci) + d(ci, c1) =
d(x, c1) + 2d(cj , ci). Thus, d(x,B1) 6= d(y,B1).

Subcase 3′.2: dk/2e < i < j ≤ k − 1. Proceeding as in Case 3′.1, we have that if d(y,B2) =
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d(x,B2), then we obtain that d(x,B1) 6= d(y,B1).

Subcase 3′.3: 1 < i < bk/2c and dk/2e < j ≤ k − 1. If d(x,B2) = d(y,B2), then we have
d(x, ci) + d(ci, cbk/2c) = d(x, cbk/2c) = d(y, cdk/2e) = d(y, cj) + d(cj , cdk/2e). Thus, d(x, c1) =
d(x, ci) + d(ci, c1) = d(y, cj) + d(cj , cdk/2e) − d(ci, cbk/2c) + d(ci, c1) = d(y, cj) + d(c0, cdk/2e) −
d(c0, cj)−d(ci, cbk/2c) +d(ci, c1) = d(y, cj) +d(c0, cj) +d(c0, cdk/2e)− 2d(c0, cj)−d(ci, cbk/2c) +
d(ci, c1) = d(y, c0) + bk/2c − 2(k − j)− (bk/2c − i) + (i− 1) = d(y, c0) + 2(i+ j − k)− 1.

Hence, if i + j ≤ k, then 2(i + j − k) − 1 < 0 and, as a consequence, d(x, c1) < d(y, c0).
Analogously, if i + j ≥ k + 1, then 2(i + j − k) − 1 > 0, so we have d(x, c1) > d(y, c0). As a
result, d(x,B1) 6= d(y,B1).

Therefore, for every x, y ∈ V , x 6= y, we have r(x|Π) 6= r(y|Π) and, as a consequence,
pd(G) ≤ 3. By Lemma 1 we know that for every graph G different from a path we have
pd(G) ≥ 3, hence we obtain pd(G) = 3.

Now, let us prove (ii). Let S = {s1, s2, . . . , sκ(G)} be the set of exterior major vertices of G
with terminal degree greater than one. Given an arbitrary sl ∈ S we take u ∈ V as a vertex of
the cycle C in G, such that d(u, sl) = minv∈C{d(v, sl)}. Let v ∈ C such that u is adjacent to v.
Now, for every si ∈ S, we denote by {si1, si2, . . . , sili} the set of terminal vertices of si and by Sij
the set of vertices of G, different from si, belonging to the si−sij path. If li < τ(G), we assume
Sij = ∅ for every j ∈ {li+1, . . . , τ(G)}. Now, let A = {v} and B = C−{v}. Let Ai = Si1, for ev-

ery i ∈ {1, . . . , κ(G)} and if τ(G) ≥ 3, then let Bj =
⋃κ(G)
i=1 Sij , for every j ∈ {2, . . . , τ(G)− 1}.

Now we will show that the partition Π = {A,B,A1, A2, . . . ., Aκ(G), B2, B3, . . . , Bτ(G)−1, R},
with R = V (G) − A − B −

⋃κ(G)
i=1 Ai −

⋃τ(G)−1
i=2 Bi, is a resolving partition for G. Notice that

the sets Bj could not exist in the case when τ(G) = 2. Hence, R collects all major vertices of
terminal degree one and the attached terminals. Let x, y ∈ V be two different vertices in G.
We have the following cases.

Case 1: If x, y ∈ Ai, then d(x,R) 6= d(y,R). Namely, any path from x or y to R must contain
si.

Case 2: Let x, y ∈ B. If d(x, v) 6= d(y, v), then d(x,A) 6= d(y,A). On the contrary, if
d(x, v) = d(y, v), then d(x, u) 6= d(y, u) due to Claim 1. So, for sl ∈ S we have Al = Sl1 and
we obtain that d(x,Al) = d(x, u) + d(u, Sl1) 6= d(y, u) + d(u, Sl1) = d(y,Al).

Case 3: Let x, y ∈ Bj . If x, y ∈ Sij , then x belongs to the y − si path or y belongs to
the x − si path. In both cases we have d(x,Ai) = d(x, si) + 1 6= d(y, si) + 1 = d(y,Ai).
On the contrary, if x ∈ Sij and y ∈ Skj , i 6= k, then let us suppose d(x,Ai) = d(y,Ai).
So, we have d(x,Ak) = d(x, si) + d(si, sk) + 1 = d(x,Ai) + d(si, sk) = d(y,Ai) + d(si, sk) =
d(y, sk) + 2d(si, sk) + 1 = d(y,Ak) + 2d(si, sk) > d(y,Ak).

Case 4: Let x, y ∈ R. Let a, b ∈ C such that d(x, a) = minc∈C{d(x, c)} and d(y, b) =
minc∈C{d(y, c)}. If d(x, a) 6= d(y, b) and a, b 6= v, then d(x,B) 6= d(y,B). Also, if d(x, a) 6=
d(y, b) and (a = v or b = v), then we have either d(x,A) 6= d(y,A) or d(x,B) 6= d(y,B). Now,
let us suppose d(x, a) = d(y, b). We have the following subcases.

Subcase 4.1: a = b. Hence, we consider a terminal vertex si1, such that d(x, si1) + d(y, si1) =
minl∈{1,...,κ(G)}{d(x, sl1) + d(y, sl1)}. Let the vertices c, d belonging to the a − si1 path P ,
with d(x, c) = minw∈P {d(x,w)} and d(y, d) = minw∈P {d(y, w)}. If c = d, then there exists a
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terminal vertex sj1 such that either x belongs to the y − sj1 path or y belongs to the x − sj1
path and we have either d(x,Aj) < d(y,Aj) or d(y,Aj) < d(x,Aj). If there exists not such a
terminal vertex sj1, then we have that x ∈ Siτ(G) and y ∈ Sjτ(G) for some i 6= j. Thus we
have the following. d(x,Ai) = d(x, si) + 1 = d(x, a) − d(si, a) + 1 = d(y, a) − d(si, a) + 1 =
d(y, a) + d(a, si) − 2d(si, a) + 1 = d(y,Ai) − 2d(si, a) < d(y,Ai). On the other hand, if c 6= d,
then we have either d(x, a) = d(x, c) + d(c, d) + d(d, a) and d(y, a) = d(y, d) + d(d, a), or
d(y, a) = d(y, d) + d(d, c) + d(c, a) and d(x, a) = d(x, c) + d(c, a).

Let us suppose, without loss of generality, that the first case holds.
Thus, we have d(x,Ai) = d(x, c) + d(c, Ai) = d(x, a)− d(c, d)− d(d, a) + d(c, Ai) = d(y, a)−

d(c, d) − d(d, a) + d(c, Ai) = d(y, d) + d(d, a) − d(c, d) − d(d, a) + d(c, Ai) = d(y, d) − d(c, d) +
d(c, Ai) = d(y, d) + d(d, c) + d(c, Ai) − 2d(c, d) = d(y,Ai) − 2d(c, d) < d(y,Ai). Subcase 4.2:
a 6= b. If a = u or b = u, then let us suppose, for instance b = u. Let Q be a shortest path
between a and sl1. Let c belonging to Q, such that d(y, c) is the minimum value between
the distances from y to any vertex of Q. So, we have d(x,Al) = d(x, a) + d(a, u) + d(u, c) +
d(c, Al) = d(y, b) + d(a, u) + d(u, c) + d(c, Al) = d(y, c) + d(c, u) + d(a, u) + d(u, c) + d(c, Al) =
d(y,Al)+2d(c, u)+d(a, u) > d(y,Al). Now, let us suppose a 6= u and b 6= u. If d(a, v) 6= d(b, v),
then d(x,A) 6= d(y,A). On the contrary, if d(a, v) = d(b, v), then d(a, u) 6= d(b, u) (due to
Claim 1). So, we have d(x,Al) = d(x, a) + d(a, u) + d(u,Al) = d(y, b) + d(a, u) + d(u,Al) 6=
(y, b) + d(b, u) + d(u,Al) = d(y,Al).

Therefore, for every different vertices x, y ∈ V we have r(x|Π) 6= r(y|Π) and Π is a resolving
partition for G and, as a consequence, (ii) follows.

In order to give an example where we compare the above bound with all the previous
results, we present the following known result. It was shown in [5] that for any (not necessarily
unicyclic) graph of order n ≥ 3 and diameter d,

g(n, d) ≤ pd(G) ≤ n− d+ 1, (2.5)

where g(n, d) is the least positive integer k for which (d+ 1)k ≥ n.

Example. Let G be a graph obtained in the following way: we begin with a cycle Ck, k ≥ 4,
and, then for each vertex v of the cycle we add k vertices v1, v2, . . . , vk and edges vvi, 1 ≤ i ≤ k.
Thus, G has k2 vertices of degree one and k exterior major vertices of terminal degree k. Notice
that Theorem 2 (ii) leads to pd(G) ≤ 2k + 1 while (2.4) gives pd(G) ≤ k2 − k + 2, Corollary 1
gives pd(G) ≤ k2 − k + 1 and (2.5) gives pd(G) ≤ k2 +

⌈
k
2

⌉
− 1.

For a connected unicyclic graph G, let ε(G) be the minimum number of leaves in any
spanning tree of G, i.e., ε(G) = min

T∈T (G)
{n1(T )} .

Corollary 2. Let G be a connected unicyclic graph. For every T ∈ T (G) such that ε(G) =
n1(T ), pd(G) ≤ κ(T ) + τ(T ) + 1.

For the unicyclic graph G and a spanning tree T ∈ T (G), let ξ(T ) be the number of support
vertices of T and θ(T ) be the maximum number of leaves adjacent to any support vertex of T .
As a consequence of the above corollary we obtain the following result.

Remark 1. If T is a spanning tree of a unicyclic graph G such that ε(G) = n1(T ), then
pd(G) ≤ ξ(T ) + θ(T ) + 1.
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Proof: If T is a path, then ξ(T ) = 2 and θ(T ) = 1, so the result follows. Now we suppose T
is not a path. Let v be an exterior major vertex of terminal degree τ(T ) in T . Let x be the
number of leaves of T adjacent to v and let y = τ(T )−x. Since κ(T ) + y ≤ ξ(T ) and x ≤ θ(T ),
we deduce κ(T ) + τ(T ) ≤ ξ(T ) + θ(T ). Thus the result follows from Corollary 2.

As the next theorem shows, the above result can be improved.

Theorem 3. If T is a spanning tree of a unicyclic graph G such that ε(G) = n1(T ), then
θ(T )− 1 ≤ pd(G) ≤ ξ(T ) + θ(T ).

Proof: The result follows for the cycle graphs G = Cn, so we suppose G 6= Cn. Notice that
different leaves adjacent to the same support vertex must belong to different sets of a resolving
partition. Also, as ε(G) = n1(T ) we have pd(G) ≥ θ(T )− 1. Thus, the lower bound follows.

To obtain the upper bound, let T ∈ T (G) be such that n1(T ) = ε(G). Let C be the
set of vertices belonging to the cycle of G = (V,E) and let uv ∈ E, such that u, v ∈ C
and T = G − {uv}. Since n1(T ) = ε(G), we have δG(v) ≥ 3 or δG(u) ≥ 3, where δG(u)
represents the degree of the vertex u in G. Now, let S = {s1, s2, . . . , sξ(T )} be the set of
support vertices of T , and for every si ∈ S, let {si1, si2, . . . , sili} be the set of leaves of si and
let θ(T ) = maxi∈{1,...,ξ(T )}{li}.

Let now Ai = {si1}, for every i ∈ {1, . . . , ξ(T )}. Let Mij = {sij}, for every j ∈ {2, . . . , li}.
If li < ξ(T ), then we assume Mij = ∅, for every j ∈ {li+1, . . . , θ(T )}. Let Bj =

⋃ξ(T )
i=1 Mij , for

every j ∈ {2, . . . , θ(T )}. We will show that the partition

Π = {A,A1, A2, . . . ., Aξ(T ), B2, B3, . . . , Bθ(T )},

with A = V (G) −
⋃ξ(T )
i=1 Ai −

⋃θ(T )
i=2 Bi, is a resolving partition for G. Let x, y ∈ V be two

different vertices in G. We have the following cases:

Case 1: x 6∈ C and y ∈ C. If δG(u) = 2 and δG(v) ≥ 3, then u is a leaf in T and we can
suppose, without loss of generality, that u = si1, for some i ∈ {1, . . . , ξ(T )}, so Ai = {u}.
Hence, if y = u or x is a leaf, then x and y belong to different sets of Π. On the contrary, if
y 6= u and x is not a leaf, then there exists a leaf sl1 such that x belongs to a minimum y − sl1
path, thus dG(y,Al) > dG(x,Al). Now, if δG(u) ≥ 3 and δG(v) ≥ 3, then let a ∈ C such that
dG(x, a) = minb∈C{dG(x, b)}. Hence, there exists a leaf sj1 such that x belongs to the a− sj1
path. So, we have dG(y,Aj) = dG(y, a) + dG(a,Aj) > dG(y, a) + dG(x,Aj) ≥ dG(x,Aj).

Case 2: x 6∈ C and y 6∈ C. If x, y ∈ Bj , for some j ∈ {2, . . . , θ(T )}, then x = sij and y = skj ,
with 1 6= j 6= k 6= 1. So, we have dG(y,Ai) = dG(y, sk) + dG(sk, si) + 1 ≥ dG(y, sk) + 2 =
dG(y, sk) + dG(x,Ai) > dG(x,Ai). On the other hand, if x, y ∈ A, then there exists a leaf si1
such that either, x belongs to one y − si1 path or y belongs to one x − si1 path. So, we have
dG(x,Ai) 6= dG(y,Ai).

Case 3: x, y ∈ C. Now we have the following subcases.

Subcase 3.1: δG(u) ≥ 3 and δG(v) ≥ 3. Let sk1 and sj1, j 6= k be two leaves, such that the v−sk1
path shares with cycle C only the vertex v and the u − sj1 path shares with cycle C only the
vertex u. If dG(x, u) 6= dG(y, u), then we have dG(x,Aj) = dG(x, u) + dG(u, sj1) 6= dG(y, u) +
dG(u, sj1) = dG(y,Aj). On the contrary, if dG(x, u) = dG(y, u), then dG(x, v) 6= dG(y, v) and
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we have dG(x,Ak) = dG(x, v) + dG(v, sk1) 6= dG(y, v) + dG(v, sk1) = dG(y,Ak).

Subcase 3.2: Without loss of generality, assume δG(u) = 2 and δG(v) ≥ 3. Hence, u is a leaf in
T and we can suppose, without loss of generality, that u = si1, for some i ∈ {1, . . . , ξ(T )}, so
Ai = {u}. If x = u or y = u, then x, y belong to different sets of Π. If dG(x, u) 6= dG(y, u), then
dG(x,Ai) 6= dG(y,Ai). On the other hand, if dG(x, u) = dG(y, u), then dG(x, v) 6= dG(y, v).
Now, let sk1 be a leaf, such that the v− sk1 path shares with cycle C only the vertex v. Hence,
we have dG(x,Ak) = dG(x, v) + dG(v, sk1) 6= dG(y, v) + dG(v, sk1) = dG(y,Ak). Therefore, for
every different vertices x, y ∈ V we have r(x|Π) 6= r(y|Π) and Π is a resolving partition for G.

Note that the above upper bound is achieved for unicyclic graphs having at most two exterior
major vertices and each one of them has terminal degree one. In such a case, pd(G) = 3. The
lower bound is achieved, for instance, for the graph shown in Figure 2.

Figure 2: A graph G for which Π = {{1, 8}, {2, 5, 9}, {3, 6}, {4, 7}} is a resolving partition. For
the tree T obtained by removing the edge {6, 8} from G we have that ε(G) = n1(T ) = 6 and
θ(T ) = 5. Thus, by Theorem 3 we conclude that pd(G) = θ(G)− 1 = 4.

The following conjecture, if true, would be completely analogous to the estimate known for
the metric dimension.

Conjecture 1. If T is a spanning tree of a unicyclic graph G, then pd(G) ≤ pd(T ) + 1.

According to (2.1), Lemma 1 and Theorem 2 (i), the above conjecture is true for every cycle
graph and for every unicyclic graph where every exterior major vertex has terminal degree one.
Even so, the previous conjecture seems to be very hard to prove. We therefore present the
following weakened version.

Proposition 1. If T is a spanning tree of a unicyclic graph G, then pd(G) ≤ pd(T ) + 3.

Proof: Arbitrarily cut the cycle C = {c0, . . . , ck−1} by deleting, without loss of generality,
c0c1. This results in a (spanning) tree T . Let Π be an optimum resolving partition for T ,

i.e., Π = {A1, . . . , Apd(T )}. Let D =
{
c0, c1, cb k

2 c
}

and define AGi = Ai − D. We claim that

ΠG =
{
AG1 , . . . , A

G
pd(T ), {c0}, {c1},

{
cb k

2 c
}}

is a resolving partition for G, where we only take

the nonempty sets AGi = Ai −D. So, the order of this partition may be less than pd(T ) + 3.
For every i ∈ {0, 1, . . . , k − 1}, let Ti = (Vi, Ei) be the subtree of T rooted at ci. Note that

may occur that Vi = {ci}. We differentiate between two cases for x, y ∈ V (G), x 6= y.

Case 1. x, y ∈ Vi. If dG(x, ci) 6= dG(y, ci), then dG(x, c0) 6= dG(y, c0). Now, if dG(x, ci) =
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dG(y, ci), then for every v ∈ V (G)−Vi, it follows that dG(x, v) = dG(y, v) (notice that dT (x, v) =
dT (y, v)). Thus, for Aj ∈ Π such that dT (x,Aj) 6= dT (y,Aj), there exist a, b ∈ Aj ∩ Vi such
that dT (x,Aj) = dT (x, a) 6= dT (y, b) = dT (y,Aj). Hence, dG(x,AGj ) = dT (x,Aj) 6= dT (y,Aj) =

dG(y,AGj ).

Case 2. x ∈ Vi, y ∈ Vj , i 6= j. We claim that there exists a number r ∈
{

0, 1,
⌊
k
2

⌋}
such

that dG(x, cr) 6= dG(y, cr). We proceed by deriving a contradiction. To this end, suppose
that dG(x, cr) = dG(y, cr) for every r ∈

{
0, 1,

⌊
k
2

⌋}
. In this case we obtain the following three

equalities. dG(x, ci) + dG(ci, cr) = dG(y, cj) + dG(cj , cr), r ∈
{

0, 1,
⌊
k
2

⌋}
, or equivalently,

dG(x, ci)− dG(y, cj) = dG(cj , cr)− dG(ci, cr), r ∈
{

0, 1,

⌊
k

2

⌋}
. (2.6)

Now we distinguish the following subcases:
Subcase 2.1. 1 < i < j <

⌊
k
2

⌋
or
⌊
k
2

⌋
< i < j < k. For r = 1 and r =

⌊
k
2

⌋
in (2.6) we deduce

j − i = i− j, which is a contradiction.

Subcase 2.2. 1 < i <
⌊
k
2

⌋
and

⌊
k
2

⌋
< j < k. For r = 0 and r = 1 in (2.6) we deduce

k − j − i = k − i− j + 2, which is a contradiction.
Therefore, ΠG is a resolving partition for G.
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Universitat Rovira i Virgili.

43007 Tarragona, Spain.
juanalberto.rodriguez@urv.cat

3 Dpto. de Matemáticas.
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