Unique range sets of 5 points for unbounded analytic functions inside an open disk

by

1Alain Escassut and 2Jacqueline Ojeda *

Abstract

Let \mathbb{K} be a complete algebraically closed p-adic field of characteristic $p \geq 0$ and let $A_u(d(a,R^-))$ be the set of unbounded analytic functions inside the disk $d(a,R^-) = \{ x \in \mathbb{K} \mid |x - a| < R \}$. We recall the definition of urscm and the ultrametric Nevanlinna Theory on 3 small functions in order to find new urscm for $A_u(d(a,R^-))$. Results depend on the characteristic. In characteristic 0, we can find urscm of 5 points. Some results on bi-urscm are given for meromorphic functions.

Key Words: p-adic analytic functions, URSCM, Nevanlinna, ultrametric, unicity, distribution of values.

2010 Mathematics Subject Classification: Primary 12J25, Secondary 30D35, 30G06.

1 Introduction and main result

We shall introduce URSCM for p-adic meromorphic functions. Many studies were made in the eighties and the nineties concerning URSCM for functions in \mathbb{C}, [3], [6], [16]. Studies were also made in the non-archimedean context by the late nineties and next [1], [2], [3], [4], [5], [8], [9], [10], [11], [13]. Here, we will only consider the situation in an ultrametric field.

Definitions and notation: Throughout the paper, E is an algebraically closed field of characteristic $p \geq 0$ without any assumption on the existence of an absolute value. A subset S of E is said to be affinely rigid if there is no similarity t on E other than the identity, such that $t(S) = S$.

We denote by \mathbb{K} an algebraically closed field complete with respect to an ultrametric absolute value $| \cdot |$ and of characteristic $p \geq 0$. We will denote by q the characteristic exponent of \mathbb{K}: if $p \neq 0$, then $q = p$ and if $p = 0$ then $q = 1$.

*Partially supported by CONICYT (Inserción de Capital Humano a la Academia)
Given \(\alpha \in \mathbb{K} \) and \(R \in \mathbb{R}^*_+ \), we denote by \(d(\alpha, R) \) the disk \(\{ x \in \mathbb{K} \mid |x - \alpha| \leq R \} \), by \(d(\alpha, R^-) \) the disk \(\{ x \in \mathbb{K} \mid |x - \alpha| < R \} \), by \(\mathcal{A}(\mathbb{K}) \) the \(\mathbb{K} \)-algebra of analytic functions in \(\mathbb{K} \) (i.e. the set of power series with an infinite radius of convergence) and by \(\mathcal{M}(\mathbb{K}) \) the field of meromorphic functions in \(\mathbb{K} \) (i.e. the field of fractions of \(\mathcal{A}(\mathbb{K}) \)).

In the same way, given \(\alpha \in \mathbb{K} \), \(R > 0 \) we denote by \(\mathcal{A}(d(\alpha, R^-)) \) the \(\mathbb{K} \)-algebra of analytic functions in \(d(\alpha, R^-) \) (i.e. the set of power series with a radius of convergence \(\geq R \)) and by \(\mathcal{M}(d(\alpha, R^-)) \) the field of fractions of \(\mathcal{A}(d(\alpha, R^-)) \). We then denote by \(\mathcal{A}_b(d(\alpha, R^-)) \) the \(\mathbb{K} \)-algebra of bounded analytic functions in \(d(\alpha, R^-) \) and by \(\mathcal{M}_b(d(\alpha, R^-)) \) the field of fractions of \(\mathcal{A}_b(d(\alpha, R^-)) \). And we set \(\mathcal{A}_u(d(\alpha, R^-)) = \mathcal{A}(d(\alpha, R^-)) \setminus \mathcal{A}_b(d(\alpha, R^-)) \) and \(\mathcal{M}_u(d(\alpha, R^-)) = \mathcal{M}(d(\alpha, R^-)) \setminus \mathcal{M}_b(d(\alpha, R^-)) \).

Given a family of functions \(\mathcal{F} \) defined in \(\mathbb{K} \) or in a subset \(S \) of \(\mathbb{K} \) (resp. in \(E \) or in a subset \(S \) of \(E \)), with values in \(\mathbb{K} \) (resp. in \(E \), \(S \) is called an **ursim** for \(\mathcal{F} \) if for any two non-constant functions \(f, g \in \mathcal{F} \) satisfying \(f^{-1}(S) = g^{-1}(S) \), these functions are equal.

That definition particularly applies to \(\mathcal{A}(\mathbb{K}) \), \(\mathcal{M}(\mathbb{K}) \), \(\mathcal{A}_u(d(\alpha, R^-)) \), \(\mathcal{M}_u(d(\alpha, R^-)) \), \(\mathbb{K}[x] \), \(\mathbb{K}(x) \), \(E[x] \), \(E(x) \).

We will now recall the definition of URSCM. Given a subset \(S \) of \(E \) and \(f \in E(x) \), we denote by \(\mathcal{E}(f, S) \) the set in \(E \times \mathbb{N}^* \):

\[
\bigcup_{a \in S} \{ (z, q) \in E \times \mathbb{N}^* \mid z \text{ is a zero of order } q \text{ of } f(x) - a \}.
\]

Similarly, consider now meromorphic functions in the field \(\mathbb{K} \). For a subset \(S \) of \(\mathbb{K} \) and \(f \in \mathcal{M}(\mathbb{K}) \) (resp. \(f \in \mathcal{M}(d(\alpha, R^-)) \)) we denote by \(\mathcal{E}_M(f, S) \) the set in \(\mathbb{K} \times \mathbb{N}^* \):

\[
\bigcup_{a \in S} \{ (z, q) \in \mathbb{K} \times \mathbb{N}^* \mid z \text{ is a zero of order } q \text{ of } f(x) - a \}.
\]

Let \(\mathcal{F} \) be a non-empty subset of \(\mathcal{A}(\mathbb{K}) \) (resp. of \(\mathcal{M}(\mathbb{K}) \), resp. of \(\mathcal{A}(d(\alpha, R^-)) \), resp. of \(\mathcal{M}(d(\alpha, R^-)) \)). We say that two non-constant functions \(f, g \in \mathcal{F} \) share \(S \), counting multiplicity if \(\mathcal{E}(f, S) = \mathcal{E}(g, S) \); and the set \(S \) is called a **unique range set counting multiplicity** (an URSCM in brief) for \(\mathcal{F} \) if for any two non-constant \(f, g \in \mathcal{F} \) sharing \(S \) counting multiplicity, one has \(f = g \). Next, the set \(S \) will be called a bi-URSCM for \(\mathcal{F} \) if for two non-constant functions \(f, g \in \mathcal{M}_u(d(\alpha, R^-)) \) sharing \(S \) counting multiplicity and having the same poles, counting multiplicity, one has \(f = g \) [8].

Particularly, if we consider a family \(\mathcal{F} \subset \mathcal{A}(\mathbb{K}) \) or \(\mathcal{F} \subset \mathcal{A}_u(d(\alpha, R^-)) \) and a set \(S = \{ a_1, ..., a_t \} \subset \mathbb{K} \) (resp. a set \(S = \{ a_1, ..., a_t \} \subset E \) with \(a_i \neq a_j \) \(\forall i \neq j \)), we can set \(P(X) = \prod_{j=1}^{t} (X - a_j) \) and then the set \(S = \{ a_1, ..., a_t \} \) is an URSCM for \(\mathcal{F} \) if for any two functions \(f, g \in \mathcal{F} \) such that \(P \circ f \) and \(P \circ g \) have the same zeros with the same multiplicity, then \(f = g \).

Similarly, if we consider a family \(\mathcal{F} \subset \mathcal{M}(\mathbb{K}) \) or \(\mathcal{F} \subset \mathcal{M}_u(d(\alpha, R^-)) \) and a set \(S = \{ a_1, ..., a_t \} \subset \mathbb{K} \) (resp. a set \(S = \{ a_1, ..., a_t \} \subset E \) with \(a_i \neq a_j \) \(\forall i \neq j \)), we can set \(P(X) = \prod_{j=1}^{t} (X - a_j) \) and then the set \(S = \{ a_1, ..., a_t \} \) is a bi-URSCM for \(\mathcal{F} \) if for any two
functions \(f, g \in \mathcal{F} \) having the same poles (counting multiplicity) such that \(P \circ f \) and \(P \circ g \) have the same zeros with the same multiplicity, then \(f = g \).

Remark: An URSCM \(S \) for a family of functions \(\mathcal{F} = \mathcal{M}(\mathbb{K}), \mathcal{A}(\mathbb{K}), \mathcal{M}_u(d(a, R^-)), \mathcal{A}_u(d(a, R^-)) \) must obviously be affinely rigid. Indeed suppose that \(S \) is not affinely rigid and let \(t \) be a similarity of \(\mathbb{K} \) such that \(t(S) = S \). Then, if \(f \) belongs to \(\mathcal{F} \), so does \(f \circ t \) and therefore we can check that \(E(f, S) = E(f \circ t, S) \). And it is a bi-URSCM if for any two functions \(f, g \in \mathcal{F} \) such that \(P \circ f \) and \(P \circ g \) have the same zeros and the same poles, counting multiplicity, then \(f = g \).

Similar definitions were given for meromorphic functions on \(\mathbb{C} \) before these questions were examined on the field \(\mathbb{K} \). URSCM of only 11 points for complex meromorphic functions in the whole field \(\mathbb{C} \) was found in [16] and the same method showed the existence of URSCM of only 7 points for complex entire functions. So far, they are the smallest known in \(\mathbb{C} \).

In the field \(\mathbb{K} \), the same method lets us find URSCM of 11 points for \(\mathcal{M}_u(d(a, R^-)) \) and URSCM of 10 points for \(\mathcal{A}_u(d(a, R^-)) \). In 1996, URSCM for polynomials on a field such as \(\mathbb{E} \) were characterized: they are just the affinely rigid subsets of \(\mathbb{E} \) [9]. Particularly, the smallest URSCM for polynomials are the affinely rigid sets of 3 points. Concerning entire functions on the field \(\mathbb{K} \), URSCM of 3 points were found: they also are the affinely rigid sets of 3 points [9] and \(n \) points [19]. Next, URSCM of 7 points were found for unbounded analytic functions in a disk \(d(a, R^-) \) [10]. Here we will show the existence of another family of URSCM for \(\mathcal{A}_u(d(a, R^-)) \), looking for sets of less than 7 points.

The notion of URSCM is closely linked to that of strong uniqueness polynomial.

Definition: A polynomial \(P \in \mathbb{K}[x] \) is called a strong uniqueness polynomial for a subset \(\mathcal{F} \subset E(x) \) (resp. \(\mathcal{F} \subset \mathcal{M}(\mathbb{K}), \mathcal{F} \subset \mathcal{M}(d(a, R^-)) \)) if, given \(f, g \in \mathcal{F} \), the equality \(P(f) = P(g) \) implies \(f = g \).

The following basic result is immediate and useful to understand the role of URSCM:

Proposition A: Let \(S = \{a_1, \ldots, a_n\} \subset E \), (resp. \(S = \{a_1, \ldots, a_n\} \subset \mathbb{K} \)), let \(a \in \mathbb{K} \), let \(R \in \mathbb{R}^+ \) and let \(P(x) = \prod_{i=1}^{n}(x - a_i) \). Given any two functions \(f, g \in E[x] \) (resp. \(f, g \in \mathcal{A}(\mathbb{K}) \), resp. \(f, g \in \mathcal{A}(d(a, R^-)) \)) then \(E(f, S) = E(g, S) \) if and only if \(\frac{P(f)}{P(g)} \) is a constant in \(E^* \) (resp. is a constant in \(\mathbb{K}^* \), resp. is an invertible function in \(\mathcal{A}(d(a, R^-)) \)). Given any two functions \(f, g \in E(x) \) (resp. \(f, g \in \mathcal{M}(\mathbb{K}), \mathcal{M}(d(a, R^-)) \) having the same poles counting multiplicity, then \(E(f, S) = E(g, S) \) if and only if \(\frac{P(f)}{P(g)} \) is a constant in \(E^* \) (resp. is a constant in \(\mathbb{K}^* \), resp. is an invertible function in \(\mathcal{A}(d(a, R^-)) \)).
Corollary A1 Let \(S = \{a_1, ..., a_n\} \subseteq \mathbb{K} \) (resp. let \(S = \{a_1, ..., a_n\} \subseteq E \)) and let \(P(x) = \prod_{i=1}^{n} (x - a_i) \). Then \(P \) is a polynomial of strong uniqueness for \(\mathcal{A}(\mathbb{K}) \) (resp. for \(E[x] \)) if and only if \(S = \{a_1, ..., a_n\} \) is an URSCM for \(\mathcal{A}(\mathbb{K}) \) (resp. for \(E[x] \)).

Remark: Let \(\in A \) be a primitive \(p \)-th root of \(1 \). Clearly, \(P(jf) = jP(f) \forall f \in \mathcal{M}(\mathbb{K}) \), hence \(P \) is not a polynomial of strong uniqueness for \(\mathcal{A}(\mathbb{K}) \) or for \(E[x] \).

As usual, if \(p \neq 0 \), given \(a \in \mathbb{K} \) and \(n \in \mathbb{N} \), we denote by \(r^n \sqrt[p]{a} \) the unique \(b \in \mathbb{K} \) such that \(b^p = a \).

Given \(m, n \in \mathbb{N} \) we set \(m < n \) if \(m \) divides \(n \) and \(m \not\sim n \) if \(m \) does not divide \(n \). When \(p \neq 0 \), we denote by \(S \) the \(\mathbb{F}_p \)-automorphism of \(\mathbb{K} \) defined by \(S(x) = \sqrt[p]{x} \).

More generally this mapping has continuation to a \(\mathbb{K} \)-algebra automorphism of \(\mathbb{K}[X] \) as \(S(c)\prod_{j=1}^{n} (X - a_j) = S(c)\prod_{j=1}^{n} (X - S(a_j)), \ c \in \mathbb{K} \).

Proposition B: Suppose \(p \neq 0 \). Let \(r > 0 \) and let \(f \in \mathcal{M}(d(a, r^{-})) \). Then \(\sqrt[p]{f} \) belongs to \(\mathcal{M}(d(a, r^{-})) \) if and only if \(f' = 0 \). Moreover, there exists a unique \(t \in \mathbb{N} \) such that \(\sqrt[p]{f} \in \mathcal{M}(d(a, r^{-})) \) and \((\sqrt[p]{f})' \neq 0 \).

Proof: If \(f \) is of the form \(l^p \) with \(l \in \mathcal{M}(d(a, r^{-})) \), then of course we have \(f' = 0 \). Now, suppose that \(f' = 0 \). If \(f \in \mathcal{A}(d(a, r^{-})) \), then obviously all non-zero coefficients have an index multiple of \(p \), hence \(f \) is of the form \(l^p \), with \(l \in \mathcal{A}(d(a, r^{-})) \). We now consider the general case when \(f \in \mathcal{M}(d(a, r^{-})) \). Let \((b_n, t_n)_{n \in \mathbb{N}} \) be the sequence of poles of \(f \) inside \(d(a, r^{-}) \) where \(t_n \) is the multiplicity order of \(b_n \). By Theorem 25.5 [14] we can find \(h \in \mathcal{A}(d(a, r^{-})) \) such that \(\omega_{b_n}(h) \geq t_n \forall n \in \mathbb{N} \). Clearly \(fh^p \) belongs to \(\mathcal{A}(d(a, r^{-})) \) and satisfies \((fh^p)' = 0 \). Consequently, \(fh^p \) is of the form \(g^p \), with \(g \in \mathcal{A}(d(a, r^{-})) \), therefore \(f = \left(\frac{g}{h} \right)^p \). On the other hand, the set of integers \(s \) such that \(\sqrt[p]{f} \) belongs to \(\mathcal{M}(d(a, r^{-})) \) is obviously bounded and therefore admits a biggest element, which ends the proof.

Definition and notation: Suppose \(p \neq 0 \). Given, \(f \in \mathcal{M}(d(a, r^{-})) \), we will call ramification index of \(f \) the integer \(t \) such that \(\sqrt[p]{f} \in \mathcal{M}(d(a, r^{-})) \) and \((\sqrt[p]{f})' \neq 0 \).

In the same way, given an algebraically closed field \(B \) of characteristic \(p \neq 0 \) and \(P(x) \in B[x] \), we call ramification index of \(P \) the unique integer \(t \) such that \(\sqrt[p]{P} \in B[x] \) and \((\sqrt[p]{P})' \neq 0 \). This ramification index will be denoted by \(\text{ram}(f) \) for any \(f \in \mathcal{M}(d(a, r^{-})) \) or \(f \in \mathcal{M}(\mathbb{K}) \) and similarly it will be denoted by \(\text{ram}(P) \) for any \(P \in B[x] \).

Henceforth, given \(t \in \mathbb{N}^* \), we will denote by \(\mathcal{A}_{t}(d(a, R^{-})) \) the subset of the functions \(f \in \mathcal{A}(d(a, R^{-})) \) having a ramification index \(\leq t \) and similarly, we put \(\mathcal{A}_{t}(d(R^{-})) = \mathcal{A}_{t}(d(a, R^{-})) \cap \mathcal{A}_{a}(d(a, R^{-})) \).

Given \(k \in \mathbb{K}^* \) and \(n, m \in \mathbb{N}^* \) with \(m < n \), we set \(Q_{n,m,k}(x) = x^n - x^m + k \) and we denote by \(Y_{n,m,k} \) the set of zeros of \(Q_{n,m,k} \). In the same way, we set \(Q_{n,k}(x) = x^n - x^{n-1} + k \) and we denote by \(Y_{n,k} \) the set of zeros of \(Q_{n,k} \).
Remark: Suppose \(p \neq 0 \) and let \(f \in \mathcal{M}(d(a,r^−)) \) have ramification index \(t \) as an element of \(\mathcal{M}(d(a,r^−)) \). For every \(r' \in]0,r[\), \(f \) has the same ramification index as an element of \(\mathcal{M}(d(a,r'^−)) \) because of course, on one hand, \(\sqrt{f} \in \mathcal{M}(d(a,r'^−)) \) and on the other hand, by properties of analytic functions, \((\sqrt{f})' \) is not identically zero inside \(d(a,r') \).

As recalled above, in [9] the smallest urscm for \(\mathcal{A}_u(d(a,R^−)) \) have 7 points. By Corollary 2.2 we can find a new family of urscm for \(\mathcal{A}_u(d(a,R^−)) \), with particularly urscm of 5 points.

Theorem 1: Let \(t \in \mathbb{N}^+ \) and let \(f, g \in \mathcal{M}_u(d(a,R^−)) \) be such that the function \(\phi = \frac{f^n - f^m + k}{g^n - g^m + k} \) is invertible in \(\mathcal{A}(d(a,R^−)) \). Let \(t \) be the ramification index of \(\frac{f^n - f^m - k(\phi - 1)}{f^n - f^m} \). If \(2mq^t > n(2q^t - 1) + 3q^t \) then \(f = g \).

Corollary 1.1: Suppose \(K \) is of characteristic 0. If \(2m > n+3 \) then \(Y(n,m,k) \) is a bi-urscm for \(\mathcal{M}_u(d(a,R^−)) \).

Corollary 1.2: Suppose \(K \) is of characteristic 0. If \(n \geq 6 \), then \(Y(n,k) \) is a bi-urscm for \(\mathcal{M}_u(d(a,R^−)) \).

Theorem 2: Let \(t \in \mathbb{N}^+ \) and let \(f, g \in \mathcal{A}_u(d(a,R^−)) \) be such that the function \(\phi = \frac{f^n - f^m + k}{g^n - g^m + k} \) is invertible in \(\mathcal{A}(d(a,R^−)) \). Let \(t \) be the ramification index of \(\frac{f^n - f^m - k(\phi - 1)}{f^n - f^m} \). If \(2mq^t > n(2q^t - 1) + 2q^t \) then \(f = g \).

Corollary 2.1: Suppose \(K \) is of characteristic 0. If \(2m \geq n+3 \), then \(Y(n,m,k) \), is an urscm for \(\mathcal{A}_u(d(a,R^−)) \).

Corollary 2.2: Suppose \(K \) is of characteristic 0. If \(n \geq 5 \), then \(Y(n,k) \), is an urscm for \(\mathcal{A}_u(d(a,R^−)) \).

Remark: We don’t know whether there exists an urscm for \(\mathcal{A}_u(d(a,R^−)) \) of 4 points or 3 points.

2 The Proof

We must recall the definition of the counting functions in the Nevanlinna Theory.

Definitions and notation: Let \(f \in \mathcal{M}(d(a,R^−)) \) and let \(\alpha \in d(a,R^−) \). If \(f \) admits \(\alpha \) as a zero of order \(q \), we set \(\omega_\alpha(f) = q; \) if \(f \) admits \(\alpha \) as a pole of order \(q \), we set \(\omega_\alpha(f) = -q; \) and if \(\alpha \) is neither a zero nor a pole for \(f \), we set \(\omega_\alpha(f) = 0 \).

We denote by \(Z(r,f) \) the counting function of zeros of \(f \) in \(d(0,r) \) in the following way:

Let \((a_n), 1 \leq n \leq \sigma(r) \) be the finite sequence of zeros of \(f \) such that \(0 < |a_n| \leq |a_{n+1}| \leq |a_{\sigma(r)}| \leq r \), of respective order \(s_n \).

We set \(Z(r,f) = \max(\omega_0(f),0) \log r + \sum_{n=1}^{\sigma(r)} s_n(\log r - \log |a_n|) \).
Similarly, we set \(N(r, f) = Z(r, \frac{1}{f}) \).

In order to define the counting function of zeros of \(f \) without multiplicity, we put \(\omega_0(f) = 0 \) if \(\omega_0(f) \leq 0 \) and \(\omega_0(f) = 1 \) if \(\omega_0(f) \geq 1 \).

In the sequel, \(I \) will denote an interval of the form \([\rho, +\infty] \), with \(\rho > 0 \), and \(J \) will denote an interval of the form \([\rho, R] \).

Next, denoting by \(E(r, f) \) the set \(\{ a \in d(0, r) \mid \omega_a(f) > 0, \ p^{\text{ram}(f)+1} \neq \omega_a(f) \} \), if \(0 \not\in E(r, f) \) we set \(\tilde{Z}(r, f) = \sum_{\alpha \in E(r, f)} \log\frac{r}{|\alpha|} \)

and if \(0 \in E(r, f) \) we set \(\tilde{Z}(r, f) = \log r + \sum_{\alpha \in E(r, f), \alpha \neq 0} \log\frac{r}{|\alpha|} \).

Similarly we define \(\tilde{N}(r, f) = \tilde{Z}(r, \frac{1}{f}) \).

We can now define the Nevanlinna characteristic function of \(f \): \(T(r, f) = \max(Z(r, f), T(r, f)) \).

Assume that \(f' \) is not identically 0.

Let \(V(r, f) = \{ a \in d(0, r) \mid \omega_a(f) < 0, \ p^{\text{ram}(f)+1} < \omega_a(f) \} \). We put
\[
N_0(r, f') = \sum_{a \in V(r, f)} [\omega_a(f') - \omega_a(f)] \log\frac{r}{|\alpha|}.
\]

Given a finite subset \(S \) of \(\mathbb{K} \), we put \(\mathcal{N}'(r, f, S) = \{ a \in d(0, r) \mid f'(a) = 0, \ f(a) \not\in S \} \) and \(\mathcal{N}'(r, f, S) = \{ a \in d(0, r) \mid p^{\text{ram}(f)+1} \leq \omega_a(f - f(a)), \ f(a) \in S \} \). Then we can define
\[
Z_0^S(r, f') = \sum_{a \in \mathcal{N}'(r, f, S)} \omega_a(f') \log\frac{r}{|\alpha|} + \sum_{a \in \mathcal{N}'(r, f, S)} [\omega_a(f') - \omega_a(f - f(a))] \log\frac{r}{|\alpha|}.
\]

Remarks: 1) It is easily verified that all the above functions are positive.
2) If \(p = 0 \), we have \(\tilde{Z}(r, f) = \tilde{Z}(r, f) \) and \(\tilde{N}(r, f) = \tilde{N}(r, f) \).

Lemma 1: Let \(f \in \mathcal{M}(d(0, R^-)) \), let \(t = r(f) \) and let \(g = \sqrt{T} \). Then \(\tilde{Z}(r, f) = \tilde{Z}(r, g) \) and \(\tilde{N}(r, f) = \tilde{N}(r, g) \).

Proof: Let \(a \) be a zero of \(f \) and let \(s = \omega_a(f) \). Then \(s \) is of the form \(nt \) with \(n \in \mathbb{N}^* \). If \(n = 1 \), then \(a \) belongs to both \(E(r, f) \) and \(E(r, g) \); and if \(n > 1 \), then \(a \notin E(r, f) \). But then \(a \) is a zero of order \(n \) of \(g \) and hence, \(a \) does not belong to \(E(r, g) \).

The following Lemmas 2 and 3 are easily checked [12]:

Lemma 2: Let \(\alpha_1, \ldots, \alpha_n \in \mathbb{K} \) be pairwise distinct, let \(P(u) = \prod_{i=1}^{n} (u - \alpha_i) \) and let \(f \in \mathcal{M}(d(0, R^-)) \). Then \(Z(r, P(f)) = \sum_{i=1}^{n} Z(r, f - \alpha_i) \) and \(\tilde{Z}(r, P(f)) = \sum_{i=1}^{n} \tilde{Z}(r, f - \alpha_i) \).

Lemma 3: Let \(f \in \mathcal{M}(d(0, R^-)) \) be such that \(f' \) is not identically zero and let \(\alpha \in d(0, R^-) \). We have \(\omega_\alpha(f') = \omega_\alpha(f) - 1 \) if \(p \neq \omega_\alpha(f) \) and \(\omega_\alpha(f') \geq \omega_\alpha(f) \) if \(p = \omega_\alpha(f) \).
Lemmas 4 and 5 are consequences of Lemma 3.

Lemma 4: Let \(f \in \mathcal{M}(d(0, R^-)) \) be such that \(f' \neq 0 \) and let \(S \) be a finite subset of \(\mathbb{K} \). Then:
\[
\sum_{b \in S} \left(Z(r, f - b) - \tilde{Z}(r, f - b) \right) = Z(r, f') - Z_0^S(r, f').
\]

Lemma 5: Let \(f \in \mathcal{M}(d(0, R^-)) \) be such that \(f' \neq 0 \) and let \(0 < r < R \). Then:
\[
N(r, f') = N(r, f) + \tilde{N}(r, f) - N_0(r, f').
\]

Lemma 6: Let \(f \in \mathcal{M}(d(0, R^-)) \) be such that \(f' \neq 0 \) and let \(0 < r < R \). Then:
\[
Z(r, f') \leq Z(r, f) + \tilde{N}(r, f) - N_0(r, f') - \log r + O(1),(r \in J).
\]

Proof: Without loss of generality, up to change of variable, we can assume that both \(f \) and \(f' \) have no zero and no pole at 0. Let \(|f|(r) \) denote the circular value of \(f \) defined as \(|f|(r) = \lim_{|x| \to r, |x| \neq r} |f(x)| \).

By classical results such as Theorem 23.13 [14], we have \(Z(r, f) - N(r, f) = \log(|f|(r)) - \log(||f(0)||) \), and \(Z(r, f') - N(r, f') = \log(|f'(r)|) - \log(||f'(0)||) \). But, it is well-known that \(|f'(r)| \leq \frac{|f|(r)}{r} \) (Theorem 1.5.10 [15]); hence we obtain
\[
Z(r, f') \leq N(r, f') - N(r, f) + Z(r, f) - \log r + O(1).
\]

Moreover, by Lemma 4 we have \(N(r, f') - N(r, f) = \tilde{N}(r, f) - N_0(r, f') \), which completes the proof.

We know Proposition C [9].

Proposition C : Let \(f \in \mathcal{M}(d(0, R^-)) \). Then \(f \) belongs to \(\mathcal{M}_b(d(0, R^-)) \) if and only if \(T(r, f) \) is bounded when \(r \) tends to \(R \).

Corollary C1: Let \(f \in \mathcal{M}(d(0, R^-)) \). Then \(\mathcal{M}_b(d(0, R^-)) \) is a subset of \(\mathcal{M}_f(d(0, R^-)) \) and \(\mathcal{A}_b(d(0, R^-)) \) is a subset of \(\mathcal{A}_f(d(0, R^-)) \).

Remark: Particularly, an invertible function \(f \in \mathcal{A}(d(a, R^-)) \) has a constant absolute value and therefore lies in \(\mathcal{A}_b(d(a, R^-)) \).

The following Theorem D1 is known as Second Main Theorem on Three Small Functions [17]. It holds in \(p \)-adic analysis as well as in complex analysis, where it was shown first [17].
Notice that this theorem was generalized to any finite set of small functions by Yamanoy in complex analysis [18], through methods that have no equivalent on a p-adic field.

Remark: Let \(f \in \mathcal{M}_d(d(0, R^-)) \) and let \(w \in \mathcal{M}_b(d(0, R^-)) \). Then of course, \(w \in \mathcal{M}_f(d(0, R^-)) \).

The previous results enable us to prove the ultrametric Nevanlinna Main Theorem in a basic form:

Theorem D1: Let \(\alpha_1, ..., \alpha_n \in \mathbb{K} \), with \(n \geq 2 \), and let \(f \in \mathcal{M}(d(0, R^-)) \) (resp. \(f \in \mathcal{M}(\mathbb{K}) \)) of ramification index \(t \). Let \(S = \{ \sqrt[n]{\alpha_1}, ..., \sqrt[n]{\alpha_n} \} \). Then we have:
\[
\frac{(n-1)T(r, f)}{q^t} \leq \sum_{i=1}^{n} Z(r, f - \alpha_i) + Z(r, (\sqrt[n]{f})') - Z_0^S(r, (\sqrt[n]{f})') + O(1) \quad \forall r \in J
\]
(resp. \(\forall r \in I \)).

Moreover, if \(f \) belongs to \(\mathcal{A}(d(0, R^-)) \) (resp. \(f \in \mathcal{A}(\mathbb{K}) \)), then
\[
\frac{nT(r, f)}{q^t} \leq \sum_{i=1}^{n} Z(r, f - \alpha_i) + Z(r, (\sqrt[n]{f})') - Z_0^S(r, (\sqrt[n]{f})') + O(1) \quad \forall r \in J
\]
(resp. \(\forall r \in I \)).

Now, following the same method as in Theorem 2.5.9 [15], we can obtain that classical form of the Nevanlinna inequality where \(Z \) and \(N \) are replaced by \(\tilde{Z} \) and \(\tilde{N} \).

Theorem D2: Let \(\alpha_1, ..., \alpha_n \in \mathbb{K} \), with \(n \geq 2 \), and let \(f \in \mathcal{M}(d(0, R^-)) \) (resp. \(f \in \mathcal{M}(\mathbb{K}) \)) of ramification index \(t \). Let \(S = \{ \sqrt[n]{\alpha_1}, ..., \sqrt[n]{\alpha_n} \} \). Then we have:
\[
\frac{(n-1)T(r, f)}{q^t} \leq \sum_{i=1}^{n} \tilde{Z}(r, f - \alpha_i) + \tilde{N}(r, f) - Z_0^S(r, (\sqrt[n]{f})') - N_0(r, (\sqrt[n]{f})') - \log r + O(1) \quad \forall r \in J
\]
(resp. \(\forall r \in I \)).

Proof of Theorems D1 and D2: The proof of Theorems D1 and D2 was given in [12]. We will recall it. For convenience, we put \(g = \sqrt[n]{f} \) and \(\beta_i = \sqrt[n]{\alpha_i} \) for every \(i = 1, ..., n \). So \(S = \{ \beta_1, ..., \beta_n \} \).

Let \(f \in \mathcal{M}(K) \) (resp. \(f \in \mathcal{M}(d(a, R^-)) \)) and let \((a_n, s_n)_{n \in \mathbb{N}} \) be the set of zeros of \(f \) in \(\mathbb{K} \) (resp. in \(d(a, R^-) \)) with \(|a_n| \leq |a_{n+1}| \) whereas \(s_n \) is the order of multiplicity of \(a_n \). We denote by \(D(f) \) the sequence \((a_n, s_n)_{n \in \mathbb{N}} \).

By Theorem 25.5 [14] there exist \(\phi, \psi \in \mathcal{A}(d(0, R^-)) \) such that \(g = \frac{\phi}{\psi} \), and
\[
(1) \quad Z(r, \phi) \leq Z(r, g) + 1,
(2) \quad Z(r, \psi) \leq N(r, g) + 1.
\]

By Lemma 2.5.5 [15], there exists \(A \in \mathbb{R} \) and for any \(r \in J \) (resp. \(r \in I \)), there exists \(l(r) \in \{1, ..., n\} \) such that \(Z(r, \phi - \beta_j \psi) \geq \max(Z(r, \phi), Z(r, \psi)) + A \quad \forall j \neq l(r), \) therefore there exists \(B \in \mathbb{R} \) such that
\[
(3) \quad Z(r, \phi - \beta_i \psi) \geq T(r, g) + B \quad \forall i \neq l(r), \quad \forall r \in J \quad (\text{resp.} \quad \forall r \in I).
\]
We check that $\mathcal{D}(\phi) - \mathcal{D}(\frac{\phi}{\psi}) = \mathcal{D}(\psi) - \mathcal{D}(\frac{\psi}{\phi})$, therefore

\[\mathcal{D}(\phi - \beta_i \psi) = \mathcal{D}(g - \beta_i) + \mathcal{D}(\psi) - \mathcal{D}(\frac{1}{g - \beta_i}). \]

Then, applying counting functions, we have $Z(r, \phi - \beta_i \psi) = Z(r, g - \beta_i) + Z(r, \psi) - N(r, g)$, and therefore, by (2), we obtain

(4) $Z(r, \phi - \beta_i \psi) \leq Z(r, g - \beta_i) + 1$.

Then, by (3) and (4) we obtain $(n - 1) \left(T(r, g) + B \right)$

\[\leq \sum_{1 \leq i \leq n} Z(r, \phi - \beta_i \psi) \leq \sum_{1 \leq i \leq n} Z(r, g - \beta_i) + n - 1 \quad \forall r \in J \text{ (resp. } \forall r \in I). \]

Putting $M = (n - 1)(1 - B), we obtain:

(5) $(n - 1)T(r, g) \leq \sum_{i=1}^{n} Z(r, g - \beta_i) + M - Z(r, g - \beta_{l(r)}) \quad \forall r \in J \text{ (resp. } \forall r \in I).$

By Lemma 4, we have

\[\sum_{i=1}^{n} Z(r, g - \beta_i) = \sum_{i=1}^{n} \tilde{Z}(r, g - \beta_i) + Z(r, g') - Z_0^S(r, g'), \]

hence by (5) we obtain,

(6) $(n - 1)T(r, g) \leq \sum_{i=1}^{n} \tilde{Z}(r, g - \beta_i) + Z(r, g') - Z_0^S(r, g') - Z(r, g - \beta_{l(r)}) + O(1) \quad \forall r \in J \text{ (resp. } \forall r \in I).$

Now, since $T(r, g) = \frac{T(r, f)}{q^t}$ and since $\tilde{Z}(r, g - \beta_i) = \tilde{Z}(r, f - \alpha_i) \quad \forall j = i, ..., n$, we obtain

\[\frac{(n - 1)T(r, f)}{q^t} \leq \sum_{i=1}^{n} \tilde{Z}(r, f - \alpha_i) + Z(r, (\sqrt{T})') - Z_0^S(r, (\sqrt{T})') + O(1) \quad \forall r \in J \text{ (resp. } \forall r \in I). \]

Suppose now that f belongs to $\mathcal{A}(d(a, R^-))$ or to $\mathcal{A}(IK)$. Then so does g. By Lemma 2.5.5 [15] we have $Z(r, g - \beta_{l(r)}) = T(r, g) + O(1) \quad \forall r \in J \text{ (resp. } \forall r \in I)$, so by (6) we obtain

\[nT(r, g) \leq \sum_{i=1}^{n} \tilde{Z}(r, g - \beta_i) + Z(r, g') - Z_0^S(r, g') + O(1) \quad \forall r \in J \text{ (resp. } \forall r \in I), \]

and consequently,

\[\frac{nT(r, f)}{q^t} \leq \sum_{i=1}^{n} \tilde{Z}(r, f - \alpha_i) + Z(r, (\sqrt{T})') - Z_0^S(r, (\sqrt{T})') + O(1) \quad \forall r \in J \text{ (resp. } \forall r \in I). \]

Now, returning to the general case, we have $g' = (g - \beta_{l(r)})'$ and $\tilde{N}(r, g) = \tilde{N}(r, g - \beta_{l(r)}).$

So, by Lemma 6, we have:

(7) $Z(r, g') - Z(r, g - \beta_{l(r)}) \leq \tilde{N}(r, g) - N_0(r, g') - \log r + O(1)$.

Finally, by (6), (7) we obtain

\[\frac{(n - 1)T(r, f)}{q^t} \leq \sum_{i=1}^{n} \tilde{Z}(r, f - \alpha_i) + \tilde{N}(r, f) - Z_0^S(r, (\sqrt{T})') - N_0(r, (\sqrt{T})') - \log r \quad \forall r \in J \text{ (resp. } \forall r \in I). \]
That completes the proof.

Theorem D3: Let \(f \in \mathcal{M}(\mathbb{K}) \) (resp. \(f \in \mathcal{M}_u(d(0,R^-)) \)) and let \(u_1, u_2, u_3 \in \mathcal{M}_f(\mathbb{K}) \) (resp. \(u_1, u_2, u_3 \in \mathcal{M}_f(d(0,R^-)) \)) be pairwise distinct. Let

\[
\phi(x) = \frac{(f(x) - u_1(x))(u_2(x) - u_3(x))}{(f(x) - u_3(x))(u_2(x) - u_1(x))}
\]

and let \(t \) be the ramification index of \(\phi \).

Then

\[
\frac{T(r,f)}{q^t} \leq \sum_{j=1}^{3} \bar{Z}(r, f-u_j) + o(T(r,f)).
\]

Proof: By Theorem D2, we have

1. \[
\frac{T(r,\phi)}{q^t} \leq \bar{Z}(r,\phi) + \bar{Z}(r,\phi-1) + \bar{N}(r,\phi) + O(1).
\]

Next, we have \(T(r,f) \leq T(r,f-u_j) + T(r,u_j) \) (\(j = 1, 2, 3 \)), hence \(T(r,f) \leq T(r,\frac{u_3-u_1}{f-u_3}) + o(T(r,f)) \), whereby \(T(r,f) \leq T(r,\frac{u_3-u_1}{f-u_3} + 1) + o(T(r,f)) = T(r,\frac{f-u_1}{f-u_3}) + o(T(r,f)) \).

Now, \(T(r,\frac{u_2-u_1}{u_2-u_3}) = o(T(r,f)) \). Consequently, by writing \(\frac{f-u_1}{f-u_3} = \phi(\frac{u_2-u_1}{u_2-u_3}) \) we have

\[
T(r,\frac{f-u_1}{u_2-u_3}) \leq T(r,\phi) + T(r,\frac{u_2-u_1}{u_2-u_3}) \leq T(r,\phi) + o(T(r,f)) \]

and finally \(T(r,f) \leq T(r,\phi) + o(T(r,f)) \). Thus, by (1) we obtain

2. \[
\frac{T(r,f)}{q^t} \leq \bar{Z}(r,\phi) + \bar{Z}(r,\phi-1) + \bar{N}(r,\phi) + o(T(r,f)).
\]

Now, we can check that

\[
\bar{Z}(r,\phi) + \bar{Z}(r,\phi-1) + \bar{N}(r,\phi) \leq \sum_{j=1}^{3} \bar{Z}(r, f-u_j) + \sum_{1 \leq j < k \leq 3} \bar{Z}(r, u_k-u_j) \leq \sum_{j=1}^{3} \bar{Z}(r, f-u_j) + o(T(r,f))
\]

which, by (2), completes the proof. \(\square \)

We are now ready to state and prove Theorem D4.

Theorem D4: Let \(f \in \mathcal{M}(\mathbb{K}) \) (resp. \(f \in \mathcal{M}_u(d(0,R^-)) \)), let \(u_1, u_2 \in \mathcal{M}_f(\mathbb{K}) \) (resp. \(u_1, u_2 \in \mathcal{M}_f(d(0,R^-)) \)) be distinct and let \(t \) be the ramification index of \(\frac{f(x) - u_1(x)}{f(x) - u_2(x)} \). Then

\[
\frac{T(r,f)}{q^t} \leq \bar{Z}(r, f-u_1) + \bar{Z}(r, f-u_2) + \bar{N}(r, f) + o(T(r,f)).
\]

Proof: Let \(g = \frac{1}{f}, \ w_j = \frac{1}{u_j}, \ j = 1, 2, \ w_3 = 0 \). Clearly, \(T(r,g) = T(r,f) + O(1), \ T(r,w_j) = T(r,u_j), \ j = 1, 2 \), so we can apply Theorem D3 to \(g, \ w_1, \ w_2, \ w_3 \). On the other hand,

\[
\frac{(g(x) - w_1(x))w_2(x)}{(g(x) - w_2(x))w_1(x)} = \frac{f(x) - u_1(x)}{f(x) - u_2(x)}
\]
Thus by Theorem D3 we have: \[\frac{T(r,g)}{q^t} \leq \tilde{Z}(\tau, g - w_1) + \tilde{Z}(\tau, g - w_2) + \tilde{Z}(\tau, g) + o(T(\tau, g)). \]

But we notice that \(\tilde{Z}(\tau, g - w_j) = \tilde{Z}(\tau, f - u_j) \) for \(j = 1, 2 \) and \(\tilde{Z}(\tau, g) = \tilde{N}(\tau, f) \). Moreover, we know that \(o(T(\tau, g)) = o(T(\tau, f)) \). Consequently, the claim is proven when \(u_1u_2 \) is not identically zero.

Next, by setting \(g = f - u_1 \) and \(u = u_2 - u_1 \), we obtain Corollary D5:

Corollary D5: Let \(g \in \mathcal{M}(\mathbb{K}) \) (resp. \(g \in \mathcal{M}_u(d(0, R^{-})) \)), let \(u \in \mathcal{M}_g(\mathbb{K}) \) (resp. \(u \in \mathcal{M}_g(d(0, R^{-})) \)) and let \(t \) be the ramification index of \(\frac{g - u}{g} \).

Then \(\frac{T(r,g)}{q^t} \leq \tilde{Z}(\tau, g) + \tilde{Z}(\tau, g - u) + \tilde{N}(\tau, g) + o(T(\tau, g)). \)

Corollary D6: Let \(f \in \mathcal{A}(\mathbb{K}) \) (resp. \(f \in \mathcal{A}_u(d(0, R^{-})) \)) and let \(u_1, u_2 \in \mathcal{A}_f(\mathbb{K}) \) (resp. \(u_1, u_2 \in \mathcal{A}_f(d(0, R^{-})) \)) be distinct and let \(t \) be the ramification index of \(\frac{f - u_1}{f - u_2} \). Then

\[\frac{T(r,f)}{q^t} \leq \tilde{Z}(\tau, f - u_1) + \tilde{Z}(\tau, f - u_2) + o(T(\tau, f)). \]

Corollary D7: Let \(f \in \mathcal{A}(\mathbb{K}) \) (resp. \(f \in \mathcal{A}_u(d(0, R^{-})) \)) and let \(u \in \mathcal{A}_f(\mathbb{K}) \) (resp. \(u \in \mathcal{A}_f(d(0, R^{-})) \)) be non-identically zero and let \(t \) be the ramification index of \(\frac{f - u}{f} \). Then

\[\frac{T(r,f)}{q^t} \leq \tilde{Z}(\tau, f) + \tilde{Z}(\tau, f - u) + o(T(\tau, f)). \]

In the proof of Theorems 1 and 2 we will need the following lemma:

Lemma 7: Let \(f \in \mathcal{A}(\mathbb{K}) \) (resp. \(f \in \mathcal{A}_u(d(0, R^{-})) \)) and let \(t \) be the ramification index of \(f \). Let \(m, n \in \mathbb{N}^*, m < n, \) be prime to \(p \). Then the ramification index of \(f^n - f^m \) is also equal to \(t \).

Proof: Since the lemma is trivial when \(p = 0 \), we suppose \(p \neq 0 \), hence \(p = q \). Set \(h = p^t \) and \(F = f^n - f^m \). By hypothesis, since both \(m, n \) are prime to \(p \), the ramification index of both \(f^m, f^n \) is equal to \(t \) and hence so are those of \(f^{n-m} \) and \(f^{n-m} - 1 \). Let \(g = \sqrt[2]{f} \). Then \(g \) belongs to \(\mathcal{A}(\mathbb{K}) \) (resp. to \(\mathcal{A}_u(d(0, R^{-})) \)) and so does \(\sqrt[2]{F} \). Let \(G = \sqrt[2]{F} \). Then we can check that \(G' = g'g^{m-1}(ng^{e-m} - m) \) hence \(G' \) is not identically 0. Consequently, the ramification index of \(F \) is \(t \). \(\square \)
Proof of Theorem 1 and Theorem 2: We can obviously suppose $a = 0$. Suppose that f, g are two distinct functions. Let $F = f^n - f^m$. By Corollary D5, we can obtain

$$\frac{T(r,F)}{q^t} \leq \bar{Z}(r,F) + \bar{Z}(r,F - k(\phi - 1)) + \bar{N}(r,F) + o(T(r,f)).$$

Now, clearly, $\bar{N}(r,F) \leq T(r,f)$ and $\bar{Z}(r,F) \leq \bar{Z}(r,f) + \bar{Z}(r,F^{m-n} - 1) + O(1)$ and $\bar{Z}(r,f^{n-m} - 1) \leq (n - m)T(r,f)$; hence

(1) $\bar{Z}(r,F) \leq (n - m + 1)T(r,f) + o(T(r,f)).$

Similarly,

(2) $\bar{Z}(r,F - k(\phi - 1)) = \bar{Z}(r,g^n - g^m) \leq \bar{Z}(r,g) + \bar{Z}(r,g^{n-m} - 1).$

Of course, since ϕ is bounded, by Proposition C we have $T(r,f) = T(r,g) + O(1)$; hence, by (1) and (2), we obtain $T(r,F) \leq q^t(2n - 2m + 3)T(r,f) + o(T(r,f)).$

On the other hand, by 2.4.15 [15], we have $T(r,F) = nT(r,f) + O(1)$; hence

$$nT(r,f) \leq q^t(2n - 2m + 3)T(r,f) + o(T(r,f)).$$

That yields $2mq^t \leq n(2q^t - 1) + 3q^t$, a contradiction to the hypothesis of Theorem 1.

Next, in the hypotheses of Theorem 2, we have $N(r,f) = N(r,g) = 0$; hence we can get $T(r,F) \leq q^t(2n - 2m + 2)T(r,f) + o(T(r,f))$ and hence $2mq^t \leq n(2q^t - 1) + 2q^t$, a contradiction to the hypotheses of Theorem 2. That ends the proofs of Theorems 1 and 2.

Proof of Corollary 1.1: Suppose $Y(n,m,k)$ is not a bi-urscm for $M_n(d(a,R^-))$ and let f, $g \in M_n(d(a,R^-))$ be such that $E(f,Y(n,m,k)) = E(g,Y(n,m,k))$. By Proposition A, the function $\phi = \frac{f^n - f^m + k}{g^n - g^m + k}$ is an invertible element of $A(d(a,R^-))$. And since \mathbb{K} has characteristic zero, we have $nT(r,f) > 2(n - m + 1)T(r,f) + o(T(r,f))$, hence by Theorem 1, $f = g$.

The proof of Corollary 2.1 is similar by applying Theorem 2.

Acknowledgement The authors thank the referee for pointing out many misprints.

References

URSCM of 5 points for $A_u(d(a, R^-))$