Rational toral rank of a map

by
Toshiniro Yamaguchi

Abstract

Let X and Y be simply connected CW complexes with finite rational cohomologies. The rational toral rank $r_{0}(X)$ of a space X is the largest integer r such that the torus T^{r} can act continuously on a CW-complex in the rational homotopy type of X with all its isotropy subgroups finite [8]. As a rational homotopical condition to be a toral map preserving almost free toral actions for a map $f: X \rightarrow Y$, we define the rational toral rank $r_{0}(f)$ of f, which is a natural invariant with $r_{0}\left(i d_{X}\right)=r_{0}(X)$ for the identity map $i d_{X}$ of X. We will see some properties of it by Sullivan models, which is a free commutative differential graded algebra over $\mathbb{Q}[4]$.

Key Words: Almost free toral action, rational toral rank, Sullivan model.
2010 Mathematics Subject Classification: Primary 55P62, Secondary 57S99, 55R70.

1 Introduction

We assume that spaces X and Y are simply connected CW complexes with finite rational cohomologies. Let T^{r} be an r-torus $S^{1} \times \cdots \times S^{1}(r$-factors $)$ and let $r_{0}(X)$ be the rational toral rank, which is the largest integer r such that a T^{r} can act continuously on a CW-complex in the rational homotopy type of X with all its isotropy subgroups finite [8]. Such an action is called almost free. Our motivation is in the following problem for an equivariant property of a map $f: X \rightarrow Y$.

Problem 1.1. For an almost free T^{r}-action μ on X, when can one put an almost free T^{r} action on Y so that f becomes T^{r}-equivariant? Conversely, given an almost free T^{r}-action τ
on Y, when does X admit an almost free T^{r}-action making f an T^{r}-equivariant map ?

Here $X \rightarrow E T^{r} \times_{T^{r}}^{\mu} X \rightarrow B T^{r}$ means the Borel fibration of a T^{r}-action μ on X. The integer r of Problem 1.1 is bounded from above by the following numerical invariant, obtained from a diagram which is a rational homotopy version of a T^{r}-equivariant map for almost free T^{r}-actions. In this paper, we propose

Definition 1.2. For a map $f: X \rightarrow Y$, we say that the rational toral rank of f, denoted as $r_{0}(f)$, is r when it is the largest integer such that there is a map F between fibrations over $B T_{\mathbb{Q}}^{r}$:

with $\operatorname{dim} H^{*}\left(E_{i} ; \mathbb{Q}\right)<\infty$ for $i=1,2$.
Here $X_{\mathbb{Q}}$ and $f_{\mathbb{Q}}$ are the rationalizations [10] of a simply connected CW complex X of finite type and a map f, respectively. Let the Sullivan minimal model of X be $M(X)=(\Lambda V, d)$. It is a free \mathbb{Q}-commutative differential graded algebra (DGA) with a \mathbb{Q}-graded vector space $V=\bigoplus_{i \geq 2} V^{i}$ where $\operatorname{dim} V^{i}<\infty$ and a decomposable differential; i.e., $d\left(V^{i}\right) \subset\left(\Lambda^{+} V \cdot \Lambda^{+} V\right)^{i+1}$ and $d \circ \bar{d}=0$. Here $\Lambda^{+} V$ is the ideal of ΛV generated by elements of positive degree. Denote the degree of a homogeneous element x of a graded algebra as $|x|$. Then $x y=(-1)^{|x||y|} y x$ and $d(x y)=d(x) y+(-1)^{|x|} x d(y)$. Note that $M(X)$ determines the rational homotopy type of X. In particular, $H^{*}(\Lambda V, d) \cong H^{*}(X ; \mathbb{Q})$ and $V^{i} \cong \operatorname{Hom}\left(\pi_{i}(X), \mathbb{Q}\right)$. Refer to [4] for details. If an r-torus T^{r} acts on a simply connected space X by $\mu: T^{r} \times X \rightarrow X$, there is the Borel fibration

$$
X \rightarrow E T^{r} \times \times_{T^{r}}^{\mu} X \rightarrow B T^{r}
$$

where $E T^{r} \times{ }_{T^{r}}^{\mu} X$ is the orbit space of the action $g(e, x)=\left(e \cdot g^{-1}, g \cdot x\right)$ on the product $E T^{r} \times X$ for any $e \in E T^{r}, x \in X$ and $g \in T^{r}$. Note that $E T^{r} \times_{T^{r}}^{\mu} X$ is rational homotopy equivalent to the T^{r}-orbit space of X when μ is an almost free toral action [5]. The above Borel fibration is rationally given by the relative model (Koszul-Sullivan (KS) model)

$$
\begin{equation*}
\left(\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right], 0\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right] \otimes \Lambda V, D\right) \rightarrow(\Lambda V, d) \tag{**}
\end{equation*}
$$

where with $\left|t_{i}\right|=2$ for $i=1, \ldots, r, D t_{i}=0$ and $D v \equiv d v$ modulo the ideal $\left(t_{1}, \ldots, t_{r}\right)$ for $v \in V$. The following criterion of Halperin is used in this paper.

Proposition 1.3. [8, Proposition 4.2] Suppose that X is a simply connected $C W$-complex with $\operatorname{dim} H^{*}(X ; \mathbb{Q})<\infty$. Put $M(X)=(\Lambda V, d)$. Then $r_{0}(X) \geq r$ if and only if there is a relative model $(* *)$ satisfying $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right] \otimes \Lambda V, D\right)<\infty$. Moreover, if $r_{0}(X) \geq r$, then T^{r} acts freely on a finite complex X^{\prime} in the rational homotopy type of X and $M\left(E T^{r} \times T^{r} X^{\prime}\right) \cong$ $\left(\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right] \otimes \Lambda V, D\right)$.

The diagram (*) in Definition 1.2 is equivalent to a DGA homotopy commutative diagram: $(* * *)$

with $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda W, D_{2}\right)<\infty$ and $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda V, D_{1}\right)<\infty$.
For example, for the fibre inclusion of the Hopf fibration $f: S^{3} \rightarrow S^{7}, r_{0}\left(S^{3}\right)=r_{0}\left(S^{7}\right)=$ $r_{0}(f)=1$ since it induces the natural inclusion $E_{1}=\mathbb{C} P^{1} \rightarrow \mathbb{C} P^{3}=E_{2}$ satisfying $(*)$ (without rationalization). On the other hand, for a rationally non-trivial fibration $S^{5} \rightarrow X \xrightarrow{f} Y=$ $S^{3} \times S^{3}, r_{0}(X)=1, r_{0}(Y)=2$ and $r_{0}(f)=0$ from $(* * *)$. If $r_{0}(f)=0$, the map f can not (rationally) be an S^{1}-equivariant map preserving almost free actions.

From the definition,

$$
r_{0}(f) \leq \min \left\{r_{0}(X), r_{0}(Y)\right\}
$$

for any map $f: X \rightarrow Y$. In particular,

$$
r_{0}\left(i_{X}\right)=r_{0}(X) \quad \text { and } \quad r_{0}\left(p_{Y}\right)=r_{0}(Y)
$$

for the inclusion $i_{X}: X \rightarrow X \times Y$, for the projection $p_{Y}: X \times Y \rightarrow Y$.
Recall the LS category $\operatorname{cat}(f):=\min \sharp\left\{U_{i} \subset X \mid X=\cup_{i} U_{i}\right.$ is an open covering with $\left.f\right|_{U_{i}} \simeq$ *\} - 1 for a map $f: X \rightarrow Y$, where $\operatorname{cat}\left(i d_{X}\right)=\operatorname{cat}(X)$, the LS category of a space X. Here \sharp denotes the cardinality of a set. It satisfies $\operatorname{cat}(f) \leq \min \{\operatorname{cat}(X)$, $\operatorname{cat}(Y)\}$ for any map $f: X \rightarrow Y$.

Theorem 1.4. For maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z, r_{0}(g \circ f)$ can be arbitrarily large compared with $r_{0}(f)$ and $r_{0}(g)$.

This theorem follows from the second example in

Example 1.5. (1) For any m, n and $s \leq \min \{m, n\}$, there are maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ with $r_{0}(f)=m, r_{0}(g)=n$ and $r_{0}(g \circ f)=s$. For example, put

$$
\begin{gathered}
f: S_{1}^{3} \times \cdots \times S_{m}^{3} \rightarrow S_{1}^{3} \times \cdots \times S_{m}^{3} \times S_{1}^{5} \times \cdots \times S_{n}^{5} \quad \text { and } \\
g: S_{1}^{3} \times \cdots \times S_{m}^{3} \times S_{1}^{5} \times \cdots \times S_{n}^{5} \rightarrow S_{1}^{3} \times \cdots \times S_{s}^{3} \times S_{1}^{5} \times \cdots \times S_{n-s}^{5}
\end{gathered}
$$

where $\left.f\right|_{S_{i}^{3}}=i d_{S_{i}^{3}}$ for all $i,\left.g\right|_{S_{i}^{3}}=i d_{S_{i}^{3}}$ for $i=1, . ., s,\left.g\right|_{S_{i}^{5}}=i d_{S_{i}^{5}}$ for $i=1, . ., n-s$ and $\left.g\right|_{S_{i}^{n}}=*$ for other i. Then we have an example of it.
(2) Consider the maps $f: X \rightarrow Y$ and $g: Y \rightarrow Z=S^{3} \times \cdots \times S^{3}$ (2n-factors) with the following models. For $n>1$, put

$$
M(g): M(Z)=\left(\Lambda\left(w_{1}, . ., w_{2 n}\right), 0\right) \rightarrow\left(\Lambda\left(w_{1}, . ., w_{2 n}, w\right), d_{Y}\right)=M(Y)
$$

with $\left|w_{i}\right|=3$ for all $i,|w|=6 n-1, d_{Y}(w)=w_{1} \cdots w_{2 n}$ and

$$
M(f): M(Y)=\left(\Lambda\left(w_{1}, . ., w_{2 n}, w\right), d_{Y}\right) \rightarrow\left(\Lambda\left(w_{1}, . ., w_{2 n}, w, y\right), d_{X}\right)=M(X)
$$

with $|y|=5, d_{X}(w)=w_{1} \cdots w_{2 n}$ and $d_{X}(y)=w_{1} w_{2}$. Then we have

$$
r_{0}(f)=1, r_{0}(g)=0 \text { and } r_{0}(g \circ f)=2 n-2 .
$$

In particular we can verify the third since

$$
M(X)=\left(\Lambda\left(w_{1}, . ., w_{2 n}, w, y\right), d_{X}\right) \cong\left(\Lambda\left(w_{3}, . ., w_{2 n}, w\right), 0\right) \otimes A
$$

with $A:=\left(\Lambda\left(w_{1}, w_{2}, y\right), d_{X}\right)$ induces the $\mathbb{Q}\left[t_{1}, . ., t_{2 n-2}\right]$-map

$$
F:\left(\mathbb{Q}\left[t_{1}, . ., t_{2 n-2}\right] \otimes \Lambda\left(w_{1}, . ., w_{2 n}\right), D\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, . ., t_{2 n-2}\right] \otimes \Lambda\left(w_{3}, . ., w_{2 n}, w\right), D\right) \otimes A
$$

with $D w_{i}=t_{i-2}^{2}$ for $i=3, . ., 2 n$ and $F\left(w_{i}\right)=w_{i}$ for all i.
On the other hand, $\operatorname{cat}(g \circ f) \leq \min \{\operatorname{cat}(f), \operatorname{cat}(g)\}$ [3, Exercise 1.16]. Futhermore, we know $\operatorname{cat}(c)=0$ for the constant map $c: X \rightarrow Y$ for any space Y. But we can often rationally construct a suitable model $M(Y)$ such that $r_{0}(X)=r_{0}(c)=r_{0}(Y)$. For example, for $M(X)=$ $(\Lambda(x, y, z), d)$ with $|x|=3,|y|=5,|z|=7, d x=d y=0$ and $d z=x y$, put $M(Y)=$ $\left(\Lambda\left(x^{\prime}, y^{\prime}, z^{\prime}\right), d\right)$ with $\left|x^{\prime}\right|=5,\left|y^{\prime}\right|=7,\left|z^{\prime}\right|=11, d x^{\prime}=d y^{\prime}=0$ and $d z^{\prime}=x^{\prime} y^{\prime}$. Then we can construct commutative diagram

$$
\begin{gathered}
M(Y)=\left(\Lambda\left(x^{\prime}, y^{\prime}, z^{\prime}\right), d\right) \xrightarrow{0} \xrightarrow{t=0 \uparrow}(\Lambda(x, y, z), d)=M(X) \\
M\left(E_{2}\right)=\left(\mathbb{Q}[t] \otimes \Lambda\left(x^{\prime}, y^{\prime}, z^{\prime}\right), D_{2}\right) \xrightarrow{F}\left(\mathbb{Q}[t] \otimes \Lambda(x, y, z), D_{1}\right)=M\left(E_{1}\right)
\end{gathered}
$$

where $F(t)=t, F\left(x^{\prime}\right)=x t, F\left(y^{\prime}\right)=y t, F\left(z^{\prime}\right)=z t^{2}, D_{1} z=x y+t^{4}$ and $D_{2} z^{\prime}=x^{\prime} y^{\prime}+t^{6}$. Since $\operatorname{dim} H^{*}\left(E_{i} ; \mathbb{Q}\right)<\infty$, we see $r_{0}(X)=r_{0}(c)=r_{0}(Y)=1$. Thus the two numerical invariants of a map, $r_{0}(f)$ and $\operatorname{cat}(f)$, have very different properties.

2 Examples

Suppose that G and K are compact connected Lie groups and K is a compact connected subgroup of G. Recall the result of Allday-Halperin [1, Remark(1)]:

Theorem 2.1. ([2, Corollary 4.3.8],[5, Corollaries 7.14 and 7.15])

$$
r_{0}(G)=\operatorname{rank} G \text { and } r_{0}(G / K)=\operatorname{rank} G-\operatorname{rank} K
$$

Theorem 2.1 says that there is a pure (two stage) Borel fibration $G / K \rightarrow E T^{r} \times_{T^{r}} G / K \rightarrow$ $B T^{r}([9])$ with $\operatorname{dim} H^{*}\left(E T^{r} \times T^{r} G / K ; \mathbb{Q}\right)<\infty$ for $r=\operatorname{rank} G-\operatorname{rank} K$; i.e., the differential D in the relative model of $(* * *)$ in $\S 1$ satisfies $D_{1} v \in \mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda V^{\text {even }}$ for $v \in V^{\text {odd }}$ and $D_{1} v=0$ for $v \in V^{\text {even }}$ when $M(G / K)=(\Lambda V, d)$.

Theorem 2.2. Let G and K be simply connected Lie groups and K a compact connected subgroup of G. For a principal K-bundle $K \xrightarrow{g} G \xrightarrow{f} G / K, r_{0}(g)=\operatorname{rank} K$ and $r_{0}(f)=$ $\operatorname{rank} G-\operatorname{rank} K$.

Proof: Put the relative model of $\xi: G \xrightarrow{f} G / K \xrightarrow{k} B K$ as

$$
M(B K)=\left(\mathbb{Q}\left[x_{1}, . ., x_{n}\right], 0\right) \rightarrow\left(\mathbb{Q}\left[x_{1}, . ., x_{n}\right] \otimes \Lambda V, d\right) \xrightarrow{p}(\Lambda V, 0)=M(G)
$$

with $d v_{i} \in \mathbb{Q}\left[x_{1}, . ., x_{n}\right]$ for $v_{i} \in V[4$, Proposition 15.16]. Put $r=\operatorname{rank} G-\operatorname{rank} K$. From Theorem 2.1 and Proposition 1.3, there is a DGA $A:=\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \mathbb{Q}\left[x_{1}, . ., x_{n}\right] \otimes \Lambda V, D\right)$ where $D v_{i}=d v_{i}+g_{i}$ with $g_{i} \in\left(t_{1}, . ., t_{r}\right), D x_{i}=0$ and $\operatorname{dim} H^{*}(A)<\infty$. The DGA-projection p is extended to the $\mathbb{Q}\left[t_{1}, . ., t_{r}\right]$-projection

$$
F: A=\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \mathbb{Q}\left[x_{1}, . ., x_{n}\right] \otimes \Lambda V, D\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda V, \bar{D}\right)=: B
$$

which induces $\operatorname{dim} H^{*}(B)<\infty$. Thus $r_{0}(f) \geq \operatorname{rank} G-\operatorname{rank} K$.

Example 2.3. Let $S U(n)$ be the n-th special unitary group. Then $M(S U(6))$ is given as $\left(\Lambda\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right), 0\right)$ with $\left|v_{1}\right|=3,\left|v_{2}\right|=5,\left|v_{3}\right|=7,\left|v_{4}\right|=9$ and $\left|v_{5}\right|=11$.
(1) For the principal bundle $S U(3) \xrightarrow{g} S U(6) \xrightarrow{f} S U(6) / S U(3)$, the relative model is extended to

with $D_{1} v_{1}=D_{2} v_{1}=t_{1}^{2}, D_{1} v_{2}=D_{2} v_{2}=t_{2}^{3}, D_{2} v_{3}=D_{2} v_{4}=D_{2} v_{5}=0$. Thus $r_{0}(g)=$ $\operatorname{rank} S U(3)=2$.
(2) For the principal bundle $S U(3) \times S U(3) \xrightarrow{g} S U(6) \xrightarrow{f} S U(6) / S U(3) \times S U(3)$, the relative model is extended to

where $\left|x_{1}\right|=\left|x_{1}^{\prime}\right|=4,\left|x_{2}\right|=\left|x_{2}^{\prime}\right|=6, V=\mathbb{Q}\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right), d x_{i}=d x_{i}^{\prime}=0, d v_{1}=x_{1}+x_{1}^{\prime}$, $d v_{2}=x_{2}+x_{2}^{\prime}, d v_{3}=x_{1}^{2}+{x_{1}^{\prime}}^{2}, d v_{4}=x_{1} x_{2}+x_{1}^{\prime} x_{2}^{\prime}, d v_{5}=x_{2}^{2}+{x_{2}^{\prime \prime}}^{2}[6, \mathrm{p} .486]$ and

$$
C=\mathbb{Q}\left[x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right] \otimes \Lambda\left(u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime}\right)
$$

with $\left|u_{i}\right|=\left|u_{i}^{\prime}\right|=2 i+1, D u_{i}=x_{i}$ and $D u_{i}^{\prime}=x_{i}^{\prime}$; i.e., $H^{*}(C)=\mathbb{Q}$. Here $D_{t} u_{1}=x_{1}+t_{1}^{2}$, $D_{t} u_{2}=x_{2}+t_{2}^{3}, D_{t} u_{1}^{\prime}=x_{1}^{\prime}+t_{3}^{2}, D_{t} u_{2}^{\prime}=x_{2}^{\prime}+t_{4}^{3}$. Thus $r_{0}(g)=\operatorname{rank} S U(3) \times S U(3)=4$.

Also $r_{0}(f)=\operatorname{rank} S U(6)-\operatorname{rankSU}(3) \times S U(3)=1$. Indeed, for the minimal model $M(S U(6) / S U(3) \times S U(3))=\left(\mathbb{Q}\left[x_{1}, x_{2}\right] \otimes \Lambda\left(v_{3}, v_{4}, v_{5}\right), d\right)$ with $d x_{1}=d x_{2}=0, d v_{3}=x_{1}^{2}$, $d v_{4}=x_{1} x_{2}$ and $d v_{5}=x_{2}^{2}$, we have a commutative diagram
where $D v_{3}=x_{1}^{2}, D v_{4}=x_{1} x_{2}+t^{5}$ and $D v_{5}=x_{2}^{2}$.
Theorem 2.4. If $G / K \xrightarrow{g} X \xrightarrow{f} Y$ is a fibration associated with a principal G-bundle, then $r_{0}(g)=\operatorname{rank} G-\operatorname{rank} K$.
Proof: Put the model of the fibration $f: X \rightarrow Y$ as $i: M(Y)=\left(\Lambda W, d_{Y}\right) \rightarrow(\Lambda W \otimes \Lambda V, D)$. Then $M(G / K)=(\Lambda V, d)$ with $d=\bar{D}$. Note that $D v \in \Lambda W \otimes \Lambda V^{\text {even }}$ for $v \in V^{\text {odd }}$ and $D v=0$ for $v \in V^{\text {even }}[9,(3.4)]$ from the assumption. Put $r=\operatorname{rank} G-\operatorname{rank} K$. Fix a differential d_{t} on $\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda V$ with $\bar{d}_{t}=d$ and $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda V, d_{t}\right)<\infty$, which exists from Theorem 2.1. Note $\left.d_{t}\right|_{V^{\text {even }}}=0$ and $d_{t}\left(V^{\text {odd }}\right) \subset \mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda V^{\text {even }}$. Then we have the relative model

$$
\left(\Lambda W, d_{Y}\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda W \otimes \Lambda V, D_{t}\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda V, d_{t}\right)
$$

with $D_{t}(v):=D v+\left(d_{t}-d\right)(v)$ and $D_{t}(w):=d_{Y} w$. It is embedded into a commutative diagram

Since $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda V, d_{t}\right)<\infty$, we have $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, . ., t_{r}\right] \otimes \Lambda W \otimes \Lambda V, D_{t}\right)<\infty$ from the Serre spectral sequence. Thus we have $r_{0}(g) \geq r$. From Theorem 2.1, we have $r_{0}(g)=r$.

Remark 2.5. If a fibration $C \xrightarrow{g} X \xrightarrow{f} Y$ is not (associated with) a principal bundle, it does not hold that $r_{0}(g)=r_{0}(C)$. For example, for the rational fibration $S U(3) \rightarrow X \rightarrow S^{3}$ given by

$$
(\Lambda w, 0) \rightarrow\left(\Lambda\left(w, u_{1}, u_{2}\right), D\right) \rightarrow\left(\Lambda\left(u_{1}, u_{2}\right), 0\right)
$$

where $|w|=\left|u_{1}\right|=3$ and $\left|u_{2}\right|=5$ and $D u_{2}=w u_{1}$, we have $r_{0}(g)=1<2=r_{0}(S U(3))$. Also for a fibration over S^{3} of the relative model

$$
(\Lambda w, 0) \rightarrow\left(\Lambda\left(w, v_{2}, v_{3}, v_{4}, v_{5}, v_{7}\right), D\right) \rightarrow\left(\Lambda\left(v_{2}, v_{3}, v_{4}, v_{5}, v_{7}\right), \bar{D}\right)=M(C)
$$

where $|w|=3,\left|v_{i}\right|=i, D v_{2}=0, D v_{3}=v_{2}^{2}, D v_{4}=w v_{2}, D v_{5}=v_{2} v_{4}-w v_{3}$ and $D v_{7}=$ $v_{4}^{2}+2 w v_{5}$, we can check $r_{0}(g)=r_{0}(X)=0$ from [12]. On the other hand, $r_{0}(C)=1$ since $\operatorname{dim} H^{*}\left(\mathbb{Q}[t] \otimes \Lambda\left(v_{2}, v_{3}, v_{4}, v_{5}, v_{7}\right), \bar{D}_{t}\right)<\infty$ by $\bar{D}_{t}\left(v_{3}\right)=v_{2}^{2}, \bar{D}_{t}\left(v_{5}\right)=v_{2} v_{4}+t^{3}$ and $\bar{D}_{t}\left(v_{7}\right)=v_{4}^{2}$. Note their fibres are pure but the above two fibrations are not pure [9]. Compare with Theorem 2.4.

Theorem 2.6. For an odd-spherical fibration $\xi: S^{2 n-1} \rightarrow X \xrightarrow{f} Y$, suppose $\pi_{>2 n}(Y) \otimes \mathbb{Q}=0$. Then, for any free T^{r}-action μ on X^{\prime} with $X_{\mathbb{Q}}^{\prime} \simeq X_{\mathbb{Q}}$ such that $r_{0}\left(E T^{r} \times{ }_{T^{r}}^{\mu} X^{\prime}\right)=0$, there is no map F between fibrations

such that τ is a free T^{r}-actionon Y^{\prime} with $Y_{\mathbb{Q}}^{\prime} \simeq Y_{\mathbb{Q}}$. In particular, $r_{0}(f)<r_{0}(X)$.
Proof: Put $M\left(S^{2 n-1}\right)=(\Lambda y, 0)$ and $M(Y)=\left(\Lambda V, d_{Y}\right)$. Supppose that there is a map $\left(\mathbb{Q}\left[t_{1}, . ., t_{j}\right] \otimes \Lambda V, D_{2}\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, . ., t_{j}\right] \otimes \Lambda V \otimes \Lambda y, D_{1}\right)$ with $\operatorname{dim} H^{*}\left(D_{i}\right)<\infty$. Then, from degree reasons, there is a KS-extension of $\left(\mathbb{Q}\left[t_{1}, . ., t_{j}\right] \otimes \Lambda V \otimes \Lambda y, D_{1}\right)$ by t_{j+1}, the DGA $A:=\left(\mathbb{Q}\left[t_{1}, . ., t_{j+1}\right] \otimes \Lambda V \otimes \Lambda y, D^{\prime}\right)$ with

$$
D^{\prime}(y)=D_{1}(y)+t_{j+1}^{n} \quad \text { and } \quad D^{\prime}(v)=D_{1}(v) \text { for } v \in V
$$

satisies $\operatorname{dim} H^{*}(A)<\infty$.
Question 2.7. For a fibration $\xi: C \xrightarrow{g} X \xrightarrow{f} Y$ with fibre C simply connected of finite rational cohomology, does it hold that $r_{0}(g)+r_{0}(f) \leq r_{0}(X)$?

Remark 2.8. The above question is true for many cases. For example, it is true for the fibrations of Theorem 2.6 or when $r_{0}(C)=0$. Of course, it is true when ξ is rationally trivial. But it may not be equal. Recall Halperin's inequality $r_{0}(X)=r_{0}(X)+r_{0}\left(S^{2 n}\right)<r_{0}\left(X \times S^{2 n}\right)$ for a formal space X and an integer $n>1$ [11]. For any even integer n, there is a space X_{n} such that $r_{0}\left(X_{n}\right)=0$ and $r_{0}\left(X_{n} \times S^{6 n+1}\right) \geq n$. In the following, we give an example of the model. Put

$$
M\left(X_{n}\right)=(\Lambda V, d)=\left(\Lambda\left(u_{1}, u_{2}, . ., u_{n}, v_{1}, v_{2}, \ldots, v_{2 n}, v, w\right), d\right)
$$

with

$$
\begin{gathered}
d v_{i}=d u_{i}=d w=0 \quad \text { for all } i \text { and } \\
d v=u_{1} u_{2} u_{3} \cdots u_{n}\left(v_{1} v_{2}+v_{3} v_{4}+v_{5} v_{6}+\cdots+v_{2 n-1} v_{2 n}\right)+w^{2}
\end{gathered}
$$

and $\left|v_{i}\right|=\left|u_{i}\right|=3$ for all $i,|w|=(3 n+6) / 2,|v|=3 n+5$. Then we can check that $r_{0}\left(X_{n}\right)=0$ by Proposition 1.3 since $\operatorname{dim} H^{*}(\mathbb{Q}[t] \otimes \Lambda V, D)=\infty$ for any differential D by direct calculations. Put $M\left(S^{6 n+1}\right)=(\Lambda y, 0)$ with $|y|=6 n+1$ and

$$
M\left(E T^{n} \times_{T^{n}}\left(X_{n} \times S^{6 n+1}\right)\right)=\left(\mathbb{Q}\left[t_{1}, . ., t_{n}\right] \otimes \Lambda V \otimes \Lambda y, D\right)
$$

by

$$
\begin{gathered}
D v=d v+\sum_{i=1}^{n} u_{i} y t_{i}, \quad D v_{2 i}=t_{i}^{2}, \quad D v_{2 i-1}=0(i=1, . ., n) \\
\text { and } \quad D y=\sum_{i=1}^{n}(-1)^{i+1} v_{2 i-1} u_{1} \cdots \hat{u_{i}} \cdots u_{n} t_{i}
\end{gathered}
$$

Then $D \circ D=0$ and $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, . ., t_{n}\right] \otimes \Lambda V \otimes \Lambda y\right)<\infty$. Thus $r_{0}(X \times Y)$ can be arbitrarily large compared to $r_{0}(X)+r_{0}(Y)$.

Remark 2.9. Is there a good cohomological upper bound for $r_{0}(f)$? Recall that S.Halperin proposes the toral rank conjecture (TRC) that the inequality

$$
\operatorname{dim} H^{*}(X ; \mathbb{Q}) \geq 2^{r_{0}(X)}
$$

holds [8] ([4, 39], [5, Conjecture 7.20]). For example, a homogeneous space satisfies it [5, (7.23)]. It is natural to ask whether the inequality $\operatorname{dim} \operatorname{Im}\left(H^{*}(f ; \mathbb{Q})\right) \geq 2^{r_{0}(f)}$ holds. But that is not the case in general. For example, put $M(X)=\left(\Lambda\left(v_{1}, v_{2}, v_{3}\right), 0\right)$ with $\left|v_{i}\right|=3$ and $M(Y)=\left(\Lambda\left(x, y, v_{1}, v_{2}, v_{3}\right), d\right)$ with $d v_{1}=x^{2}, d v_{2}=x y, d v_{3}=y^{2}, d x=d y=0,|x|=$ $|y|=2$, and $M(f)\left(v_{i}\right)=v_{i}$ and $M(f)(x)=M(f)(y)=0$. Then $H^{*}(f ; \mathbb{Q})$ is trivial; i.e., $\operatorname{dim} \operatorname{Im}\left(H^{*}(f ; \mathbb{Q})\right)=1$. On the other hand, $r_{0}(f)=1$. Indeed, $\left(\mathbb{Q}[t] \otimes \Lambda\left(x, y, v_{1}, v_{2}, v_{3}\right), D_{2}\right)$ is given by $D_{2} v_{1}=x^{2}, D_{2} v_{2}=x y+t^{2}, D_{2} v_{3}=y^{2}$ and $\left(\mathbb{Q}[t] \otimes \Lambda\left(v_{1}, v_{2}, v_{3}\right), D_{1}\right)$ is given by $D_{1} v_{1}=D_{1} v_{3}=0, D_{1} v_{2}=t^{2}$. Then $\operatorname{dim} H^{*}\left(D_{1}\right)<\infty, \operatorname{dim} H^{*}\left(D_{2}\right)<\infty$ and $M(f)$ is extended to a $\mathbb{Q}[t]$-morphism $F:\left(\mathbb{Q}[t] \otimes \Lambda\left(x, y, v_{1}, v_{2}, v_{3}\right), D_{2}\right) \rightarrow\left(\mathbb{Q}[t] \otimes \Lambda\left(v_{1}, v_{2}, v_{3}\right), D_{1}\right)$ with $F(x)=F(y)=0$.

References

[1] C.Allday and S.Halperin, Lie group actions on spaces of finite rank, Quart. J. Math. Oxford (2) 29 (1978) 63-76
[2] C.Allday and V.Puppe, Cohomological methods in transfomation groups, Cambridge Univ. Press 32 [1993]
[3] O.Cornea,G.Lupton, J.Oprea and D.Tanre Lusternik-Schnirelmann category, Mathematical Surveys and Monographs A.M.S. (2003)
[4] Y.Félix, S.Halperin and J.-C.Thomas, Rational homotopy theory, Springer G.T.M. 205 [2001]
[5] Y.Félix, J.Oprea and D.Tanré, Algebraic models in geometry, Oxford G.T.M. 17 [2008]
[6] W.Greub, S.Halperin and R.Vanstone, Connection, curvature and cohomology III, Academic press [1976]
[7] S.Halperin, Finiteness in the minimal models of Sullivan, Trans.A.M.S. 230 (1977) 173199
[8] S.Halperin, Rational homotopy and torus actions, London Math. Soc. Lecture Note Series 93, Cambridge Univ. Press (1985) 293-306
[9] S.Halperin and J.-C.Thomas, Rational equivalence of fibrations with fibre G / K, Can.J.Math.XXXIV (1982) 31-43.
[10] P.Hilton, G.Mislin and J.Roitberg, Localization of nilpotent groups and spaces, North-Holland Math. Studies 15 [1975]
[11] B.Jessup and G.Lupton, Free torus actions and two-stage spaces, Math. Proc. Cambridge Philos. Soc. 137(1) (2004) 191-207
[12] T.Yamaguchi, An example of a fiber in fibrations whose Serre spectral sequences collapse, Czechoslovak Math. J. 55(130) (2005) 997-1001

Received: 21.04.2013
Revised: 10.09.2013
Accepted: 08.10.2013
Faculty of Education,
Kochi University,
2-5-1,Kochi,780-8520, Japan
tyamag@kochi-u.ac.jp

