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Abstract

We define module nuclearity and module injectivity for C∗-algebras which are C∗-
module over another C∗-algebra with compatible actions and extend Connes-Haagerup
result to this context by showing that module nuclearity is equivalent to module amenabi-
lity. We also solve the module version of an open problem of Alan L.T. Paterson, by showing
that the C∗-algebra of an inverse semigroup S is module nuclear over the C∗-algebra of its
idempotents if and only if S is amenable.
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1 Introduction

One of the main objectives of the monograph [9] by Alan L.T. Paterson is to study the operator
algebras on an inverse semigroup S by relating them to the corresponding algebras on its
universal groupoid. Using this technique it is shown that the semigroup von Neumann algebra
V N(S) is injective if and only if all the maximal subgroups of S (indexed by the set E of
idempotents of S) are amenable [9, Theorem 4.5.2]. It is asked if this is also equivalent to
the nuclearity of the reduced and full C∗-algebras C∗red(S) and C∗(S) [9, page 210]. It is not
hard to see that the answer of this question is negative, as the free inverse semigroup on two
generators has trivial maximal subgroups, but its (reduced) C∗-algebra is not nuclear (c.f. [4]).
An affirmative solution is proposed in [4] by showing that C∗red(S) is nuclear if and only if a
family of groups indexed by the unit space of the universal groupoid of S are amenable and S
is hyperfinite [4, Corollary 3.14]. In the case of free inverse semigroup on two generators, this
unit space is a one-point compactification of E and the group standing on the point at infinity
is the free group F2. The Cuntz-Renault semigroup is an example of a hyperfinite semigroup
and the bicyclic semigroup is not hyperfinite [4].

In this paper, we propose an alternative solution to the Paterson’s problem by considering
C∗red(S) as a module over C∗red(E) and show that there is a natural notion of nuclearity for
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C∗-modules and when E acts on S trivially from left and by multiplication from right, then
C∗red(S) is module nuclear if and only if S is amenable. We show that module nuclearity is
related to the notion of module amenability (of Banach modules) introduced by the first author
in [1]. We extend Connes-Haagerup result to this context by showing that when we have a
trivial left action, module nuclearity of a C∗-module A is equivalent to its module amenability
and also to module Connes amenability (c.f.[2]) and module injectivity of A∗∗.

The paper is organized as follows: In section 2 we introduce the notion of module nuclearity
for a C∗-algebra A which is C∗-module over another C∗-algebra A with compatible actions, and
show that in the case of a trivial left action, module nuclearity of A is equivalent to nuclearity of
an appropriate quotient A/J of A. We show that in this case, module nuclearity is equivalent to
module amenability [1]. As the main example, we show that for an inverse semigroup S with set
of idempotents E with trivial left action, the reduced C∗-algebra C∗red(S) is C∗red(E)-module
nuclear if and only if S is amenable. In section three, we introduce the notion of module
injectivity for von Neumann algebra modules and relate it to the notion of module Connes
amenability [2]. Also we relate the latter module notions to their classical counterparts in the
case of trivial left action.

2 Module nuclearity

Let A, A be Banach algebras such that A is a Banach A-module with compatible actions,

α.(ab) = (α.a)b, (ab).α = a(b.α) (a, b ∈ A,α ∈ A). (2.1)

We know that A⊗̂AA = A⊗̂A/I which A⊗̂A is the projective tensor product of A and A and
I is the closed ideal generated by elements of the form a.α ⊗ b − a ⊗ α.b for α ∈ A, a, b ∈ A
[11]. Let J = 〈ω(I)〉 be the closed ideal of A generated by ω(I). We define ω : A⊗̂A −→ A by
ω(a⊗ b) = ab, and ω̃ : A⊗̂AA = A⊗̂A/I −→ A/J by

ω̃(a⊗ b+ I) = ab+ J (a, b ∈ A), (2.2)

both extended by linearity and continuity. Then ω̃, ω̃∗∗ are A-A-module homomorphisms [1].
Let V be a Banach A-module and a Banach A-module with compatible actions,

α.(a.x) = (α.a).x, (a.α).x = a.(α.x)

(α.x).a = α.(x.a) (a ∈ A,α ∈ A, x ∈ V ), (2.3)

and the same for the right or two-sided actions. Then we say that V is a Banach A-A-module.
If moreover

α.x = x.α (α ∈ A, x ∈ V ), (2.4)

then V is called a commutative A-A-module.
Given a Banach A-A-module V , a bounded map D : A −→ V is called a module derivation

if
D(a± b) = D(a)±D(b), D(ab) = D(a).b+ a.D(b) (a, b ∈ A) (2.5)

and
D(α.a) = α.D(a), D(a.α) = D(a).α (α ∈ A, a ∈ A). (2.6)
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A module derivation D is called inner if there exists v ∈ V such that

D(a) = a.v − v.a (a ∈ A). (2.7)

Definition 2.1. Let A be a Banach A-module, A is called module amenable if for every com-
mutative A-A-module V with compatible actions, each module derivation D : A −→ V ∗ is
inner.

A left trivial action of A on A is defined as e.a = f(e)a for e ∈ A, a ∈ A,where f is a
continuous character on A.

Let A be a Banach A-module with trivial left action, A is called module nuclear if for every
C∗-algebra B which is a Banach A-module with trivial left and right actions, A⊗AB has a
unique C∗ norm.

From now on, we suppose that A, A are C∗-algebras. If J is the closed ideal of A described
above, since C∗-algebra A/J has bounded approximate identity, it follows from [5, Lemma
2.7, Theorem 2.8] that if A acts trivially from left on A then for each α ∈ A, a ∈ A, we have
a.α− f(α)a ∈ J and A/J is amenable if and only if A is module amenable.

We know that if J is a closed ideal in C∗-algebra A and if J and A/J are nuclear, then A
will be nuclear [14, Theorem 6.5.3]. The following theorem states that for the ideal J described
above, nuclearity of A/J suffices for A to be module nuclear.

Theorem 2.2. If A acts trivially from left on A, A is module nuclear if and only if A/J is
nuclear.

Proof: Let A/J be nuclear, and B be a C∗-algebra. We know that A⊗AB = A⊗B/IB that IB
is the ideal generated by the elements of the form a.α⊗b−a⊗α.b in which a ∈ A, b ∈ B,α ∈ A.
We have

a.α⊗ b− a⊗ α.b = a.α⊗ b− f(α)a⊗ b = (a.α− f(α)a)⊗ b ∈ J ⊗B (2.8)

Hence if γ1, γ2 are C∗- norms on A⊗B/J ⊗B, and if

φ :
A

J
⊗B −→ A⊗B

J ⊗B
(2.9)

is the canonical map between algebraic tensor products, then for each x ∈ A
J ⊗B the equalities

‖x‖1 = ‖φ(x)‖γ1 , ‖x‖2 = ‖φ(x)‖γ2 (2.10)

define C∗- norms on A
J ⊗B and since A/J is nuclear ‖.‖1 = ‖.‖2 and so γ1 = γ2.

Now suppose that A is module nuclear, we know that

A

J
⊗max B ∼=

A⊗max B

J ⊗max B
. (2.11)

We should show that
A

J
⊗min B ∼=

A⊗min B

J ⊗min B
. (2.12)
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For this, we need to show that the sequence

0 −→ J⊗minB −→ A⊗minB −→
A

J
⊗min B −→ 0 (2.13)

is exact. As in the proof of [14, Theorem 6.5.2], there exists a unique surjective ∗-homomorphism

π̄ :
A⊗min B

J ⊗min B
−→ A

J
⊗min B. (2.14)

It suffices to find a left inverse for π̄. Again let φ be the natural map described above and define
the norm ‖.‖ as

‖φ(x)‖ = ‖x‖min, (x ∈ A

J
⊗B,φ(x) ∈ A⊗B

J ⊗B
). (2.15)

This is a C∗- norm on A⊗B/J ⊗B and by module nuclearity of A, this norm is equal to the
norm on A⊗min B/J ⊗min B. Hence φ extends to a continuous ∗-homomorphism

φ̄ :
A

J
⊗min B −→

A⊗min B

J ⊗min B
(2.16)

with φ̄π̄ = id. Thus we have
A

J
⊗min B ∼=

A

J
⊗max B (2.17)

and so A/J is nuclear.

Corollary 2.3. If A acts trivially from left on A, A is module nuclear if and only if A is module
amenable.

Proposition 2.4. If A is considered as a A-module with trivial left and right action by multi-
plication, then A is module nuclear.

Proof: We show that A/J is amenable. We know that a.α = aα, α.a = f(α)a, for a, α ∈ A.
Since a.α− α.a ∈ J , aα− f(α)a ∈ J for a, α ∈ A. Now let ā = a+ J, b̄ = b+ J be elements of
A/J , then ab− f(b)a ∈ J and so āb̄ = f(b)ā.

Let āα be a bounded approximate identity for A/J . We have āαb̄ = f(b)āα. But āαb̄ → b̄,
thus f(b)āα → b̄. When f(b) 6= 0, āα → b̄/f(b). Since āα is a norm-convergent bounded
approximate identity, its limit has to be the identity and we have b̄ = f(b)1. This clearly also
holds when f(b) = 0. Therefore A/J is one dimensional and we have

āb̄ = f(a)1f(b)1 = f(a)f(b)1 = f(b)f(a)1 = b̄ā.

Therefore A/J is a commutative unital C∗-algebra and so is amenable.

In the next result, A⊗ A is considered as an A-module with the following actions:

α · (a⊗ β) = a⊗ β, (a⊗ β) · α = a⊗ βα (a ∈ A,α, β ∈ A).

Proposition 2.5. If A is a nuclear C∗-algebra then A⊗ A is A-module nuclear.
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Proof: We should show that (A⊗ A)/J is nuclear. But J is generated by elements of the form
(a⊗ e).α− α.(a⊗ e) in which a ∈ A, e, α ∈ A. We have

(a⊗ e).α− α.(a⊗ e) = a⊗ eα− f(α)a⊗ e = a⊗ (eα− f(α)e) = a⊗ (e.α− α.e)

But if A is considered as a A module and JA is its associated ideal, then JA is generated by
elements of the form e.α− α.e and since A is nuclear we have

A⊗ A

J
=

A⊗ A

A⊗ JA
∼= A⊗ A

JA

Now nuclearity of (A⊗ A)/J is followed from nuclearity of A and A/JA.

As an example, if Mn is the C∗-algebra of n by n matrices with entries in C, then Mn(A)
is A-module nuclear.

A discrete semigroup S is called an inverse semigroup if for each x ∈ S, there is a unique
element x∗ ∈ S such that xx∗x = x and x∗xx∗ = x. An element e ∈ S is called an idempotent
if e = e∗ = e2. The set of idempotents of S is denoted by E [8].

We know that E is a commutative subsemigroup of S. As in [1], we let l1(E) act on l1(S)
by multiplication from right and trivially from left, that is

δe.δs = δs, δs.δe = δs ∗ δe = δse. (2.18)

Let us observe that these actions continuously extend to actions of C∗(E) on C∗(S). For the
right action,

‖(
∑
s∈S

αsδs) · (
∑
e∈E

βeδe)‖C∗(S) = ‖
∑
s,e

αsβeδse‖C∗(S)

= sup
π
‖
∑
s,e

αsβeπ(δse)‖

= sup
π
‖
∑
s,e

αsβeπ(δs)π(δe)‖

≤ sup
π
‖
∑
s

αsπ(δs)‖ sup
π̃
‖
∑
e

βeπ̃(δe)‖

≤ ‖
∑
s

αsδs‖C∗(S)‖
∑
e

βeδe‖C∗(E),

where π ranges over all non-degenerate representations of `1(S), and π̃ is the restriction of π
to the subalgebra `1(E). Note that π̃ is not necessarily non-degenerate (unless to be taken on
a smaller Hilbert space), yet the last inequality is clearly satisfied. For the left action, defined
via the augmentation character ψ on `1(E)

ψ(
∑
e

βeδe) =
∑
e

βe

by

(
∑
e∈E

βeδe) · (
∑
s∈S

αsδs) =
∑
s,e

αsβeδs = ψ(
∑
e

βeδe)
∑
s

αsδs,
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since the augmentation character could be considered as a one dimensional representation of
`1(E), we have |ψ(

∑
e βeδe)| ≤ ‖

∑
e βeδe‖C∗(E), hence

‖(
∑
e∈E

βeδe) · (
∑
s∈S

αsδs)‖C∗(S) ≤ ‖
∑
s

αsδs‖C∗(S)‖
∑
e

βeδe‖C∗(E).

Therefore, since `1(E) is dense in C∗(E) and `1(S) is dense in C∗(S), the actions of `1(E) on
`1(S) extend continuously to actions of C∗(E) on C∗(S), where the left action is trivial and
given by the unique extension of ψ on C∗(E).

We don’t know if the augmentation character is continuous in the reduced C∗-norm, thus
it is not clear how to extend the left action to an action of C∗red(E) on C∗red(S) (the right
action extends with an argument similar to the one above). However, since the left regular
representation extends to a surjective ∗-homomorphism λ : C∗(S) → C∗red(S) and ker(λ)
is clearly invariant under both left and right actions of `1(E) on C∗(S), these actions lift
continuously to actions of C∗(E) on C∗red(S), where the left action remains trivial. Finally,
since V N(S) ' C∗red(S)∗∗, where the Arens product of the right hand side corresponds to the
operator product of the left hand side, V N(S) is a C∗(E) module with compatible actions,
where the left action is trivial (given by the extension of the augmentation character).

We consider an equivalence relation on S as follows:

s ≈ t⇔ δs − δt ∈ J (s, t ∈ S).

Let e, f ∈ E. Since E is a semilattice, ef ≤ f, e. Now, a slight modification of the discussion
before Theorem 2.4 in [3] shows that the quotient S/≈ is a discrete group (indeed it is not hard
to see that it is the maximal group homomorphic image of S). As in [10, Theorem 3.3], we may
observe that `1(S)/J ∼= `1(S/ ≈).

It is well known that for a discrete group G, nuclearity of the reduced (or full) group C∗-
algebra Cred(G) (or C∗(G)) and injectivity of the group von Neumann algebra V N(G) are both
equivalent to amenability of G (see for instance [7]). This is far from being true for (inverse)
semigroups (see the introduction). However we prove that a module version of this result holds
for any inverse semigroup.

Theorem 2.6. Let S be an inverse semigroup with set of idempotents E which acts on S triv-
ially from left, and by multiplication from right. Then the following statements are equivalent.

(i) S is amenable.
(ii) S/ ≈ is amenable.
(iii) C∗red(S) is C∗(E)-module nuclear.
(iv) C∗(S) is C∗(E)-module nuclear.

Proof: Since S/ ≈ is the maximal group homomorphic image of S, (i) is equivalent to (ii) [9].
We show that (i) and (iv) are equivalent. Let ϕ : l1(S) → C∗(S/ ≈); δs 7→ δ[s]. This is a
continuous ∗-homomorphism with range l1(S/ ≈). Since l1(S/ ≈) is dense in C∗(S/ ≈), this
map lifts to a surjective ∗-homomorphism ϕ̃ : C∗(S)→ C∗(S/ ≈). We show that Ker(ϕ̃) = J̄ ,
where the right hand side is the closure of J in the C∗-norm of C∗(S). We have

ϕ(δs.δe − δe.δs) = ϕ(δse − δs) = ϕ(δse)− ϕ(δs) = δ[se] − δ[s] = 0
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Hence J ⊆ Ker(ϕ̃). On the other hand, let ϕ(
∑∞
i=1 aiδsi) = 0. First suppose that for i, j ∈ N,

si ≈ sj , then clearly
∑∞
i=1 ai = 0. Now there is e ∈ E such that s1e = s2e. Therefore

a1δs1 + a2δs2 = (a1δs1 − a1δs1e) + a1δs1e + a2δs2

= j1 + a1δs2e + a2δs2 = j1 + a1δs2e + (a2δs2 − a2δs2e) + a2δs2e

= j1 + j2 + (a1 + a2)δs2e = j + (a1 + a2)δs2e

in which j, j1, j2 ∈ J . Similarly we can show that for every n ∈ N, there exist e ∈ E, j ∈ J ,
such that

n∑
i=1

aiδsi = j + (

n∑
i=1

ai)δsne

Therefore since
∑n
i=1 ai = 0,

∑∞
i=1 aiδsi ∈ J . Now in general if

ϕ(

∞∑
i=1

aiδsi) = 0,

by classification of si’s into classes of mutually equivalent elements, the desired result follows
by a similar argument. Hence we have

C∗(S)/J̄ ∼= C∗(S/ ≈). (2.19)

Therefore, by Theorem 2.6, C∗(S) is C∗(E)-module nuclear if and only if C∗(S/ ≈) is nuclear.
Since S/ ≈ is a discrete group, the latter statement is equivalent to (ii) which in turn is
equivalent to (i).

Since the left regular representation of an inverse semigroup S on `2(S) is faithful [13], there
is a dense copy of `1(S) in C∗red(S), and a similar argument as above shows that C∗red(S)/J̄red ∼=
C∗red(S/ ≈), where J̄red is the closure of J in the reduced C∗-norm of C∗red(S). Therefore (iii)
and (i) are equivalent.

3 Module Injectivity

A C∗-algebras M is an injective C∗-algebra if, whenever A is a C∗-algebra, B a C∗-subalgebra
of A, and φ : B →M a completely positive contraction, then φ extends to a completely positive
contraction ψ : A→M [6]. It is well known that M is injective if and only if for every faithful
representation π of M on a Hilbert space H, there is a conditional expectation (a norm one
projection) form B(H) onto π(M) [6, IV.2.1.4].

From now on let M be a C∗-algebra and a Banach A-module with compatible actions.

Definition 3.1. M is module injective if, whenever A is a C∗-algebra and a Banach A-modules
with compatible actions,, B is a C∗-subalgebra of A and φ : B → M is a completely positive
contraction preserving module actions, then φ extends to a completely positive contraction ψ :
A→M which preserves the module action.

Theorem 3.2. M∗∗ is module injective if and only if (M/J)∗∗ is injective.
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Proof: Let M∗∗ be module injective and A,B be C∗-algebras as described in the above def-
inition. We show that (M/J)∗∗ is injective. Let φ : B → (M/J)∗∗ be a completely positive
contraction. Suppose that A,B be Banach A-modules with trivial actions. We know that

M∗∗ ' (M/J)∗∗ ⊕ J∗∗ (3.1)

So we have an inclusion i : (M/J)∗∗ →M∗∗. Then φ̃ = i ◦ φ preserves the module actions

φ̃(a.α) = φ̃(f(α)a) = f(α)φ̃(a)

= f(α)φ̃(a)− φ̃(a).α+ φ̃(a).α

= i(f(α)φ(a)− φ(a).α) + φ̃(a).α = φ̃(a).α

and lifts to a completely positive contraction ψ : A → M∗∗. Let π : M∗∗ → (M/J)∗∗ be the
quotient map and put ψ̃ = π ◦ ψ. Then ψ̃ is the desired completely positive contraction from
A into (M/J)∗∗.

Conversely let (M/J)∗∗ be injective and A,B be C∗-algebras as described in the above
definition. Let φ : B → M∗∗ be a completely positive contraction which preserves module
actions and π : M∗∗ → (M/J)∗∗ be the quotient map. Then φ̃ = π ◦ φ is a completely
positive contraction and lifts to a completely positive contraction ψ : A → (M/J)∗∗. Let
i : (M/J)∗∗ →M∗∗ be the inclusion map. Then ψ̃ = i ◦ ψ is a completely positive contraction
from A into M∗∗ which preserves the module actions since

ψ̃(a.α) = i ◦ ψ(a.α) = i ◦ π(φ(a.α)) = φ(a.α) = φ(a).α (3.2)

for each a ∈ A,α ∈ A.

Corollary 3.3. M is module amenable if and only if M∗∗ is module injective.

Corollary 3.4. Let S be an inverse semigroup with set of idempotents E which acts on S
trivially from left, and by multiplication from right. Then V N(S) is C∗(E)-module injective if
and only if S is amenable.

The concept of Module Connes amenability is introduced in [2]. A Banach algebra is called a
dual Banach algebra if it is the dual of a Banach space, and its multiplication map is separately
w∗-continuous. When A is a dual Banach algebra and a Banach A-module with compatible
actions, X is called a dual Banach A-A-module if there is a closed A-A-submodule X∗ of X∗ such
that X = X∗∗ , or equivalently, X is the dual of a Banach space and the action maps: X → X;
x 7→ a.x, x 7→ x.a, and x 7→ α.x, x 7→ x.α are w∗-continuous, for each a ∈ A,α ∈ A. X is called
normal if the action maps: A→ X; a 7→ a.x, a 7→ x.a are w∗-continuous, for each x ∈ X.

Let A and A be as above and A is a dual A-module, A is called module Connes amenable
(as an A-module) if for every commutative, normal, dual Banach A-A-module X, each w∗-
continuous module derivation D : A→ X is inner.

Let J be the w∗-closed ideal generated by elements of the form (a.α)b − a(α.b) for a, b ∈
A,α ∈ A. The following is proved similar to [5, Theorem 2.8].

Theorem 3.5. If A acts trivially from left on A and A/J is Connes amenable then A is
module Connes amenable. Furthermore if A acts trivially from left on A and A is module
Connes amenable and A/J has bounded approximate identity, then A/J is Connes amenable.
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Now if A is a Banach A-module, then A∗ will have a natural A-module structure via

(f.α)(a) = f(α.a), (α.f)(a) = f(a.α) (a ∈ A,α ∈ A, f ∈ A∗).

This in turn gives a module structure on A∗∗ whose action is an extension of the module action
on A and for each α ∈ A, the maps : A∗∗ → A∗∗; x 7→ α.x, x 7→ x.α are w∗-continuous.
Therefore A∗∗ is a dual Banach A-module.

Corollary 3.6. If A is a C∗-algebra and a Banach A-module with trivial left action, then A is
module amenable if and only if A∗∗ is module Connes amenable.

Proof: An argument similar to the proof of [5, Theorem 2.8] shows that module amenability of
A is equivalent to amenability of A/J . Also by the above theorem, module Connes amenability
of A∗∗ is equivalent to Connes amenability of A∗∗/J⊥⊥ = (A/J)∗∗. Hence the result follows
from the fact that for a C∗-algebra B, amenability of B is equivalent to Connes amenability of
B∗∗ [12].

Theorem 3.7. If A is a C∗-algebra and a Banach A-module with trivial left action, the following
are equivalent:

(i) A is module nuclear.

(ii) A is module amenable.

(iii) A∗∗ is module Connes amenable.

(iv) A∗∗ is module injective.
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