Unique range sets of 5 points for unbounded analytic functions inside an open disk

by
${ }^{1}$ Alain Escassut and ${ }^{2}$ Jacqueline Ojeda *

Abstract

Let \mathbb{K} be a complete algebraically closed p -adic field of characteristic $p \geq 0$ and let $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$be the set of unbounded analytic functions inside the disk $d\left(a, R^{-}\right)=\{x \in$ $\mathbb{I K}|:|x-a|<R\}$. We recall the definition of urscm and the ultrametric Nevanlinna Theory on 3 small functions in order to find new urscm for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$. Results depend on the characteristic. In characteristic 0 , we can find urscm of 5 points. Some results on bi-urscm are given for meromorphic functions.

Key Words: p-adic analytic functions, URSCM, Nevanlinna, ultrametric, unicity, distribution of values.
2010 Mathematics Subject Classification: Primary 12J25, Secondary 30D35, 30G06.

1 Introduction and main result

We shall introduce URSCM for p-adic meromorphic functions. Many studies were made in the eighties and the nineties concerning URSCM for functions in \mathbb{C}, [3], [6], [16]. Studies were also made in the non-archimedean context by the late nineties and next [1], [2], [3], [4], [5], [8], [9], [10], [11], [13]. Here, we will only consider the situation in an ultrametric field.

Definitions and notation: Throughout the paper, E is an algebraically closed field of characteristic $p \geq 0$ without any assumption on the existence of an absolute value. A subset S of E is said to be affinely rigid if there is no similarity t on E other than the identity, such that $t(S)=S$.

We denote by \mathbb{K} an algebraically closed field complete with respect to an ultrametric absolute value $|$.$| and of characteristic p \geq 0$. We will denote by q the characteristic exponent of \mathbb{K} : if $p \neq 0$, then $q=p$ and if $p=0$ then $q=1$.

[^0]Given $\alpha \in \mathbb{K}$ and $R \in \mathbb{R}_{+}^{*}$, we denote by $d(\alpha, R)$ the disk $\{x \in \mathbb{K}||x-\alpha| \leq R\}$, by $d\left(\alpha, R^{-}\right)$the disk $\{x \in \mathbb{K}||x-\alpha|<R\}$, by $\mathcal{A}(\mathbb{K})$ the \mathbb{K}-algebra of analytic functions in $\mathbb{I K}$ (i.e. the set of power series with an infinite radius of convergence) and by $\mathcal{M}(\mathbb{K})$ the field of meromorphic functions in $\mathbb{I K}$ (i.e. the field of fractions of $\mathcal{A}(\mathbb{K})$).

In the same way, given $\alpha \in \mathbb{K}, R>0$ we denote by $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$the \mathbb{K}-algebra of analytic functions in $d\left(\alpha, R^{-}\right)$(i.e. the set of power series with an radius of convergence $\geq R$) and by $\mathcal{M}\left(d\left(\alpha, R^{-}\right)\right)$the field of fractions of $\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right)$. We then denote by $\mathcal{A}_{b}\left(d\left(\alpha, R^{-}\right)\right)$the IK-algebra of bounded analytic functions in $d\left(\alpha, r^{-}\right)$and by $\mathcal{M}_{b}\left(d\left(\alpha, r^{-}\right)\right)$the field of fractions of $\mathcal{A}_{b}\left(d\left(\alpha, r^{-}\right)\right)$. And we set $\mathcal{A}_{u}\left(d\left(\alpha, R^{-}\right)\right)=\mathcal{A}\left(d\left(\alpha, R^{-}\right)\right) \backslash \mathcal{A}_{b}\left(d\left(\alpha, R^{-}\right)\right)$and $\mathcal{M}_{u}\left(d\left(\alpha, R^{-}\right)\right)=$ $\mathcal{M}\left(d\left(\alpha, R^{-}\right)\right) \backslash \mathcal{M}_{b}\left(d\left(\alpha, R^{-}\right)\right)$.

Given a family of functions \mathcal{F} defined in \mathbb{K} or in a subset S of \mathbb{K} (resp. in E or in a subset S of E), with values in $\mathbb{I K}$ (resp. in E), S is called an ursim for \mathcal{F} if for any two non-constant functions $f, g \in \mathcal{F}$ satisfying $f^{-1}(S)=g^{-1}(S)$, these functions are equal.

That definition particularly applies to $\mathcal{A}(\mathbb{I K}), \mathcal{M}(\mathbb{K}), \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$, $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right), \mathbb{K}[x], \mathbb{K}(x), E[x], E(x)$.

We will now recall the definition of URSCM. Given a subset S of E and $f \in E(x)$, we denote by $\mathcal{E}(f, S)$ the set in $E \times \mathbb{N}^{*}$:

$$
\bigcup_{a \in S}\left\{(z, q) \in E \times \mathbb{N}^{*} \mid z \text { is a zero of order } q \text { of } f(x)-a\right\}
$$

Similarly, consider now meromorphic functions in the field \mathbb{K}. For a subset S of \mathbb{K} and $f \in \mathcal{M}(\mathbb{I K})$ (resp. $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$) we denote by $\mathcal{E}(f, S)$ the set in $\mathbb{K} \times \mathbb{N}^{*}: \bigcup_{a \in S}\{(z, q) \in$ $\mathbb{K} \times \mathbb{N}^{*} \mid z$ is a zero of order q of $\left.f(x)-a\right\}$.

Let \mathcal{F} be a non-empty subset of $\mathcal{A}(\mathbb{I K})$ (resp. of $\mathcal{M}(\mathbb{I K})$, resp. of $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$, resp. of $\left.\mathcal{M}\left(d\left(a, R^{-}\right)\right)\right)$. We say that two non-constant functions $f, g \in \mathcal{F}$ share S, counting multiplicity if $\mathcal{E}(f, S)=\mathcal{E}(g, S)$; and the set S is called a unique range set counting multiplicity (an URSCM in brief) for \mathcal{F} if for any two non-constant $f, g \in \mathcal{F}$ sharing S counting multiplicity, one has $f=g$. Next, the set S will be called a $b i-U R S C M$ for \mathcal{F} if for two non-constant functions $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$sharing S counting multiplicity and having the same poles, counting multiplicity, one has $f=g$ [8].

Particularly, if we consider a family $\mathcal{F} \subset \mathcal{A}(K)$ or $\mathcal{F} \subset \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$and a set $S=$ $\left\{a_{1}, \ldots, a_{t}\right\} \subset \mathbb{K}\left(\right.$ resp. a set $\left.S=\left\{a_{1}, \ldots, a_{t}\right\} \subset E\right)$ with $a_{i} \neq a_{j} \forall i \neq j$, we can set $P(X)=$ $\prod_{j=1}^{t}\left(X-a_{j}\right)$ and then the set $S=\left\{a_{1}, \ldots, a_{t}\right\}$ is an URSCM for \mathcal{F} if for any two functions $f, g \in \mathcal{F}$ such that $P \circ f$ and $P \circ g$ have the same zeros with the same multiplicity, then $f=g$. Similarly, if we consider a family $\mathcal{F} \subset \mathcal{M}(K)$ or $\mathcal{F} \subset \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$and a set $S=$ $\left\{a_{1}, \ldots, a_{t}\right\} \subset \mathbb{K}\left(\right.$ resp. a set $\left.S=\left\{a_{1}, \ldots, a_{t}\right\} \subset E\right)$ with $a_{i} \neq a_{j} \forall i \neq j$, we can set $P(X)=\prod_{j=1}^{t}\left(X-a_{j}\right)$ and then the set $S=\left\{a_{1}, \ldots, a_{t}\right\}$ is a bi-URSCM for \mathcal{F} if for any two
functions $f, g \in \mathcal{F}$ having the same poles (counting multiplicity) such that $P \circ f$ and $P \circ g$ have the same zeros with the same multiplicity, then $f=g$.

Remark: An URSCM S for a family of functions $\mathcal{F}=\mathcal{M}(\mathbb{I K}), \mathcal{A}(\mathbb{I K})$,
$\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right), \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$must obviously be affinely rigid. Indeed suppose that S is not affinely rigid and let t be a similarity of \mathbb{K} such that $t(S)=S$. Then, if f belongs to \mathcal{F}, so does $f \circ t$ and therefore we can check that $\mathcal{E}(f, S)=\mathcal{E}(f \circ t, S)$. And it is a bi-URSCM if for any two functions $f, g \in \mathcal{F}$ such that $P \circ f$ and $P \circ g$ have the same zeros and the same poles, counting multiplicity, then $f=g$.

Similar definitions were given for meromorphic functions on \mathbb{C} before these questions were examined on the field \mathbb{K}. URSCM of only 11 points for complex meromorphic functions in
the whole field \mathbb{C} where found in [16] and the same method showed the existence of URSCM of only 7 points for complex entire functions. So far, they are the smallest known in \mathbb{C}.

In the field \mathbb{K}, the same method lets us find URSCM of 11 points for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$and URSCM of 10 points for $\mathcal{M}(\mathbb{I K})$.

In 1996, URSCM for polynomials on a field such as E were characterized: they are just the affinely rigid subsets of $E[9]$. Particularly, the smallest URSCM for polynomials are the affinely rigid sets of 3 points. Concerning entire functions on the field IK, URSCM of 3 points were found: they also are the affinely rigid sets of 3 points [9] and n points [19]. Next, URSCM of 7 points were found for unbounded analytic functions in a disk $d\left(a, R^{-}\right)$[10]. Here we will show the existence of another family of URSCM for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$, looking for sets of less than 7 points.

The notion of URSCM is closely linked to that of strong uniqueness polynomial.
Definition: A polynomial $P \in \mathbb{K}[x]$ is called a strong uniqueness polynomial for a subset $\mathcal{F} \subset E(x)$ (resp. $\mathcal{F} \subset \mathcal{M}(\mathbb{I K})$, resp. $\mathcal{F} \subset \mathcal{M}\left(d\left(a, R^{-}\right)\right)$) if, given $f, g \in \mathcal{F}$, the equality $P(f)=P(g)$ implies $f=g$.

The following basic result is immediate and useful to understand the role of URSCM:
Proposition A: Let $S=\left\{a_{1}, \ldots, a_{n}\right\} \subset E$, (resp. $\left.S=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{K}\right)$, let $a \in \mathbb{I K}$, let $R \in \mathbb{R}_{+}^{*}$ and let $P(x)=\prod_{i=1}^{n}\left(x-a_{i}\right)$. Given any two functions $f, g \in E[x]$ (resp. $f, g \in \mathcal{A}(\mathbb{K})$, resp. $f, g \in \mathcal{A}\left(d\left(a, R^{-}\right)\right)$) then $\mathcal{E}(f, S)=\mathcal{E}(g, S)$ if and only if $\frac{P(f)}{P(g)}$ is a constant in E^{*} (resp. is a constant in \mathbb{K}^{*}, resp. is an invertible function in $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$). Given any two functions $f, g \in E(x)$ (resp. $f, g \in \mathcal{M}(\mathbb{I K})$, resp. $f, g \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$) having the same poles counting multiplicity, then $\mathcal{E}(f, S)=\mathcal{E}(g, S)$ if and only if $\frac{P(f)}{P(g)}$ is a constant in E^{*} (resp. is a constant in \mathbb{K}^{*}, resp. is an invertible function in $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$).

Corollary A1 Let $S=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{K}\left(\right.$ resp. let $S=\left\{a_{1}, \ldots, a_{n}\right\} \subset E$) and let $P(x)=$ $\prod_{i=1}^{n}\left(x-a_{i}\right)$. Then P is a polynomial of strong uniqueness for $\mathcal{A}(\mathbb{I K})$ (resp. for $E[x]$) if and only if $S=\left\{a_{1}, \ldots, a_{n}\right\}$ is an URSCM for $\mathcal{A}(\mathbb{I K})$ (resp. for $E[x]$).

Remark: Let $P(x)=x^{4}-4 x^{3}$ and let j be a primitive 3-rd root of 1. Clearly, $P(j f)=$ $j P(f) \forall f \in \mathcal{M}(\mathbb{K})$, hence P is not a polynomial of strong uniqueness for $\mathcal{A}(\mathbb{K})$ or for $E[x]$.

As usual, if $p \neq 0$, given $a \in \mathbb{K}$ and $n \in \mathbb{N}$, we denote by $\sqrt[p^{n}]{a}$ the unique $b \in \mathbb{K}$ such that $b^{\left(p^{n}\right)}=a$.

Given $m, n \in \mathbb{N}$ we set $m \prec n$ if m divides n and $m \ll n$ if m does not divide n. When $p \neq 0$, we denote by \mathcal{S} the \mathbb{F}_{p}-automorphism of \mathbb{K} defined by $\mathcal{S}(x)=\sqrt[p]{x}$. More generally this mapping has continuation to a \mathbb{K}-algebra automorphism of $\mathbb{K}[X]$ as $\mathcal{S}\left(c \prod_{j=1}^{n}\left(X-a_{j}\right)\right)=\mathcal{S}(c) \prod_{j=1}^{n}\left(X-\mathcal{S}\left(a_{j}\right)\right), c \in \mathbb{K}$.

Proposition B: Suppose $p \neq 0$. Let $r>0$ and let $f \in \mathcal{M}\left(d\left(a, r^{-}\right)\right)$. Then $\sqrt[p]{f}$ belongs to $\mathcal{M}\left(d\left(a, r^{-}\right)\right)$if and only if $f^{\prime}=0$. Moreover, there exists a unique $t \in \mathbb{N}$ such that $\sqrt[p^{t}]{f} \in \mathcal{M}\left(d\left(a, r^{-}\right)\right)$and $(\sqrt[p^{t}]{f})^{\prime} \neq 0$.

Proof: If f is of the form l^{p} with $l \in \mathcal{M}\left(d\left(a, r^{-}\right)\right)$, then of course we have $f^{\prime}=0$. Now, suppose that $f^{\prime}=0$. If $f \in \mathcal{A}\left(d\left(a, r^{-}\right)\right)$, then obviously all non-zero coefficients have an index multiple of p, hence f is of the form l^{p}, with $l \in \mathcal{A}\left(d\left(a, r^{-}\right)\right)$. We now consider the general case when $f \in \mathcal{M}\left(d\left(a, r^{-}\right)\right)$. Let $\left(b_{n}, t_{n}\right)_{n \in \mathbb{N}}$ be the sequence of poles of f inside $d\left(a, r^{-}\right)$ where t_{n} is the multiplicity order of b_{n}. By Theorem 25.5 [14] we can find $h \in \mathcal{A}\left(d\left(a, r^{-}\right)\right)$ such that $\omega_{b_{n}}(h) \geq t_{n} \forall n \in \mathbb{N}$. Clearly $f h^{p}$ belongs to $\mathcal{A}\left(d\left(a, r^{-}\right)\right)$and satisfies $\left(f h^{p}\right)^{\prime}=0$. Consqeuently, $f h^{p}$ is of the form g^{p}, with $g \in \mathcal{A}\left(d\left(a, r^{-}\right)\right)$, therefore $f=\left(\frac{g}{h}\right)^{p}$. On the other hand, the set of integers s such that $\sqrt[p]{s} f$ belongs to $\mathcal{M}\left(d\left(a, r^{-}\right)\right)$is obviously bounded and therefore admits a biggest element, which ends the proof.

Definition and notation: Suppose $p \neq 0$. Given, $f \in \mathcal{M}\left(d\left(a, r^{-}\right)\right)$, we will call ramification index of f the integer t such that $\sqrt[p^{t}]{f} \in \mathcal{M}\left(d\left(a, r^{-}\right)\right)$and $(\sqrt[p^{t}]{f})^{\prime} \neq 0$.

In the same way, given an algebraically closed field B of characteristic $p \neq 0$ and $P(x) \in B[x]$, we call ramification index of P the unique integer t such that $\sqrt[p^{t}]{P} \in B[x]$ and $(\sqrt[p^{t}]{P})^{\prime} \neq 0$. This ramification index will be denoted by $\operatorname{ram}(f)$ for any $f \in \mathcal{M}\left(d\left(a, r^{-}\right)\right)$or $f \in \mathcal{M}(\mathbb{I K})$ and similarly it will be denoted by $\operatorname{ram}(P)$ for any $P \in B[x]$.

Henceforth, given $t \in \mathbb{N}^{*}$, we will denote by $\mathcal{A}_{t}\left(d\left(a, R^{-}\right)\right)$the subset of the functions $f \in \mathcal{A}\left(d\left(a, R^{-}\right)\right)$having a ramification index $\leq t$ and similarly, we put $\mathcal{A}_{u, t}\left(d\left(a, R^{-}\right)\right)=$ $\mathcal{A}_{t}\left(d\left(a, R^{-}\right)\right) \cap \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$.

Given $k \in \mathbb{K}^{*}$ and $n, m \in \mathbb{N}^{*}$ with $m<n$, we set $Q_{n, m, k}(x)=x^{n}-x^{m}+k$ and we denote by $Y_{n, m, k}$ the set of zeros of $Q_{n, m, k}$. In the same way, we set $Q_{n, k}(x)=x^{n}-x^{n-1}+k$ and we denote by $Y_{n, k}$ the set of zeros of $Q_{n, k}$.

Remark: Suppose $p \neq 0$ and let $f \in \mathcal{M}\left(d\left(a, r^{-}\right)\right)$have ramification index t as an element of $\mathcal{M}\left(d\left(a, r^{-}\right)\right)$. For every $\left.r^{\prime} \in\right] 0, r[, f$ has the same ramification index as an element of $\mathcal{M}\left(d\left(a, r^{\prime-}\right)\right)$ because of course, on one hand, $\sqrt[p^{t}]{f} \in \mathcal{M}\left(d\left(a, r^{\prime-}\right)\right)$ and on the other hand, by properties of analytic functions, $(\sqrt[p^{t}]{f})^{\prime}$ is not identically zero inside $d\left(a, r^{\prime}\right)$.

As recalled above, in [9] the smallest urscm for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$have 7 points. By Corollary 2.2 we can find a new family of urscm for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$, with particularly urscm of 5 points.

Theorem 1: Let $t \in \mathbb{N}^{*}$ and let $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$be such that the function $\phi=$ $\frac{f^{n}-f^{m}+k}{g^{n}-g^{m}+k}$ is invertible in $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$. Let t be the ramification index of $\frac{f^{n}-f^{m}-k(\phi-1)}{f^{n}-f^{m}}$. If $2 m q^{t}>n\left(2 q^{t}-1\right)+3 q^{t}$ then $f=g$.

Corollary 1.1: Suppose \mathbb{K} is of characteristic 0. If $2 m>n+3$ then $Y(n, m, k)$ is a bi-urscm for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$.

Corollary 1.2: Suppose \mathbb{K} is of characteristic 0 . If $n \geq 6$, then $Y(n, k)$ is a bi-urscm for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$.
Theorem 2: Let $t \in \mathbb{N}^{*}$ and let $f, g \in \mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$be such that the function $\phi=$ $\frac{f^{n}-f^{m}+k}{g^{n}-g^{m}+k}$ is invertible in $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$. Let t be the ramification index of $\frac{f^{n}-f^{m}-k(\phi-1)}{f^{n}-f^{m}}$. If $2 m q^{t}>n\left(2 q^{t}-1\right)+2 q^{t}$ then $f=g$.

Corollary 2.1 : Suppose \mathbb{K} is of characteristic 0. If $2 m \geq n+3$, then $Y(n, m, k)$, is an urscm for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$.

Corollary 2.2: Suppose \mathbb{K} is of characteristic 0. If $n \geq 5$, then $Y(n, k)$, is an urscm for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$.

Remark: We don't know whether there exists an urscm for $\mathcal{A}_{u}\left(d\left(a, R^{-}\right)\right)$of 4 points or 3 points.

2 The Proof

We must recall the definition of the counting functions in the Nevanlinna Theory.
Definitions and notation: Let $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$and let $\alpha \in d\left(a, R^{-}\right)$. If f admits α as a zero of order q, we set $\omega_{\alpha}(f)=q$; if f admits α as a pole of order q, we set $\omega_{\alpha}(f)=-q$; and if α is neither a zero nor a pole for f, we set $\omega_{\alpha}(f)=0$.

We denote by $Z(r, f)$ the counting function of zeros of f in $d(0, r)$ in the following way:
Let $\left(a_{n}\right), 1 \leq n \leq \sigma(r)$ be the finite sequence of zeros of f such that $0<\left|a_{n}\right| \leq\left|a_{n+1}\right| \leq$ $\left|a_{\sigma(r)}\right| \leq r$, of respective order s_{n}.

We set $Z(r, f)=\max \left(\omega_{0}(f), 0\right) \log r+\sum_{n=1}^{\sigma(r)} s_{n}\left(\log r-\log \left|a_{n}\right|\right)$.

Similarly, we set $N(r, f)=Z\left(r, \frac{1}{f}\right)$.
In order to define the counting function of zeros of f without multiplicity, we put $\overline{\omega_{0}}(f)=0$ if $\omega_{0}(f) \leq 0$ and $\overline{\omega_{0}}(f)=1$ if $\omega_{0}(f) \geq 1$.

In the sequel, I will denote an interval of the form $[\rho,+\infty[$, with $\rho>0$, and J will denote an interval of the form $[\rho, R[$.

Next, denoting by $E(r, f)$ the set $\left\{a \in d(0, r) \mid \omega_{a}(f)>0, p^{\mathrm{ram}(f)+1} \nprec \omega_{a}(f)\right\}$, if $0 \notin E(r, f)$ we set $\widetilde{Z}(r, f)=\sum_{\alpha \in E(r, f)} \log \frac{r}{|\alpha|}$
and if $0 \in E(r, f)$ we set $\widetilde{Z}(r, f)=\log r+\sum_{\alpha \in E(r, f), \alpha \neq 0} \log \frac{r}{|\alpha|}$.
Similarly we define $\widetilde{N}(r, f)=\widetilde{Z}\left(r, \frac{1}{f}\right)$.
We can now define the Nevanlinna characteristic function of $f: T(r, f)=\max (Z(r, f), T(r, f))$.
Assume that f^{\prime} is not identically 0.
Let $V(r, f)=\left\{a \in d(0, r) \mid \omega_{a}(f)<0, p^{\mathrm{ram}(f)+1} \prec \omega_{a}(f)\right\}$. We put
$N_{0}\left(r, f^{\prime}\right)=\sum_{\alpha \in V(r, f)}\left[\omega_{\alpha}\left(f^{\prime}\right)-\omega_{\alpha}(f)\right] \log \frac{r}{|\alpha|}$.
Given a finite subset S of \mathbb{K}, we put $\Lambda^{\prime}(r, f, S)=\left\{a \in d(0, r) \mid f^{\prime}(a)=0, f(a) \notin S\right\}$ and $\Lambda^{\prime \prime}(r, f, S)=\left\{a \in d(0, r) \mid p^{\mathrm{ram}(f)+1} \prec \omega_{a}(f-f(a)), f(a) \in S\right\}$. Then we can define $Z_{0}^{S}\left(r, f^{\prime}\right)=\sum_{\alpha \in \Lambda^{\prime}(r, f, S)} \omega_{\alpha}\left(f^{\prime}\right) \log \frac{r}{|\alpha|}+\sum_{\alpha \in \Lambda^{\prime \prime}(r, f, S)}\left[\omega_{\alpha}\left(f^{\prime}\right)-\omega_{\alpha}(f-f(\alpha))\right] \log \frac{r}{|\alpha|}$.

Remarks: 1) It is easily verified that all the above functions are positive.
2) If $p=0$, we have $\bar{Z}(r, f)=\widetilde{Z}(r, f)$ and $\bar{N}(r, f)=\widetilde{N}(r, f)$.

Lemma 1: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$, let $t=r(f)$ and let $g=\sqrt[q]{f}$. Then $\widetilde{Z}(r, f)=\widetilde{Z}(r, g)$ and $\widetilde{N}(r, f)=\widetilde{N}(r, g)$.

Proof: Let a be a zero of f and let $s=\omega_{a}(f)$. Then s is of the form $n t$ with $n \in \mathbb{N}^{*}$. If $n=1$, then a belongs to both $E(r, f)$ and $E(r, g)$; and if $n>1$, then $a \notin E(r, f)$. But then a is a zero of order n of g and hence, a does not belong to $E(r, g)$.

The following Lemmas 2 and 3 are easily checked [12]:
Lemma 2: Let $\alpha_{1}, \cdots, \alpha_{n} \in \mathbb{K}$ be pairwise distinct, let $P(u)=\prod_{i=1}^{n}\left(u-\alpha_{i}\right)$ and let $f \in$ $\mathcal{M}\left(d\left(0, R^{-}\right)\right)$. Then $Z(r, P(f))=\sum_{i=1}^{n} Z\left(r, f-\alpha_{i}\right)$ and $\widetilde{Z}(r, P(f))=\sum_{i=1}^{n} \widetilde{Z}\left(r, f-\alpha_{i}\right)$.

Lemma 3: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$be such that f^{\prime} is not identically zero and let $\alpha \in d\left(0, R^{-}\right)$. We have $\omega_{\alpha}\left(f^{\prime}\right)=\omega_{\alpha}(f)-1$ if $p \nprec \omega_{\alpha}(f)$ and $\omega_{\alpha}\left(f^{\prime}\right) \geq \omega_{\alpha}(f)$ if $p \prec \omega_{\alpha}(f)$.

Lemmas 4 and 5 are consequences of Lemma 3.
Lemma 4: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$be such that $f^{\prime} \neq 0$ and let S be a finite subset of $\mathbb{I K}$. Then:

$$
\sum_{b \in S}(Z(r, f-b)-\widetilde{Z}(r, f-b))=Z\left(r, f^{\prime}\right)-Z_{0}^{S}\left(r, f^{\prime}\right)
$$

Lemma 5: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$be such that $f^{\prime} \neq 0$ and let $0<r<R$. Then $N\left(r, f^{\prime}\right)=$ $N(r, f)+\widetilde{N}(r, f)-N_{0}\left(r, f^{\prime}\right)$.

Lemma 6: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$be such that $f^{\prime} \neq 0$ and let $0<r<R$. Then:

$$
Z\left(r, f^{\prime}\right) \leq Z(r, f)+\widetilde{N}(r, f)-N_{0}\left(r, f^{\prime}\right)-\log r+O(1),(r \in J)
$$

Proof: Without loss of generality, up to change of variable, we can assume that both f and f^{\prime} have no zero and no pole at 0 . Let $|f|(r)$ denote the circular value of f defined as $|f|(r)=$ $\lim _{|x| \rightarrow r,|x| \neq r}|f(x)|$

By classical results such as Theorem 23.13 [14], we have $Z(r, f)-N(r, f)=\log (|f|(r))-$ $\log \left(\mid(f(0) \mid)\right.$, and $Z\left(r, f^{\prime}\right)-N\left(r, f^{\prime}\right)=\log \left(\left|f^{\prime}\right|(r)\right)-\log \left(\left|f^{\prime}\right|(0)\right)$. But, it is well-known that $\left|f^{\prime}\right|(r) \leq \frac{|f|(r)}{r}$ (Theorem 1.5.10[15]); hence we obtain

$$
Z\left(r, f^{\prime}\right) \leq N\left(r, f^{\prime}\right)-N(r, f)+Z(r, f)-\log r+O(1)
$$

Moreover, by Lemma 4 we have $N\left(r, f^{\prime}\right)-N(r, f)=\widetilde{N}(r, f)-N_{0}\left(r, f^{\prime}\right)$, which completes the proof.

We know Proposition C [9].
Proposition C : Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$. Then f belongs to $\mathcal{M}_{b}\left(d\left(0, R^{-}\right)\right)$if and only if $T(r, f)$ is bounded when r tends to R.
Corollary C1: Let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$. Then $\mathcal{M}_{b}\left(d\left(0, R^{-}\right)\right)$is a subset of $\mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$and $\mathcal{A}_{b}\left(d\left(0, R^{-}\right)\right)$is a subset of $\mathcal{A}_{f}\left(d\left(0, R^{-}\right)\right)$.

Remark: Particularly, an invertible function $f \in \mathcal{A}\left(d\left(a, R^{-}\right)\right)$has a constant absolute value and therefore lies in $\mathcal{A}_{b}\left(d\left(a, R^{-}\right)\right)$.

The following Theorem D1 is known as Second Main Theorem on Three Small Functions [17]. It holds in p-adic analysis as well as in complex analysis, where it was shown first [17].

Notice that this theorem was generalized to any finite set of small functions by Yamanoy in complex analysis [18], through methods that have no equivalent on a p-adic field.

Remark: Let $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$and let $w \in \mathcal{M}_{b}\left(d\left(0, R^{-}\right)\right)$. Then of course, $w \in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$.

The previous results enable us to prove the ultrametric Nevanlinna Main Theorem in a basic form:

Theorem D1: Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$, with $n \geq 2$, and let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)($resp. $f \in \mathcal{M}(\mathbb{K}))$ of ramification index t. Let $S=\left\{\sqrt[q^{t}]{\alpha_{1}}, \ldots, \sqrt[q^{t}]{\alpha_{n}}\right\}$. Then we have:
$\frac{(n-1) T(r, f)}{q^{t}} \leq \sum_{i=1}^{n} \widetilde{Z}\left(r, f-\alpha_{i}\right)+Z\left(r,(\sqrt[q]{f})^{\prime}\right)-Z_{0}^{S}\left(r,(\sqrt[q]{t})^{\prime}\right)+O(1) \quad \forall r \in J$
(resp. $\forall r \in I$).
Moreover, if f belongs to $\mathcal{A}\left(d\left(0, R^{-}\right)\right.$) (resp. $f \in \mathcal{A}(\mathbb{I K})$), then
$\frac{n T(r, f)}{q^{t}} \leq \sum_{i=1}^{n} \widetilde{Z}\left(r, f-\alpha_{i}\right)+Z\left(r,(\sqrt[q^{t}]{f})^{\prime}\right)-Z_{0}^{S}\left(r,(\sqrt[q^{t}]{f})^{\prime}\right)+O(1) \forall r \in J$
(resp. $\forall r \in I$).
Now, following the same method as in Theorem 2.5.9 [15], we can obtain that classical form of the Nevalinna inequality where \bar{Z} and \bar{N} are replaced by \widetilde{Z} and \widetilde{N}.

Theorem D2: Let $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$, with $n \geq 2$, and let $f \in \mathcal{M}\left(d\left(0, R^{-}\right)\right)$
(resp. $f \in \mathcal{M}(\mathbb{I K})$) of ramification index $t . \operatorname{Let} S=\left\{\sqrt[q]{\alpha_{1}}, \ldots, \sqrt[q]{\alpha_{n}}\right\}$. Then we have:
$\frac{(n-1) T(r, f)}{q^{t}} \leq \sum_{i=1}^{n} \widetilde{Z}\left(r, f-\alpha_{i}\right)+\widetilde{N}(r, f)-Z_{0}^{S}\left(r,(\sqrt[q^{t}]{f})^{\prime}\right)-N_{0}\left(r,(\sqrt[q^{t}]{f})^{\prime}\right)-\log r+O(1) \quad \forall r \in J$
(resp. $\forall r \in I)$.
Proof of Theorems D1 and D2: The proof of Theorems D1 and D2 was given in [12]. We will recall it. For convenience, we put $g=\sqrt[q]{f}$, and $\beta_{i}=\sqrt[q^{t}]{\alpha}{ }_{i}$ for every $i=1, \ldots, n$. So $S=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$.

Let $f \in \mathcal{M}(K)$ (resp. $f \in \mathcal{M}\left(d\left(a, R^{-}\right)\right)$) and let $\left(a_{n}, s_{n}\right)_{n \in \mathbb{N}}$ be the set of zeros of f in \mathbb{K} (resp. in $d\left(a, R^{-}\right)$) with $\left|a_{n}\right| \leq\left|a_{n+1}\right|$ whereas s_{n} is the order of multiplicity of a_{n}. We denote by $\mathcal{D}(f)$ the sequence $\left(a_{n}, s_{n}\right)_{n \in \mathbb{N}}$.

By Theorem $25.5[14]$ there exist $\phi, \psi \in \mathcal{A}\left(d\left(0, R^{-}\right)\right)$such that $g=\frac{\phi}{\psi}$, and
(1) $Z(r, \phi) \leq Z(r, g)+1$,
(2) $Z(r, \psi) \leq N(r, g)+1$.

By Lemma 2.5.5 [15], there exists $A \in \mathbb{R}$ and for any $r \in J$ (resp. $r \in I$), there exists $l(r) \in\{1, \ldots, n\}$ such that $Z\left(r, \phi-\beta_{j} \psi\right) \geq \max (Z(r, \phi), Z(r, \psi))+A \quad \forall j \neq l(r)$, therefore there exists $B \in \mathbb{R}$ such that
(3) $Z\left(r, \phi-\beta_{i} \psi\right) \geq T(r, g)+B \quad \forall i \neq l(r), \quad \forall r \in J($ resp. $\forall r \in I)$.

We check that $\mathcal{D}(\phi)-\mathcal{D}\left(\frac{\phi}{\psi}\right)=\mathcal{D}(\psi)-\mathcal{D}\left(\frac{\psi}{\phi}\right)$, therefore
$\mathcal{D}\left(\phi-\beta_{i} \psi\right)=\mathcal{D}\left(g-\beta_{i}\right)+\mathcal{D}(\psi)-\mathcal{D}\left(\frac{1}{g-\beta_{i}}\right)=\mathcal{D}\left(g-\beta_{i}\right)+\mathcal{D}(\psi)-\mathcal{D}\left(\frac{1}{g}\right)$.
Then, applying counting functions, we have $Z\left(r, \phi-\beta_{i} \psi\right)=Z\left(r, g-\beta_{i}\right)+Z(r, \psi)-N(r, g)$, and therefore, by (2), we obtain
(4) $Z\left(r, \phi-\beta_{i} \psi\right) \leq Z\left(r, g-\beta_{i}\right)+1$.

Then, by (3) and (4) we obtain $(n-1)(T(r, g)+B)$
$\leq \sum_{\substack{1 \leq i \leq n, i \neq l(r)}} Z\left(r, \phi-\beta_{i} \psi\right) \leq \sum_{\substack{1 \leq i \leq n, i \neq l(r)}} Z\left(r, g-\beta_{i}\right)+n-1 \quad \forall r \in J($ resp. $\forall r \in I)$.
Putting $M=(n-1)(1-B)$, we obtain:
(5) $(n-1) T(r, g) \leq \sum_{i=1}^{n} Z\left(r, g-\beta_{i}\right)+M-Z\left(r, g-\beta_{l(r)}\right) \quad \forall r \in J($ resp. $\forall r \in I)$.

By Lemma 4, we have
$\sum_{i=1}^{n} Z\left(r, g-\beta_{i}\right)=\sum_{i=1}^{n} \widetilde{Z}\left(r, g-\beta_{i}\right)+Z\left(r, g^{\prime}\right)-Z_{0}^{S}\left(r, g^{\prime}\right)$, hence by (5) we obtain,
(6) $(n-1) T(r, g) \leq \sum_{i=1}^{n} \widetilde{Z}\left(r, g-\beta_{i}\right)+Z\left(r, g^{\prime}\right)-Z_{0}^{S}\left(r, g^{\prime}\right)-Z\left(r, g-\beta_{l(r)}\right)+O(1) \forall r \in J$ (resp. $\forall r \in I)$.

Now, since $T(r, g)=\frac{T(r, f)}{q^{t}}$ and since $\widetilde{Z}\left(r, g-\beta_{i}\right)=\widetilde{Z}\left(r, f-\alpha_{j}\right) \forall j=i, \ldots, n$, we obtain

$$
\frac{(n-1) T(r, f)}{q^{t}} \leq \sum_{i=1}^{n} \widetilde{Z}\left(r, f-\alpha_{i}\right)+Z\left(r,(\sqrt[q]{t} f)^{\prime}\right)-Z_{0}^{S}\left(r,(\sqrt[q^{t}]{f})^{\prime}\right)+O(1) \forall r \in J
$$

(resp. $\forall r \in I$).
Suppose now that f belongs to $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$or to $\mathcal{A}(\mathbb{I K})$. Then so does g. By Lemma 2.5.5 [15] we have $Z\left(r, g-\beta_{l(r)}\right)=T(r, g)+O(1) \forall r \in J \quad(r e s p . \forall r \in I)$ so, by (6) we obtain $n T(r, g) \leq \sum_{i=1}^{n} \widetilde{Z}\left(r, g-\beta_{i}\right)+Z\left(r, g^{\prime}\right)-Z_{0}^{S}\left(r, g^{\prime}\right)+O(1) \forall r \in J$ (resp. $\left.\forall r \in I\right)$, and consequently,
$\frac{n T(r, f)}{q^{t}} \leq \sum_{i=1}^{n} \widetilde{Z}\left(r, f-\alpha_{i}\right)+Z\left(r,(\sqrt[q]{t} f)^{\prime}\right)-Z_{0}^{S}\left(r,(\sqrt[q^{t}]{f})^{\prime}\right)+O(1) \forall r \in J($ resp. $\forall r \in I)$.
Now, returning to the general case, we have $g^{\prime}=\left(g-\beta_{l(r)}\right)^{\prime}$ and $\tilde{N}(r, g)=\tilde{N}\left(r, g-\beta_{l(r)}\right)$. So, by Lemma 6, we have:
(7) $Z\left(r, g^{\prime}\right)-Z\left(r, g-\beta_{l(r)}\right) \leq \widetilde{N}(r, g)-N_{0}\left(r, g^{\prime}\right)-\log r+O(1)$.

Finally, by (6), (7) we obtain
$\frac{(n-1) T(r, f)}{q^{t}} \leq \sum_{i=1}^{n} \widetilde{Z}\left(r, f-\alpha_{i}\right)+\widetilde{N}(r, f)-Z_{0}^{S}\left(r,(\sqrt[q^{t}]{f})^{\prime}\right)-N_{0}\left(r,(\sqrt[q]{t} f)^{\prime}\right)-\log r \forall r \in J$ (resp.
$\forall r \in I)$.

That completes the proof.
Theorem D3: Let $f \in \mathcal{M}(\mathbb{I K})$ (resp. $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right.$)) and let $u_{1}, u_{2}, u_{3} \in \mathcal{M}_{f}(\mathbb{I K})$ (resp. $u_{1}, u_{2}, u_{3} \in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$) be pairwaise distinct. Let
$\phi(x)=\frac{\left(f(x)-u_{1}(x)\right)\left(u_{2}(x)-u_{3}(x)\right)}{\left(f(x)-u_{3}(x)\right)\left(u_{2}(x)-u_{1}(x)\right)}$ and let t be the ramifucation index of ϕ.
Then $\frac{T(r, f)}{q^{t}} \leq \sum_{j=1}^{3} \widetilde{Z}\left(r, f-u_{j}\right)+o(T(r, f))$.
Proof: By Theorem D2, we have
(1) $\frac{T(r, \phi)}{q^{t}} \leq \widetilde{Z}(r, \phi)+\widetilde{Z}(r, \phi-1)+\widetilde{N}(r, \phi)+O(1)$.

Next, we have $T(r, f) \leq T\left(r, f-u_{j}\right)+T\left(r, u_{j}\right)(j=1,2,3)$, hence $T(r, f) \leq T\left(r, \frac{u_{3}-u_{1}}{f-u_{3}}\right)+$ $o(T(r, f))$, thereby $T(r, f) \leq T\left(r, \frac{u_{3}-u_{1}}{f-u_{3}}+1\right)+o(T(r, f))=T\left(r, \frac{f-u_{1}}{f-u_{3}}\right)+o(T(r, f))$.

Now, $T\left(r, \frac{u_{2}-u_{1}}{u_{2}-u_{3}}\right)=o\left(T(r, f)\right.$. Consequently, by writing $\frac{f-u_{1}}{f-u_{3}}=\phi\left(\frac{u_{2}-u_{1}}{u_{2}-u_{3}}\right)$ we have $T\left(r, \frac{f-u_{1}}{f-u_{3}}\right) \leq T(r, \phi)+T\left(r, \frac{u_{2}-u_{1}}{u_{2}-u_{3}}\right) \leq T(r, \phi)+o(T(r, f))$ and finally $T(r, f) \leq T(r, \phi)+$ $o(T(r, f))$. Thus, by (1) we obtain
(2) $\frac{T(r, f)}{q^{t}} \leq \widetilde{Z}(r, \phi)+\widetilde{Z}(r, \phi-1)+\widetilde{N}(r, \phi)+o(T(r, f))$.

Now, we can check that
$\widetilde{Z}(r, \phi)+\widetilde{Z}(r, \phi-1)+\widetilde{N}(r, \phi) \leq \sum_{j=1}^{3} \widetilde{Z}\left(r, f-u_{j}\right)+\sum_{1 \leq j<k \leq 3} \widetilde{Z}\left(r, u_{k}-u_{j}\right) \leq \sum_{j=1}^{3} \widetilde{Z}(r, f-$ $\left.u_{j}\right)+o(T(r, f))$
which, by (2), completes the proof.

We are now ready to state and prove Theorem D4.
Theorem D4: Let $f \in \mathcal{M}(\mathbb{I K})$ (resp. $f \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right)$), let $u_{1}, u_{2} \in \mathcal{M}_{f}(\mathbb{I K})$ (resp. $u_{1}, u_{2} \in \mathcal{M}_{f}\left(d\left(0, R^{-}\right)\right)$be distinct and let t be the ramification index of $\frac{f(x)-u_{1}(x)}{f(x)-u_{2}(x)}$. Then

$$
\frac{T(r, f)}{q^{t}} \leq \widetilde{Z}\left(r, f-u_{1}\right)+\widetilde{Z}\left(r, f-u_{2}\right)+\widetilde{N}(r, f)+o(T(r, f))
$$

Proof: Let $g=\frac{1}{f}, w_{j}=\frac{1}{u_{j}}, j=1,2, w_{3}=0$. Clearly, $T(r, g)=T(r, f)+O(1), T\left(r, w_{j}\right)=$ $T\left(r, u_{j}\right), j=1,2$, so we can apply Theorem D3 to g, w_{1}, w_{2}, w_{3}. On the other hand,

$$
\frac{\left(g(x)-w_{1}(x)\right) w_{2}(x)}{\left(g(x)-w_{2}(x)\right) w_{1}(x)}=\frac{f(x)-u_{1}(x)}{f(x)-u_{2}(x)}
$$

Thus by Theorem D3 we have: $\frac{T(r, g)}{q^{t}} \leq \widetilde{Z}\left(r, g-w_{1}\right)+\widetilde{Z}\left(r, g-w_{2}\right)+\widetilde{Z}(r, g)+o(T(r, g))$.
But we notice that $\widetilde{Z}\left(r, g-w_{j}\right)=\widetilde{Z}\left(r, f-u_{j}\right)$ for $j=1,2$ and $\widetilde{Z}(r, g)=\widetilde{N}(r, f)$. Moreover, we know that $o(T(r, g))=o(T(r, f))$. Consequently, the claim is proven when $u_{1} u_{2}$ is not identically zero.

Next, by setting $g=f-u_{1}$ and $u=u_{2}-u_{1}$, we obtain Corollary D5:
Corollary D5: Let $g \in \mathcal{M}(\mathbb{I K})$ (resp. $g \in \mathcal{M}_{u}\left(d\left(0, R^{-}\right)\right.$) , let $u \in \mathcal{M}_{g}(\mathbb{K})$ (resp. $u \in$ $\mathcal{M}_{g}\left(d\left(0, R^{-}\right)\right)$) and let t be the ramification index of $\frac{g-u}{g}$.

Then $\frac{T(r, g)}{q^{t}} \leq \widetilde{Z}(r, g)+\widetilde{Z}(r, g-u)+\widetilde{N}(r, g)+o(T(r, g))$.
Corollary D6: Let $f \in \mathcal{A}(\mathbb{I K})$ (resp. $f \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right.$) and let $u_{1}, u_{2} \in \mathcal{A}_{f}(\mathbb{I K})$ (resp. $u_{1}, u_{2} \in \mathcal{A}_{f}\left(d\left(0, R^{-}\right)\right)$) be distinct and let t be the ramification index of $\frac{f-u_{1}}{f-u_{2}}$. Then

$$
\frac{T(r, f)}{q^{t}} \leq \widetilde{Z}\left(r, f-u_{1}\right)+\widetilde{Z}\left(r, f-u_{2}\right)+o(T(r, f))
$$

Corollary D7: Let $f \in \mathcal{A}(\mathbb{I K})$ (resp. $f \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right.$) and let $u \in \mathcal{A}_{f}(\mathbb{I K})$ (resp. $u \in$ $\mathcal{A}_{f}\left(d\left(0, R^{-}\right)\right)$be non-identically zero and let t be the ramification index of $\frac{f-u}{f}$. Then

$$
\frac{T(r, f)}{q^{t}} \leq \widetilde{Z}(r, f)+\widetilde{Z}(r, f-u)+o(T(r, f))
$$

In the proof of Theorems 1 and 2 we will need the following lemma:
Lemma 7: Let $f \in \mathcal{A}(\mathbb{I K})$ (resp. $f \in \mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$) and let t be the ramification index of f. Let $m, n \in \mathbb{N}^{*}, m<n$, be prime to p. Then the ramification index of $f^{n}-f^{m}$ is also equal to t.

Proof: Since the lemma is trivial when $p=0$, we suppose $p \neq 0$, hence $p=q$. Set $h=p^{t}$ and $F=f^{n}-f^{m}$. By hypothesis, since both m, n are prime to p, the ramification index of both f^{m}, f^{n} is equal to t and hence so are those of f^{n-m} and $f^{n-m}-1$. Let $g=\sqrt[h]{f}$. Then g belongs to $\mathcal{A}(\mathbb{I K})$ (resp. to $\mathcal{A}_{u}\left(d\left(0, R^{-}\right)\right)$) and so does $\sqrt[h]{F}$. Let $G=\sqrt[h]{F}$. Then we can check that $G^{\prime}=g^{\prime} g^{m-1}\left(n g^{n-m}-m\right)$ hence G^{\prime} is not identically 0 . Consequently, the ramification index of F is t.

Proof of Theorem 1 and Theorem 2: We can obviously suppose $a=0$. Suppose that f, g are two distinct functions. Let $F=f^{n}-f^{m}$. By Corollary D5, we can obtain

$$
\frac{T(r, F)}{q^{t}} \leq \widetilde{Z}(r, F)+\widetilde{Z}(r, F-k(\phi-1))+\widetilde{N}(r, F)+o(T(r, f)
$$

Now, clearly, $\widetilde{N}(r, F) \leq T(r, f)$ and $\widetilde{Z}(r, F) \leq \widetilde{Z}(r, f)+\widetilde{Z}\left(r, f^{n-m}-1\right)+O(1)$ and $\widetilde{Z}\left(r, f^{n-m}-1\right) \leq(n-m) T(r, f)$; hence
(1) $\widetilde{Z}(r, F) \leq(n-m+1) T(r, f)+o(T(r, f))$.

Similarly,
(2) $\widetilde{Z}(r, F-k(\phi-1))=\widetilde{Z}\left(r, g^{n}-g^{m}\right) \leq \widetilde{Z}(r, g)+\widetilde{Z}\left(r, g^{n-m}-1\right)$.

Of course, since ϕ is bounded, by Proposition C we have $T(r, f)=T(r, g)+O(1)$; hence , by (1) and (2), we obtain $T(r, F) \leq q^{t}(2 n-2 m+3) T(r, f)+o(T(r, f))$.

On the other hand, by 2.4.15 [15], we have $T(r, F)=n T(r, f)+O(1)$; hence
$n T(r, f) \leq q^{t}(2 n-2 m+3) T(r, f)+o(T(r, f))$. That yields $2 m q^{t} \leq n\left(2 q^{t}-1\right)+3 q^{t}$, a contradiction to the hypothesis of Theorem 1.

Next, in the hypotheses of Theorem 2, we have $N(r, f)=N(r, g)=0$; hence we can get $T(r, F) \leq q^{t}(2 n-2 m+2) T(r, f)+o(T(r, f))$ and hence $2 m q^{t} \leq n\left(2 q^{t}-1\right)+2 q^{t}$, a contradiction to the hypotheses of Theorem 2. That ends the proofs of Theorems 1 and 2.

Proof of Corollary 1.1: Suppose $Y(n, m, k)$ is not a bi-urscm for $\mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$and let $f, g \in \mathcal{M}_{u}\left(d\left(a, R^{-}\right)\right)$be such that $\mathcal{E}(f, Y(n, m, k))=\mathcal{E}(g, Y(n, m, k))$. By Proposition A, the function $\phi=\frac{f^{n}-f^{m}+k}{g^{n}-g^{m}+k}$ is an invertible element of $\mathcal{A}\left(d\left(a, R^{-}\right)\right)$. And since \mathbb{K} has characteristic zero, we have $n T(r, f)>2(n-m+1) T(r, f)+o(T(r, f))$, hence by Theorem 1 , $f=g$.

The proof of Corollary 2.1 is similar by applying Theorem 2.

Acknowledgement The authors thank the referee for pointing out many misprints.

References

[1] An, T.T.H., Wang J.T.Y. and Wong, P.M. , Unique range sets and uniqueness polynomials in positive characteristic II, Acta Arithmetica, p. 115-143 (2005).
[2] An, T. T. H. and Wang J. T.Y., Unique range sets for non-archimedean entire functions in positive characteristic field, Ultrametric Functional Analysis, Contemporary Mathematics 384, AMS, p. 323-333 (2005)
[3] An, T.T.H., Wang J.T.Y. and Wong, P.M., Strong uniqueness polynomials: the complex case, Complex Variables, Vol. 49, No. 1, p. 25-54 (2004).
[4] An, T. T. H. and Ha H. K., On uniqueness polynomials and bi-urs for p-adic meromorphic functions, J. Number Theory 87, 211- 221(2001).
[5] An, T. T. H. and Escassut, A, Meromorphic solutions of equations over non-Archimedean fields, Ramanujan Journal Vol. 15, No. 3, p.415-433 (2008)
[6] Bartels, S., Meromorphic functions sharing a set with 17 elements, ignoring multiplicities, Complex variable Theory and Applications, 39, 1, p.85-92 (1999).
[7] Boutabaa, A., Théorie de Nevanlinna p-adique, Manuscripta Math. 67, p. 251-269 (1990).
[8] Boutabaa, A. and Escassut, A., On uniqueness of p-adic meromorphic functions, CRAS s. I, t. 325, p. 571-575, (1997).
[9] BoutabaA, A., Escassut, A. and Haddad, L., On uniqueness of p-adic entire functions, Indag. Math. 8, 145-155 (1997).
[10] Boutabaa, A. and Escassut, A., URS and URSIMS for p-adic meromorphic functions inside a disk, Proc. of the Edinburgh Mathematical Society 44, p. 485-504 (2001).
[11] Boutabaa, A., Cherry, W. and Escassut, A., Unique Range sets in positive characteristic, Acta Arithmetica 103.2, p.169-189 (2002).
[12] BoutabaA, A. and Escassut, A., Nevanlinna Theory in characteristic p, Italian Journal of Pure and Applied Mathematics, n.23, p. 45-66 (2008).
[13] Escassut, A., Haddad, L., Vidal, R., Urs, Ursim, and nonurs, Journal of Number Theory, 75, p. 133-144 (1999).
[14] Escassut, A. Analytic elements in p-adic analysis WSCP. (1995)
[15] Escassut, A., p-adic Value Distribution, Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis, p. 42- 138. Mathematics Monograph, Series 11. Science Press.(Beijing 2008).
[16] Frank, G and Reinders, M., A unique range set for meromorphic functions with 11 elements, Complex Variable Theory Applic, 37, p. 185-193 (1998).
[17] Hu, P.C. and Yang, C.C., Meromorphic Functions over non-Archimedean Fields, Kluwer Academic Publishers, (2000).
[18] Yamanoi K., The second main theorem for small functions and related problems, Acta Mathematica 192, p. 225-294 (2004).
[19] Yang, C.C. and Cherry, W., Uniqueness of non-Archimedean entire functions shari,g sets of values counting multiplicities, Proc. Amer.Math. Soc. 127, p.967-971 (1998).

Received: 08.04.2013
Accepted: 13.10.2013
${ }^{1}$ Laboratoire de Mathematiques UMR 6620
Université Blaise Pascal
Les Cézeaux 63171 Aubiere
E-mail: alain.escassut@math.univ-bpclermont.fr
${ }^{2}$ Departamento de Matematica
Facultad de Ciencias Fsicas y Matematicas
Universidad de Concepcion
Conception, Chile
E-mail: jacqojeda@udec.cl

[^0]: * Partially supported by CONICYT (Inserción de Capital Humano a la Academia)

