Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) No. 4, 2014, 367–379

Unique range sets of 5 points for unbounded analytic functions inside an open disk

by

¹Alain Escassut and ²Jacqueline Ojeda *

Abstract

Let IK be a complete algebraically closed p-adic field of characteristic $p \ge 0$ and let $\mathcal{A}_u(d(a, R^-))$ be the set of unbounded analytic functions inside the disk $d(a, R^-) = \{x \in \mathbb{K} \mid : |x - a| < R\}$. We recall the definition of urscm and the ultrametric Nevanlinna Theory on 3 small functions in order to find new urscm for $\mathcal{A}_u(d(a, R^-))$. Results depend on the characteristic. In characteristic 0, we can find urscm of 5 points. Some results on bi-urscm are given for meromorphic functions.

Key Words: p-adic analytic functions, URSCM, Nevanlinna, ultrametric, unicity, distribution of values.

2010 Mathematics Subject Classification: Primary 12J25, Secondary 30D35, 30G06.

1 Introduction and main result

We shall introduce URSCM for p-adic meromorphic functions. Many studies were made in the eighties and the nineties concerning URSCM for functions in \mathbb{C} , [3], [6], [16]. Studies were also made in the non-archimedean context by the late nineties and next [1], [2], [3], [4], [5], [8], [9], [10], [11], [13]. Here, we will only consider the situation in an ultrametric field.

Definitions and notation: Throughout the paper, E is an algebraically closed field of characteristic $p \ge 0$ without any assumption on the existence of an absolute value. A subset S of E is said to be *affinely rigid* if there is no similarity t on E other than the identity, such that t(S) = S.

We denote by \mathbb{K} an algebraically closed field complete with respect to an ultrametric absolute value | . | and of characteristic $p \ge 0$. We will denote by q the characteristic exponent of \mathbb{K} : if $p \ne 0$, then q = p and if p = 0 then q = 1.

^{*}Partially supported by CONICYT (Inserción de Capital Humano a la Academia)

Given $\alpha \in \mathbb{I}K$ and $R \in \mathbb{I}R^*_+$, we denote by $d(\alpha, R)$ the disk $\{x \in \mathbb{I}K \mid |x - \alpha| \leq R\}$, by $d(\alpha, R^{-})$ the disk $\{x \in \mathbb{K} \mid |x - \alpha| < R\}$, by $\mathcal{A}(\mathbb{K})$ the \mathbb{K} -algebra of analytic functions in IK (i.e. the set of power series with an infinite radius of convergence) and by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in \mathbb{K} (i.e. the field of fractions of $\mathcal{A}(\mathbb{K})$).

In the same way, given $\alpha \in \mathbb{K}$, R > 0 we denote by $\mathcal{A}(d(\alpha, R^{-}))$ the \mathbb{K} -algebra of analytic functions in $d(\alpha, R^{-})$ (i.e. the set of power series with an radius of convergence $\geq R$) and by $\mathcal{M}(d(\alpha, R^{-}))$ the field of fractions of $\mathcal{A}(d(\alpha, R^{-}))$. We then denote by $\mathcal{A}_{b}(d(\alpha, R^{-}))$ the IK-algebra of bounded analytic functions in $d(\alpha, r^{-})$ and by $\mathcal{M}_{b}(d(\alpha, r^{-}))$ the field of fractions of $\mathcal{A}_{h}(d(\alpha, R^{-}))$. And we set $\mathcal{A}_{u}(d(\alpha, R^{-})) = \mathcal{A}(d(\alpha, R^{-})) \setminus \mathcal{A}_{h}(d(\alpha, R^{-}))$ and $\mathcal{M}_{u}(d(\alpha, R^{-})) = \mathcal{A}(d(\alpha, R^{-}))$ $\mathcal{M}(d(\alpha, R^{-})) \setminus \mathcal{M}_{b}(d(\alpha, R^{-})).$

Given a family of functions \mathcal{F} defined in \mathbb{K} or in a subset S of \mathbb{K} (resp. in E or in a subset S of E), with values in IK (resp. in E), S is called an *ursim for* \mathcal{F} if for any two non-constant functions $f, g \in \mathcal{F}$ satisfying $f^{-1}(S) = g^{-1}(S)$, these functions are equal.

That definition particularly applies to $\mathcal{A}(\mathbb{K}), \mathcal{M}(\mathbb{K}), \mathcal{A}_u(d(a, \mathbb{R}^-)))$ $\mathcal{M}_u(d(a, R^-)), \quad \mathrm{I\!K}[x], \quad \mathrm{I\!K}(x), \quad E[x], \quad E(x).$

We will now recall the definition of URSCM. Given a subset S of E and $f \in E(x)$, we denote by $\mathcal{E}(f,S)$ the set in $E \times \mathbb{N}^*$:

$$\bigcup_{a \in S} \{ (z,q) \in E \times \mathbb{N}^* | z \text{ is a zero of order } q \text{ of } f(x) - a \}.$$

Similarly, consider now meromorphic functions in the field $\mathbb{I}K$. For a subset S of $\mathbb{I}K$ and $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}(d(a, \mathbb{R}^{-}))$) we denote by $\mathcal{E}(f, S)$ the set in $\mathbb{K} \times \mathbb{N}^{*}$: $\bigcup_{a \in S} \{(z, q) \in \mathbb{K}\}$

 $\mathbb{IK} \times \mathbb{N}^* | z$ is a zero of order q of f(x) - a.

Let \mathcal{F} be a non-empty subset of $\mathcal{A}(\mathbb{K})$ (resp. of $\mathcal{M}(\mathbb{K})$, resp. of $\mathcal{A}(d(a, \mathbb{R}^{-}))$), resp. of $\mathcal{M}(d(a, \mathbb{R}^{-})))$. We say that two non-constant functions $f, g \in \mathcal{F}$ share S, counting multiplicity if $\mathcal{E}(f,S) = \mathcal{E}(g,S)$; and the set S is called a unique range set counting multiplicity (an URSCM) in brief) for \mathcal{F} if for any two non-constant $f, g \in \mathcal{F}$ sharing S counting multiplicity, one has f = q. Next, the set S will be called a *bi-URSCM* for \mathcal{F} if for two non-constant functions $f, g \in \mathcal{M}_u(d(a, R^-))$ sharing S counting multiplicity and having the same poles, counting multiplicity, one has f = g [8].

Particularly, if we consider a family $\mathcal{F} \subset \mathcal{A}(K)$ or $\mathcal{F} \subset \mathcal{A}_u(d(a, R^-))$ and a set S = $\{a_1,...,a_t\} \subset \mathbb{K} \text{ (resp. a set } S = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ we can set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ we can set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ we can set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ we can set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ we can set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ set } P(X) = \{a_1,...,a_t\} \subset E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ set } P(X) = \{a_1,...,a_t\} \in E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ set } P(X) = \{a_1,...,a_t\} \in E \text{) with } a_i \neq a_j \ \forall i \neq j, \text{ set } P(X) = \{a_1,...,a_t\} \in E \text{$ $\prod_{i=1}^{r} (X - a_i)$ and then the set $S = \{a_1, ..., a_t\}$ is an URSCM for \mathcal{F} if for any two functions $\overline{f}_{j=1}^{j=1}$ $f, g \in \mathcal{F}$ such that $P \circ f$ and $P \circ g$ have the same zeros with the same multiplicity, then f = g. Similarly, if we consider a family $\mathcal{F} \subset \mathcal{M}(K)$ or $\mathcal{F} \subset \mathcal{M}_u(d(a, R^-))$ and a set S = $\{a_1, ..., a_t\} \subset \mathbb{K}$ (resp. a set $S = \{a_1, ..., a_t\} \subset E$) with $a_i \neq a_j \quad \forall i \neq j$, we can set $P(X) = \prod_{i=1}^{n} (X - a_i)$ and then the set $S = \{a_1, ..., a_t\}$ is a bi-URSCM for \mathcal{F} if for any two

functions $f, g \in \mathcal{F}$ having the same poles (counting multiplicity) such that $P \circ f$ and $P \circ g$ have the same zeros with the same multiplicity, then f = g.

Remark: An URSCM S for a family of functions $\mathcal{F} = \mathcal{M}(\mathbb{K}), \mathcal{A}(\mathbb{K}),$

 $\mathcal{M}_u(d(a, R^-)), \mathcal{A}_u(d(a, R^-))$ must obviously be affinely rigid. Indeed suppose that S is not affinely rigid and let t be a similarity of IK such that t(S) = S. Then, if f belongs to \mathcal{F} , so does $f \circ t$ and therefore we can check that $\mathcal{E}(f, S) = \mathcal{E}(f \circ t, S)$. And it is a bi-URSCM if for any two functions $f, g \in \mathcal{F}$ such that $P \circ f$ and $P \circ g$ have the same zeros and the same poles, counting multiplicity, then f = g.

Similar definitions were given for meromorphic functions on \mathbb{C} before these questions were examined on the field IK. URSCM of only 11 points for complex meromorphic functions in

the whole field \mathbb{C} where found in [16] and the same method showed the existence of URSCM of only 7 points for complex entire functions. So far, they are the smallest known in \mathbb{C} .

In the field \mathbb{K} , the same method lets us find URSCM of 11 points for $\mathcal{M}_u(d(a, \mathbb{R}^-))$ and URSCM of 10 points for $\mathcal{M}(\mathbb{K})$.

In 1996, URSCM for polynomials on a field such as E were characterized: they are just the affinely rigid subsets of E [9]. Particularly, the smallest URSCM for polynomials are the affinely rigid sets of 3 points. Concerning entire functions on the field IK, URSCM of 3 points were found: they also are the affinely rigid sets of 3 points [9] and n points [19]. Next, URSCM of 7 points were found for unbounded analytic functions in a disk $d(a, R^-)$ [10]. Here we will show the existence of another family of URSCM for $\mathcal{A}_u(d(a, R^-))$, looking for sets of less than 7 points.

The notion of URSCM is closely linked to that of strong uniqueness polynomial.

Definition: A polynomial $P \in \mathbb{K}[x]$ is called a strong uniqueness polynomial for a subset $\mathcal{F} \subset E(x)$ (resp. $\mathcal{F} \subset \mathcal{M}(\mathbb{K})$, resp. $\mathcal{F} \subset \mathcal{M}(d(a, R^{-}))$) if, given $f, g \in \mathcal{F}$, the equality P(f) = P(g) implies f = g.

The following basic result is immediate and useful to understand the role of URSCM:

Proposition A: Let $S = \{a_1, ..., a_n\} \subset E$, (resp. $S = \{a_1, ..., a_n\} \subset \mathbb{K}$), let $a \in \mathbb{K}$, let $R \in \mathbb{R}^*_+$ and let $P(x) = \prod_{i=1}^n (x - a_i)$. Given any two functions $f, g \in E[x]$ (resp. $f, g \in \mathcal{A}(\mathbb{K})$, resp. $f, g \in \mathcal{A}(d(a, \mathbb{R}^-))$) then $\mathcal{E}(f, S) = \mathcal{E}(g, S)$ if and only if $\frac{P(f)}{P(g)}$ is a constant in \mathbb{E}^* (resp. is a constant in \mathbb{K}^* , resp. is an invertible function in $\mathcal{A}(d(a, \mathbb{R}^-))$). Given any two functions $f, g \in E(x)$ (resp. $f, g \in \mathcal{M}(\mathbb{K})$, resp. $f, g \in \mathcal{M}(d(a, \mathbb{R}^-))$) having the same poles counting multiplicity, then $\mathcal{E}(f, S) = \mathcal{E}(g, S)$ if and only if $\frac{P(f)}{P(g)}$ is a constant in \mathbb{E}^* (resp. is a constant in \mathcal{K}^* , resp. is an invertible function in $\mathcal{A}(d(a, \mathbb{R}^-))$).

Corollary A1 Let $S = \{a_1, ..., a_n\} \subset \mathbb{K}$ (resp. let $S = \{a_1, ..., a_n\} \subset E$) and let $P(x) = \prod_{i=1}^{n} (x - a_i)$. Then P is a polynomial of strong uniqueness for $\mathcal{A}(\mathbb{K})$ (resp. for E[x]) if and only if $S = \{a_1, ..., a_n\}$ is an URSCM for $\mathcal{A}(\mathbb{K})$ (resp. for E[x]).

Remark: Let $P(x) = x^4 - 4x^3$ and let j be a primitive 3-rd root of 1. Clearly, $P(jf) = jP(f) \forall f \in \mathcal{M}(\mathbb{K})$, hence P is not a polynomial of strong uniqueness for $\mathcal{A}(\mathbb{K})$ or for E[x].

As usual, if $p \neq 0$, given $a \in \mathbb{K}$ and $n \in \mathbb{N}$, we denote by $\sqrt[p^n]{a}$ the unique $b \in \mathbb{K}$ such that $b^{(p^n)} = a$.

Given $m, n \in \mathbb{N}$ we set $m \prec n$ if m divides n and $m \not\prec n$ if m does not divide n. When $p \neq 0$, we denote by S the \mathbb{F}_p -automorphism of \mathbb{K} defined by $S(x) = \sqrt[p]{x}$. More generally this mapping has continuation to a \mathbb{K} -algebra automorphism of $\mathbb{K}[X]$ as $S(c \prod_{j=1}^{n} (X - a_j)) = S(c) \prod_{j=1}^{n} (X - S(a_j)), c \in \mathbb{K}$.

Proposition B: Suppose $p \neq 0$. Let r > 0 and let $f \in \mathcal{M}(d(a, r^{-}))$. Then $\sqrt[p]{f}$ belongs to $\mathcal{M}(d(a, r^{-}))$ if and only if f' = 0. Moreover, there exists a unique $t \in \mathbb{N}$ such that $\sqrt[p^{t}]{f} \in \mathcal{M}(d(a, r^{-}))$ and $(\sqrt[p^{t}]{f})' \neq 0$.

Proof: If f is of the form l^p with $l \in \mathcal{M}(d(a, r^-))$, then of course we have f' = 0. Now, suppose that f' = 0. If $f \in \mathcal{A}(d(a, r^-))$, then obviously all non-zero coefficients have an index multiple of p, hence f is of the form l^p , with $l \in \mathcal{A}(d(a, r^-))$. We now consider the general case when $f \in \mathcal{M}(d(a, r^-))$. Let $(b_n, t_n)_{n \in \mathbb{N}}$ be the sequence of poles of f inside $d(a, r^-)$ where t_n is the multiplicity order of b_n . By Theorem 25.5 [14] we can find $h \in \mathcal{A}(d(a, r^-))$ such that $\omega_{b_n}(h) \ge t_n \ \forall n \in \mathbb{N}$. Clearly fh^p belongs to $\mathcal{A}(d(a, r^-))$ and satisfies $(fh^p)' = 0$. Consequently, fh^p is of the form g^p , with $g \in \mathcal{A}(d(a, r^-))$, therefore $f = \left(\frac{g}{h}\right)^p$. On the other hand, the set of integers s such that $\sqrt[p^s]{f}$ belongs to $\mathcal{M}(d(a, r^-))$ is obviously bounded and therefore admits a biggest element, which ends the proof.

Definition and notation: Suppose $p \neq 0$. Given, $f \in \mathcal{M}(d(a, r^{-}))$, we will call ramification index of f the integer t such that $\sqrt[p^t]{f} \in \mathcal{M}(d(a, r^{-}))$ and $(\sqrt[p^t]{f}) \neq 0$.

In the same way, given an algebraically closed field B of characteristic $p \neq 0$ and $P(x) \in B[x]$, we call *ramification index of* P the unique integer t such that $\sqrt[p^t]{P} \in B[x]$ and $(\sqrt[p^t]{P})' \neq 0$. This ramification index will be denoted by $\operatorname{ram}(f)$ for any $f \in \mathcal{M}(d(a, r^{-}))$ or $f \in \mathcal{M}(\mathbb{K})$ and similarly it will be denoted by $\operatorname{ram}(P)$ for any $P \in B[x]$.

Henceforth, given $t \in \mathbb{N}^*$, we will denote by $\mathcal{A}_t(d(a, R^-))$ the subset of the functions $f \in \mathcal{A}(d(a, R^-))$ having a ramification index $\leq t$ and similarly, we put $\mathcal{A}_{u,t}(d(a, R^-)) = \mathcal{A}_t(d(a, R^-)) \cap \mathcal{A}_u(d(a, R^-))$.

Given $k \in \mathbb{K}^*$ and $n, m \in \mathbb{N}^*$ with m < n, we set $Q_{n,m,k}(x) = x^n - x^m + k$ and we denote by $Y_{n,m,k}$ the set of zeros of $Q_{n,m,k}$. In the same way, we set $Q_{n,k}(x) = x^n - x^{n-1} + k$ and we denote by $Y_{n,k}$ the set of zeros of $Q_{n,k}$.

Remark: Suppose $p \neq 0$ and let $f \in \mathcal{M}(d(a, r^{-}))$ have ramification index t as an element of $\mathcal{M}(d(a, r^{-}))$. For every $r' \in]0, r[$, f has the same ramification index as an element of $\mathcal{M}(d(a, r'^{-}))$ because of course, on one hand, $\sqrt[p^{t}]{f} \in \mathcal{M}(d(a, r'^{-}))$ and on the other hand, by properties of analytic functions, $(\sqrt[p^{t}]{f})'$ is not identically zero inside d(a, r').

As recalled above, in [9] the smallest urscm for $\mathcal{A}_u(d(a, R^-))$ have 7 points. By Corollary 2.2 we can find a new family of urscm for $\mathcal{A}_u(d(a, R^-))$, with particularly urscm of 5 points.

Theorem 1: Let $t \in \mathbb{N}^*$ and let $f, g \in \mathcal{M}_u(d(a, R^-))$ be such that the function $\phi = \frac{f^n - f^m + k}{g^n - g^m + k}$ is invertible in $\mathcal{A}(d(a, R^-))$. Let t be the ramification index of $\frac{f^n - f^m - k(\phi - 1)}{f^n - f^m}$. If $2mq^t > n(2q^t - 1) + 3q^t$ then f = g.

Corollary 1.1: Suppose IK is of characteristic 0. If 2m > n+3 then Y(n,m,k) is a bi-urscm for $\mathcal{M}_u(d(a, R^-))$.

Corollary 1.2 : Suppose IK is of characteristic 0. If $n \ge 6$, then Y(n,k) is a bi-urscm for $\mathcal{M}_u(d(a, R^-))$. **Theorem 2:** Let $t \in \mathbb{N}^*$ and let $f, g \in \mathcal{A}_u(d(a, R^-))$ be such that the function $\phi = \frac{f^n - f^m + k}{g^n - g^m + k}$ is invertible in $\mathcal{A}(d(a, R^-))$. Let t be the ramification index of $\frac{f^n - f^m - k(\phi - 1)}{f^n - f^m}$. If $2mq^t > n(2q^t - 1) + 2q^t$ then f = g.

Corollary 2.1 : Suppose IK is of characteristic 0. If $2m \ge n+3$, then Y(n,m,k), is an urscm for $\mathcal{A}_u(d(a, \mathbb{R}^-))$.

Corollary 2.2: Suppose IK is of characteristic 0. If $n \ge 5$, then Y(n,k), is an urscm for $\mathcal{A}_u(d(a, \mathbb{R}^-))$.

Remark: We don't know whether there exists an urscm for $\mathcal{A}_u(d(a, R^-))$ of 4 points or 3 points.

2 The Proof

We must recall the definition of the counting functions in the Nevanlinna Theory.

Definitions and notation: Let $f \in \mathcal{M}(d(a, \mathbb{R}^{-}))$ and let $\alpha \in d(a, \mathbb{R}^{-})$. If f admits α as a zero of order q, we set $\omega_{\alpha}(f) = q$; if f admits α as a pole of order q, we set $\omega_{\alpha}(f) = -q$; and if α is neither a zero nor a pole for f, we set $\omega_{\alpha}(f) = 0$.

We denote by Z(r, f) the counting function of zeros of f in d(0, r) in the following way:

Let (a_n) , $1 \le n \le \sigma(r)$ be the finite sequence of zeros of f such that $0 < |a_n| \le |a_{n+1}| \le |a_{\sigma(r)}| \le r$, of respective order s_n .

We set
$$Z(r, f) = \max(\omega_0(f), 0) \log r + \sum_{n=1}^{\sigma(r)} s_n (\log r - \log |a_n|).$$

Similarly, we set $N(r, f) = Z(r, \frac{1}{f}).$

In order to define the counting function of zeros of f without multiplicity, we put $\overline{\omega_0}(f) = 0$ if $\omega_0(f) \le 0$ and $\overline{\omega_0}(f) = 1$ if $\omega_0(f) \ge 1$.

In the sequel, I will denote an interval of the form $[\rho, +\infty[$, with $\rho > 0$, and J will denote an interval of the form $[\rho, R[$.

Next, denoting by E(r, f) the set $\{a \in d(0, r) \mid \omega_a(f) > 0, \ p^{\operatorname{ram}(f)+1} \not\prec \omega_a(f)\},\$ if $0 \notin E(r, f)$ we set $\widetilde{Z}(r, f) = \sum_{\alpha \in E(r, f)} \log \frac{r}{|\alpha|}$ and if $0 \in E(r, f)$ we set $\widetilde{Z}(r, f) = \log r + \sum_{\alpha \in E(r, f), \alpha \neq 0} \log \frac{r}{|\alpha|}.$

Similarly we define $\widetilde{N}(r, f) = \widetilde{Z}(r, \frac{1}{f})$.

We can now define the Nevanlinna characteristic function of $f: T(r, f) = \max(Z(r, f), T(r, f)).$

Assume that f' is not identically 0. Let $V(r, f) = \{a \in d(0, r) \mid \omega_a(f) < 0, \ p^{\operatorname{ram}(f)+1} \prec \omega_a(f)\}$. We put $N_0(r, f') = \sum_{\alpha \in V(r, f)} [\omega_\alpha(f') - \omega_\alpha(f)] \log \frac{r}{|\alpha|}$.

Given a finite subset S of IK, we put $\Lambda'(r, f, S) = \{a \in d(0, r) \mid f'(a) = 0, f(a) \notin S\}$ and $\Lambda''(r, f, S) = \{a \in d(0, r) \mid p^{\operatorname{ram}(f)+1} \prec \omega_a(f - f(a)), f(a) \in S\}$. Then we can define

$$Z_0^S(r, f') = \sum_{\alpha \in \Lambda'(r, f, S)} \omega_\alpha(f') \log \frac{r}{|\alpha|} + \sum_{\alpha \in \Lambda''(r, f, S)} [\omega_\alpha(f') - \omega_\alpha(f - f(\alpha))] \log \frac{r}{|\alpha|}.$$

Remarks: 1) It is easily verified that all the above functions are positive. 2) If p = 0, we have $\overline{Z}(r, f) = \widetilde{Z}(r, f)$ and $\overline{N}(r, f) = \widetilde{N}(r, f)$.

Lemma 1: Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$, let t = r(f) and let $g = \sqrt[q^{t}]{f}$. Then $\widetilde{Z}(r, f) = \widetilde{Z}(r, g)$ and $\widetilde{N}(r, f) = \widetilde{N}(r, g)$.

Proof: Let a be a zero of f and let $s = \omega_a(f)$. Then s is of the form nt with $n \in \mathbb{N}^*$. If n = 1, then a belongs to both E(r, f) and E(r, g); and if n > 1, then $a \notin E(r, f)$. But then a is a zero of order n of g and hence, a does not belong to E(r, g).

The following Lemmas 2 and 3 are easily checked [12]:

Lemma 2: Let $\alpha_1, \dots, \alpha_n \in \mathbb{K}$ be pairwise distinct, let $P(u) = \prod_{i=1}^n (u - \alpha_i)$ and let $f \in \mathcal{M}(d(0, \mathbb{R}^-))$. Then $Z(r, P(f)) = \sum_{i=1}^n Z(r, f - \alpha_i)$ and $\widetilde{Z}(r, P(f)) = \sum_{i=1}^n \widetilde{Z}(r, f - \alpha_i)$.

Lemma 3: Let $f \in \mathcal{M}(d(0, R^{-}))$ be such that f' is not identically zero and let $\alpha \in d(0, R^{-})$. We have $\omega_{\alpha}(f') = \omega_{\alpha}(f) - 1$ if $p \not\prec \omega_{\alpha}(f)$ and $\omega_{\alpha}(f') \ge \omega_{\alpha}(f)$ if $p \prec \omega_{\alpha}(f)$.

Lemmas 4 and 5 are consequences of Lemma 3.

Lemma 4: Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ be such that $f' \neq 0$ and let S be a finite subset of IK. Then:

$$\sum_{b \in S} \left(Z(r, f-b) - \widetilde{Z}(r, f-b) \right) = Z(r, f') - Z_0^S(r, f').$$

Lemma 5: Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ be such that $f' \neq 0$ and let $0 < r < \mathbb{R}$. Then $N(r, f') = N(r, f) + \widetilde{N}(r, f) - N_0(r, f')$.

Lemma 6: Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ be such that $f' \neq 0$ and let $0 < r < \mathbb{R}$. Then:

$$Z(r, f') \le Z(r, f) + N(r, f) - N_0(r, f') - \log r + O(1), (r \in J).$$

Proof: Without loss of generality, up to change of variable, we can assume that both f and f' have no zero and no pole at 0. Let |f|(r) denote the circular value of f defined as $|f|(r) = \lim_{|x| \to r, |x| \neq r} |f(x)|$

By classical results such as Theorem 23.13 [14], we have $Z(r, f) - N(r, f) = \log(|f|(r)) - \log(|(f(0)|))$, and $Z(r, f') - N(r, f') = \log(|f'|(r)) - \log(|f'|(0)))$. But, it is well-known that $|f'|(r) \leq \frac{|f|(r)}{r}$ (Theorem 1.5.10 [15]); hence we obtain

$$Z(r, f') \le N(r, f') - N(r, f) + Z(r, f) - \log r + O(1).$$

Moreover, by Lemma 4 we have $N(r, f') - N(r, f) = \tilde{N}(r, f) - N_0(r, f')$, which completes the proof.

We know Proposition C [9].

Proposition C : Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$. Then f belongs to $\mathcal{M}_b(d(0, \mathbb{R}^{-}))$ if and only if T(r, f) is bounded when r tends to \mathbb{R} .

Corollary C1: Let $f \in \mathcal{M}(d(0, R^-))$. Then $\mathcal{M}_b(d(0, R^-))$ is a subset of $\mathcal{M}_f(d(0, R^-))$ and $\mathcal{A}_b(d(0, R^-))$ is a subset of $\mathcal{A}_f(d(0, R^-))$.

Remark: Particularly, an invertible function $f \in \mathcal{A}(d(a, R^{-}))$ has a constant absolute value and therefore lies in $\mathcal{A}_{b}(d(a, R^{-}))$.

The following Theorem D1 is known as Second Main Theorem on Three Small Functions [17]. It holds in p-adic analysis as well as in complex analysis, where it was shown first [17].

Notice that this theorem was generalized to any finite set of small functions by Yamanoy in complex analysis [18], through methods that have no equivalent on a p-adic field.

Remark: Let $f \in \mathcal{M}_u(d(0, \mathbb{R}^-))$ and let $w \in \mathcal{M}_b(d(0, \mathbb{R}^-))$. Then of course, $w \in \mathcal{M}_f(d(0, \mathbb{R}^-))$.

The previous results enable us to prove the ultrametric Nevanlinna Main Theorem in a basic form:

 $\begin{array}{ll} \textbf{Theorem D1:} \quad Let \ \alpha_1, ..., \alpha_n \in \ \mathbb{K}, \ with \ n \geq 2, \ and \ let \ f \in \mathcal{M}(d(0, R^-)) \ (resp. \ f \in \mathcal{M}(\ \mathbb{K})) \\ of \ ramification \ index \ t. \ Let \ S = \{ \ \sqrt[q^t]{\alpha_1}, ..., \ \sqrt[q^t]{\alpha_n} \}. \ Then \ we \ have: \\ \hline \frac{(n-1)T(r,f)}{q^t} \leq \sum_{i=1}^n \widetilde{Z}(r,f-\alpha_i) + Z(r,(\ \sqrt[q^t]{f})') - Z_0^S(r,(\ \sqrt[q^t]{f})') + O(1) \ \ \forall r \in J \\ (resp. \ \forall r \in I). \\ Moreover, \ if \ f \ belongs \ to \ \mathcal{A}(d(0,R^-)) \ (resp. \ f \in \mathcal{A}(\ \mathbb{K})), \ then \\ \hline \frac{nT(r,f)}{q^t} \leq \sum_{i=1}^n \widetilde{Z}(r,f-\alpha_i) + Z(r,(\ \sqrt[q^t]{f})') - Z_0^S(r,(\ \sqrt[q^t]{f})') + O(1) \ \ \forall r \in J \\ (resp. \ \forall r \in I). \end{array}$

Now, following the same method as in Theorem 2.5.9 [15], we can obtain that classical form of the Nevalinna inequality where \overline{Z} and \overline{N} are replaced by \widetilde{Z} and \widetilde{N} .

Theorem D2: Let $\alpha_1, ..., \alpha_n \in \mathbb{K}$, with $n \geq 2$, and let $f \in \mathcal{M}(d(0, R^-))$ (resp. $f \in \mathcal{M}(\mathbb{K})$) of ramification index t. Let $S = \{ \sqrt[qt]{\alpha_1}, ..., \sqrt[qt]{\alpha_n} \}$. Then we have: $\frac{(n-1)T(r,f)}{q^t} \leq \sum_{i=1}^n \widetilde{Z}(r,f-\alpha_i) + \widetilde{N}(r,f) - Z_0^S(r,(\sqrt[qt]{f})') - N_0(r,(\sqrt[qt]{f})') - \log r + O(1) \quad \forall r \in J$ (resp. $\forall r \in I$).

Proof of Theorems D1 and D2: The proof of Theorems D1 and D2 was given in [12]. We will recall it. For convenience, we put $g = \sqrt[q^t]{f}$, and $\beta_i = \sqrt[q^t]{\alpha_i}$ for every i = 1, ..., n. So $S = \{\beta_1, ..., \beta_n\}$.

Let $f \in \mathcal{M}(K)$ (resp. $f \in \mathcal{M}(d(a, R^{-}))$) and let $(a_n, s_n)_{n \in \mathbb{N}}$ be the set of zeros of f in IK (resp. in $d(a, R^{-})$) with $|a_n| \leq |a_{n+1}|$ whereas s_n is the order of multiplicity of a_n . We denote by $\mathcal{D}(f)$ the sequence $(a_n, s_n)_{n \in \mathbb{N}}$.

By Theorem 25.5 [14] there exist ϕ , $\psi \in \mathcal{A}(d(0, R^{-}))$ such that $g = \frac{\phi}{\psi}$, and

- (1) $Z(r, \phi) \le Z(r, g) + 1$,
- (2) $Z(r, \psi) \le N(r, g) + 1.$

By Lemma 2.5.5 [15], there exists $A \in \mathbb{R}$ and for any $r \in J$ (resp. $r \in I$), there exists $l(r) \in \{1, ..., n\}$ such that $Z(r, \phi - \beta_j \psi) \ge \max(Z(r, \phi), Z(r, \psi)) + A \quad \forall j \ne l(r)$, therefore there exists $B \in \mathbb{R}$ such that

(3) $Z(r, \phi - \beta_i \psi) \ge T(r, g) + B \quad \forall i \ne l(r), \quad \forall r \in J \text{ (resp. } \forall r \in I).$

We check that $\mathcal{D}(\phi) - \mathcal{D}(\frac{\phi}{\psi}) = \mathcal{D}(\psi) - \mathcal{D}(\frac{\psi}{\phi})$, therefore $\mathcal{D}(\phi - \beta_i \psi) = \mathcal{D}(g - \beta_i) + \mathcal{D}(\psi) - \mathcal{D}(\frac{1}{g - \beta_i}) = \mathcal{D}(g - \beta_i) + \mathcal{D}(\psi) - \mathcal{D}(\frac{1}{g})$. Then, applying counting functions, we have $Z(r, \phi - \beta_i \psi) = Z(r, g - \beta_i) + Z(r, \psi) - N(r, g)$, and therefore, by (2), we obtain (4) $Z(r, \phi - \beta_i \psi) \leq Z(r, g - \beta_i) + 1$. Then, by (3) and (4) we obtain (n - 1)(T(r, g) + B) $\leq \sum_{\substack{1 \leq i \leq n, \\ i \neq l(r)}} Z(r, \phi - \beta_i \psi) \leq \sum_{\substack{1 \leq i \leq n, \\ i \neq l(r)}} Z(r, g - \beta_i) + n - 1 \quad \forall r \in J \text{ (resp. } \forall r \in I).$ Putting M = (n - 1)(1 - B), we obtain: (5) $(n - 1)T(r, g) \leq \sum_{i=1}^{n} Z(r, g - \beta_i) + M - Z(r, g - \beta_{l(r)}) \quad \forall r \in J \text{ (resp. } \forall r \in I).$ By Lemma 4, we have $\sum_{i=1}^{n} Z(r, g - \beta_i) = \sum_{i=1}^{n} \widetilde{Z}(r, g - \beta_i) + Z(r, g') - Z_0^S(r, g')$, hence by (5) we obtain, (6) $(n - 1)T(r, g) \leq \sum_{i=1}^{n} \widetilde{Z}(r, g - \beta_i) + Z(r, g') - Z_0^S(r, g') - Z(r, g - \beta_{l(r)}) + O(1) \quad \forall r \in J \text{ (resp. } \forall r \in I).$

Now, since $T(r,g) = \frac{T(r,f)}{q^t}$ and since $\widetilde{Z}(r,g-\beta_i) = \widetilde{Z}(r,f-\alpha_j) \ \forall j=i,...,n$, we obtain

$$\frac{(n-1)T(r,f)}{q^t} \le \sum_{i=1}^n \widetilde{Z}(r,f-\alpha_i) + Z(r,(\sqrt[q^t]{f})') - Z_0^S(r,(\sqrt[q^t]{f})') + O(1) \ \forall r \in J$$

(resp. $\forall r \in I$).

Suppose now that f belongs to $\mathcal{A}(d(a, R^{-}))$ or to $\mathcal{A}(\mathbb{IK})$. Then so does g. By Lemma 2.5.5 [15] we have $Z(r, g - \beta_{l(r)}) = T(r, g) + O(1) \ \forall r \in J \ (resp. \ \forall r \in I)$ so, by (6) we obtain $nT(r,g) \leq \sum_{i=1}^{n} \widetilde{Z}(r, g - \beta_i) + Z(r, g') - Z_0^S(r, g') + O(1) \ \forall r \in J \ (resp. \ \forall r \in I), \text{ and conse-}$

quently,

$$\frac{nT(r,f)}{q^t} \le \sum_{i=1}^n \widetilde{Z}(r,f-\alpha_i) + Z(r,(\sqrt[q^t]{f})') - Z_0^S(r,(\sqrt[q^t]{f})') + O(1) \ \forall r \in J \ (\text{resp. } \forall r \in I).$$

Now, returning to the general case, we have $g' = (g - \beta_{l(r)})'$ and $\tilde{N}(r,g) = \tilde{N}(r,g - \beta_{l(r)})$. So, by Lemma 6, we have:

(7)
$$Z(r,g') - Z(r,g - \beta_{l(r)}) \leq \tilde{N}(r,g) - N_0(r,g') - \log r + O(1).$$

Finally, by (6), (7) we obtain

$$\frac{(n-1)T(r,f)}{q^t} \leq \sum_{i=1}^n \tilde{Z}(r,f-\alpha_i) + \tilde{N}(r,f) - Z_0^S(r,(\sqrt[q^t]{f})') - N_0(r,(\sqrt[q^t]{f})') - \log r \ \forall r \in J \text{ (resp. } \forall r \in I).$$

That completes the proof.

Theorem D3: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_u(d(0, R^-))$) and let $u_1, u_2, u_3 \in \mathcal{M}_f(\mathbb{K})$ (resp. $u_1, u_2, u_3 \in \mathcal{M}_f(d(0, R^-))$) be pairwaise distinct. Let $\phi(x) = \frac{(f(x) - u_1(x))(u_2(x) - u_3(x))}{(f(x) - u_3(x))(u_2(x) - u_1(x))}$ and let t be the ramifucation index of ϕ . Then $\frac{T(r, f)}{q^t} \leq \sum_{j=1}^3 \widetilde{Z}(r, f - u_j) + o(T(r, f)).$

Proof: By Theorem D2, we have T(x, t)

 $\begin{array}{ll} (1) & \frac{T(r,\phi)}{q^t} \leq \widetilde{Z}(r,\phi) + \widetilde{Z}(r,\phi-1) + \widetilde{N}(r,\phi) + O(1). \\ & \text{Next, we have } T(r,f) \leq T(r,f-u_j) + T(r,u_j) \; (j=1,2,3), \, \text{hence } T(r,f) \leq T(r,\frac{u_3-u_1}{f-u_3}) + o(T(r,f)), \\ & \text{o}(T(r,f)), \, \text{thereby } T(r,f) \leq T(r,\frac{u_3-u_1}{f-u_3} + 1) + o(T(r,f)) = T(r,\frac{f-u_1}{f-u_3}) + o(T(r,f)). \\ & \text{Now, } T(r,\frac{u_2-u_1}{u_2-u_3}) = o(T(r,f). \text{ Consequently, by writing } \frac{f-u_1}{f-u_3} = \phi\left(\frac{u_2-u_1}{u_2-u_3}\right) \text{ we have } \\ T(r,\frac{f-u_1}{f-u_3}) \leq T(r,\phi) + T(r,\frac{u_2-u_1}{u_2-u_3}) \leq T(r,\phi) + o(T(r,f)) \text{ and finally } T(r,f) \leq T(r,\phi) + o(T(r,f)). \\ & \text{Now, we can check that } \\ (2) & \frac{T(r,f)}{q^t} \leq \widetilde{Z}(r,\phi) + \widetilde{Z}(r,\phi-1) + \widetilde{N}(r,\phi) + o(T(r,f)). \\ & \text{Now, we can check that } \\ \widetilde{Z}(r,\phi) + \widetilde{Z}(r,\phi-1) + \widetilde{N}(r,\phi) \leq \sum_{j=1}^3 \widetilde{Z}(r,f-u_j) + \sum_{1 \leq j < k \leq 3} \widetilde{Z}(r,u_k-u_j) \leq \sum_{j=1}^3 \widetilde{Z}(r,f-u_j) + o(T(r,f)) \\ & \text{which, by (2), completes the proof.} \end{array}$

We are now ready to state and prove Theorem D4.

Theorem D4: Let $f \in \mathcal{M}(\mathbb{K})$ (resp. $f \in \mathcal{M}_u(d(0, R^-))$), let $u_1, u_2 \in \mathcal{M}_f(\mathbb{K})$ (resp. $u_1, u_2 \in \mathcal{M}_f(d(0, R^-))$) be distinct and let t be the ramification index of $\frac{f(x) - u_1(x)}{f(x) - u_2(x)}$. Then

$$\frac{T(r,f)}{q^t} \le \widetilde{Z}(r,f-u_1) + \widetilde{Z}(r,f-u_2) + \widetilde{N}(r,f) + o(T(r,f)).$$

Proof: Let $g = \frac{1}{f}$, $w_j = \frac{1}{u_j}$, j = 1, 2, $w_3 = 0$. Clearly, T(r, g) = T(r, f) + O(1), $T(r, w_j) = T(r, u_j)$, j = 1, 2, so we can apply Theorem D3 to g, w_1 , w_2 , w_3 . On the other hand,

$$\frac{(g(x) - w_1(x))w_2(x)}{(g(x) - w_2(x))w_1(x)} = \frac{f(x) - u_1(x)}{f(x) - u_2(x)}$$

Thus by Theorem D3 we have: $\frac{T(r,g)}{q^t} \le \widetilde{Z}(r,g-w_1) + \widetilde{Z}(r,g-w_2) + \widetilde{Z}(r,g) + o(T(r,g)).$

But we notice that $\widetilde{Z}(r, g - w_j) = \widetilde{Z}(r, f - u_j)$ for j = 1, 2 and $\widetilde{Z}(r, g) = \widetilde{N}(r, f)$. Moreover, we know that o(T(r, g)) = o(T(r, f)). Consequently, the claim is proven when u_1u_2 is not identically zero.

Next, by setting $g = f - u_1$ and $u = u_2 - u_1$, we obtain Corollary D5:

Corollary D5: Let $g \in \mathcal{M}(\mathbb{K})$ (resp. $g \in \mathcal{M}_u(d(0, \mathbb{R}^-)))$), let $u \in \mathcal{M}_g(\mathbb{K})$ (resp. $u \in \mathcal{M}_g(d(0, \mathbb{R}^-)))$) and let t be the ramification index of $\frac{g-u}{a}$.

Then
$$\frac{T(r,g)}{q^t} \leq \widetilde{Z}(r,g) + \widetilde{Z}(r,g-u) + \widetilde{N}(r,g) + o(T(r,g)).$$

Corollary D6: Let $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}_u(d(0, \mathbb{R}^-))$) and let $u_1, u_2 \in \mathcal{A}_f(\mathbb{K})$ (resp. $u_1, u_2 \in \mathcal{A}_f(d(0, \mathbb{R}^-))$) be distinct and let t be the ramification index of $\frac{f - u_1}{f - u_2}$. Then

$$\frac{T(r,f)}{q^t} \le \widetilde{Z}(r,f-u_1) + \widetilde{Z}(r,f-u_2) + o(T(r,f)).$$

Corollary D7: Let $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}_u(d(0, \mathbb{R}^-))$) and let $u \in \mathcal{A}_f(\mathbb{K})$ (resp. $u \in \mathcal{A}_f(d(0, \mathbb{R}^-))$) be non-identically zero and let t be the ramification index of $\frac{f-u}{f}$. Then

$$\frac{T(r,f)}{q^t} \leq \widetilde{Z}(r,f) + \widetilde{Z}(r,f-u) + o(T(r,f)).$$

In the proof of Theorems 1 and 2 we will need the following lemma:

Lemma 7: Let $f \in \mathcal{A}(\mathbb{K})$ (resp. $f \in \mathcal{A}_u(d(0, \mathbb{R}^-))$) and let t be the ramification index of f. Let $m, n \in \mathbb{N}^*, m < n$, be prime to p. Then the ramification index of $f^n - f^m$ is also equal to t.

Proof: Since the lemma is trivial when p = 0, we suppose $p \neq 0$, hence p = q. Set $h = p^t$ and $F = f^n - f^m$. By hypothesis, since both m, n are prime to p, the ramification index of both f^m , f^n is equal to t and hence so are those of f^{n-m} and $f^{n-m} - 1$. Let $g = \sqrt[h]{f}$. Then g belongs to $\mathcal{A}(\mathbb{K})$ (resp. to $\mathcal{A}_u(d(0, \mathbb{R}^-))$) and so does $\sqrt[h]{F}$. Let $G = \sqrt[h]{F}$. Then we can check that $G' = g'g^{m-1}(ng^{n-m} - m)$ hence G' is not identically 0. Consequently, the ramification index of F is t.

Proof of Theorem 1 and Theorem 2: We can obviously suppose a = 0. Suppose that f, g are two distinct functions. Let $F = f^n - f^m$. By Corollary D5, we can obtain

$$\frac{T(r,F)}{q^t} \leq \widetilde{Z}(r,F) + \widetilde{Z}(r,F-k(\phi-1)) + \widetilde{N}(r,F) + o(T(r,f)$$

Now, clearly, $\widetilde{N}(r,F) \leq T(r,f)$ and $\widetilde{Z}(r,F) \leq \widetilde{Z}(r,f) + \widetilde{Z}(r,f^{n-m}-1) + O(1)$ and $\widetilde{Z}(r,f^{n-m}-1) \leq (n-m)T(r,f)$; hence (1) $\widetilde{Z}(r,F) \leq (n-m+1)T(r,f) + o(T(r,f))$. Similarly, (2) $\widetilde{Z}(r,F-k(\phi-1)) = \widetilde{Z}(r,g^n-g^m) \leq \widetilde{Z}(r,g) + \widetilde{Z}(r,g^{n-m}-1)$.

Of course, since ϕ is bounded, by Proposition C we have T(r, f) = T(r, g) + O(1); hence, by (1) and (2), we obtain $T(r, F) \leq q^t(2n - 2m + 3)T(r, f) + o(T(r, f))$.

On the other hand, by 2.4.15 [15], we have T(r, F) = nT(r, f) + O(1); hence $nT(r, f) \leq q^t(2n - 2m + 3)T(r, f) + o(T(r, f))$. That yields $2mq^t \leq n(2q^t - 1) + 3q^t$, a contradiction to the hypothesis of Theorem 1.

Next, in the hypotheses of Theorem 2, we have N(r, f) = N(r, g) = 0; hence we can get $T(r, F) \leq q^t(2n - 2m + 2)T(r, f) + o(T(r, f))$ and hence $2mq^t \leq n(2q^t - 1) + 2q^t$, a contradiction to the hypotheses of Theorem 2. That ends the proofs of Theorems 1 and 2.

Proof of Corollary 1.1: Suppose Y(n,m,k) is not a bi-urscm for $\mathcal{M}_u(d(a, R^-))$ and let $f, g \in \mathcal{M}_u(d(a, R^-))$ be such that $\mathcal{E}(f, Y(n, m, k)) = \mathcal{E}(g, Y(n, m, k))$. By Proposition A, the function $\phi = \frac{f^n - f^m + k}{g^n - g^m + k}$ is an invertible element of $\mathcal{A}(d(a, R^-))$. And since \mathbb{K} has characteristic zero, we have nT(r, f) > 2(n - m + 1)T(r, f) + o(T(r, f)), hence by Theorem 1, f = g.

The proof of Corollary 2.1 is similar by applying Theorem 2.

Acknowledgement The authors thank the referee for pointing out many misprints.

References

- AN, T.T.H., WANG J.T.Y. AND WONG, P.M., Unique range sets and uniqueness polynomials in positive characteristic II, Acta Arithmetica, p. 115-143 (2005).
- [2] AN, T. T. H. AND WANG J. T.Y., Unique range sets for non-archimedean entire functions in positive characteristic field, Ultrametric Functional Analysis, Contemporary Mathematics 384, AMS, p. 323-333 (2005)
- [3] AN, T.T.H., WANG J.T.Y. AND WONG, P.M., Strong uniqueness polynomials: the complex case, Complex Variables, Vol. 49, No. 1, p. 25-54 (2004).
- [4] AN, T. T. H. AND HA H. K., On uniqueness polynomials and bi-urs for p-adic meromorphic functions, J. Number Theory 87, 211- 221(2001).

- [5] AN, T. T. H. AND ESCASSUT, A, Meromorphic solutions of equations over non-Archimedean fields, Ramanujan Journal Vol. 15, No. 3, p.415-433 (2008)
- [6] BARTELS, S., Meromorphic functions sharing a set with 17 elements, ignoring multiplicities, Complex variable Theory and Applications, 39, 1, p.85-92 (1999).
- [7] BOUTABAA, A., Théorie de Nevanlinna p-adique, Manuscripta Math. 67, p. 251-269 (1990).
- [8] BOUTABAA, A. AND ESCASSUT, A., On uniqueness of *p*-adic meromorphic functions, CRAS s. I, t. 325, p. 571-575, (1997).
- [9] BOUTABAA, A., ESCASSUT, A. AND HADDAD, L., On uniqueness of p-adic entire functions, Indag. Math. 8, 145-155 (1997).
- [10] BOUTABAA, A. AND ESCASSUT, A., URS and URSIMS for p-adic meromorphic functions inside a disk, Proc. of the Edinburgh Mathematical Society 44, p. 485-504 (2001).
- [11] BOUTABAA, A., CHERRY, W. AND ESCASSUT, A., Unique Range sets in positive characteristic, Acta Arithmetica 103.2, p.169-189 (2002).
- [12] BOUTABAA, A. AND ESCASSUT, A., Nevanlinna Theory in characteristic *p*, Italian Journal of Pure and Applied Mathematics, n.23, p. 45-66 (2008).
- [13] ESCASSUT, A., HADDAD, L., VIDAL, R., Urs, Ursim, and nonurs, Journal of Number Theory, 75, p. 133-144 (1999).
- [14] ESCASSUT, A. Analytic elements in p-adic analysis WSCP. (1995)
- [15] ESCASSUT, A., p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis, p. 42- 138. Mathematics Monograph, Series 11. Science Press.(Beijing 2008).
- [16] FRANK, G AND REINDERS, M., A unique range set for meromorphic functions with 11 elements, Complex Variable Theory Applic, 37, p. 185-193 (1998).
- [17] HU, P.C. AND YANG, C.C., Meromorphic Functions over non-Archimedean Fields, Kluwer Academic Publishers, (2000).
- [18] YAMANOI K., The second main theorem for small functions and related problems, Acta Mathematica 192, p. 225-294 (2004).
- [19] YANG, C.C. AND CHERRY, W., Uniqueness of non-Archimedean entire functions shari,g sets of values counting multiplicities, Proc. Amer.Math. Soc. 127, p.967-971 (1998).

Received: 08.04.2013 Accepted: 13.10.2013

> ¹ Laboratoire de Mathematiques UMR 6620 Université Blaise Pascal Les Cézeaux 63171 Aubiere E-mail: alain.escassut@math.univ-bpclermont.fr

> > ²Departamento de Matematica Facultad de Ciencias Fsicas y Matematicas Universidad de Concepcion Conception, Chile E-mail: jacqojeda@udec.cl