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Abstract

In the frame of the previous research it is asummed that relations tuples are identically
distributed and the values of different attributes are independent. These assumptions are
not realistic because attributes values can be imprecise and there can be a dependency
between attributes. In this paper we extend the concept of selectivity factor, associated
to a query to the notion of selectivity factor associated to queries sets and we give some
practical results in the case of random databases.
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1 Introduction

In this paper we propose to extend the concept of selectivity factor associated to a query to the
notion of selectivity factor associated to a queries set {C1, . . . , Cn}. The framework in which
we place this concept assumes that the tables of the database are updated dynamically. So, at
distinct moments of time, the selectivity factor associated to each query is different. Suppose
that the query Ci has the selectivity factor pi = αi

k , where k is the number (constant) of lines
of the table, and αi is the number of lines selected by the query Ci. In this case, the selectivity
factor of the queries set can be estimated by the variable:

p =
1

n

∑
i

pi =
1

n

∑
i

αi
k

=

∑
i

αi

nk
. (1.1)

The mean of p is given by E(p) = p and it represents the (theoretical) selectivity factor of
the queries set, if p is an unbiased estimation for p. The variance of this variable is V ar(p) =
p(1− p)

n
≤ 1

4n
, and the standard deviation is σ ≤ 1

2
√
n

.

From the Chebyshev’s inequality, we get:

P (|p− p| < tσ) ≥ 1− 1

t2
. (1.2)
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We denote 1− 1

t2
= 1− δ, and from here it results that tδ =

1√
δ

. We denote tσ = ε ∼= 0, 01.

For a small value of ε we obtain a large value 1− δ, so δ is small.
From the preceding notations, it implies that:

tδ ·
1

2
√
n
≤ 0, 01. (1.3)

In order to be able to estimate the selectivity factor the number n of queries must satisfy the

condition n ≥ t2δ
4 · (0, 01)2

.

2 Estimation of the selectivity factor

Assuming that the tables are updated dynamically, we consider that the number of lines of
the tables at the moments of different queries is ki, uniformily distributed. Let’s assume that
the minimum, respectively, maximum values of this variable are known: m ≤ ki ≤ n . Then,
by means of the simulation methods of the uniform variable, we obtain an estimation of the
generalized selectivity factor for a queries set through the following algorithm:

Algorithm AEGSF (Algorithm for the estimation of the generalized selectivity fac-
tor)

Input: tδ.

Step 1. Determine N0 = [
t2δ

4 · (0, 01)2
] + 1. Choose N ≥ N0.

Step 2. For i = 1 to N do
Begin

Generate a random value U ∈ (0, 1).
Determine ki = m+ [(n−m)U ] + 1.

Calculate pi =
αi
ki

.

End.

Step 3. Determine p =
1

N

∑
i

pi.

Given values p1, p2, . . . , pN generated at step 2, the selectivity factor of the queries set can be
estimated by p.
In many cases, in the frame of the statistic profiles used in the previous research, it was as-
summed that the tuples of the relations are identically distributed, relative to the values of an
attribute, and the values of different attributes are independent.
This assumption is not realistic, there ar many examples in databases where attributes that
exhibit dependencies between and/or their values ar imprecise[7]. Due to this reason, there
have been developed several methods to estimate the selectivity factor. Among them the most
common are: parametric and non-parametric methods, and the maximum entropy principle [1].
A subsequent classification of the methods for estimation of the selectivity factor used tradi-
tionally, include the following estimator types [4]:



Some estimations in database queries 321

• methods based on selection, which determine the selectivity factor only on the basis of
the information at runtime, without using the information collected previously;

• parametric methods, which use only the information collected previously, ignoring the
on-line information.

The disadvantage of the first class of estimators consists in the insufficient use of the available
information, whereas the second class leads to an unprecise estimation in an environment with
frequent updates. There have been proposed hybrid estimators[4], which weight the two types
enumerated above and whose results have been validated in practice.

3 Hybrid estimator for the generalized selectivity factor

In the following we present a hybrid estimator for the selectivity factor of a query and we will
extend the results for the case of the selectivity factor associated to a queries set, introduced
before.
In the case of a single query, we consider f the characteristic function of a selection predicate,
and xi a tuple. The function f can be defined in the following way:

yi = f(xi) =

{
1, if xi satisfies the selection predicate;

0, otherwise.
(3.1)

In the approach based on selection, the main technique consists in choosing randomly,
repeatedly, a tuple in the table on the basis of the queries’ predicate, followed by the inference
about the real selectivity, using the estimated selectivity obtained from the sample data. Thus,
one can realize the inference and according by obtain an approximation for the real selectivity
p as:

p̂n =
1

n
·
n∑
i=1

yri =
1

n
·
n∑
i=1

f(xri), (3.2)

where n represents the sample size, k is the total number of tuples and the index ri is a random
integer, between 1 and k. Consequently, the average total number of tuples which satisfy the
selection is k · p̂n.
A hybrid estimator p̆n of the selectivity factor is given by a linear combination between the
estimated selectivity p̂n and the estimated selectivity p̃ , obtained by a parametric estimator or
by a table based estimator:

p̆n = t · p̂n + (1− t) · p̃, (3.3)

where t is a parameter in the interval [0, 1].
In order to validate an estimator, the mean-squared error (mse) is used to quantify the estima-
tors performances:

mse(p) = E(p− p)2 =
1

n
·
n∑
i=1

(pi − p)2, (3.4)
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where pi is the individual selectivity estimated by an estimator, p is the total, real selectivity,
depending on the given query, and n is the sample size.
The value mse of an estimator represents the accuracy of its estimation, as well as its safety.
The smaller the mse value, the betters the estimator is. For a method based on selection, the

mse value is
p · (1− p)

n
. For an estimator which uses a parametric or table based method, the

mse value is (p̃ − p)2 , and p̃ remains unchanged for the given query, until the parametric or
table based estimator is recomputed, using the updated information.
The different values of the parameter t represents different weights of the two estimators. In
the extreme cases t = 1 or t = 0, the hybrid model reduces to a selection based estimator,
respectively to a parametric or a table based one. The existence of an optimum value of the
parameter t and the calculation of this value have been determined in the following theorem[4].

Theorem 1. The optimum value of t, denoted by t∗n, is given by the formula:

t∗n =
(p̃− p)2

p · 1− p
n

+ (p̃− p)2
. (3.5)

The mse value for the hybrid estimator corresponding to the optimum parameter t∗n is smaller
than each of the two estimators when 0 < p < 1 and p 6= p̃, meaning that:

E(p̆∗n − p)2 < min{p · (1− p)
n

, (p̃− p)2}, (3.6)

where p̆∗n is p̃n for t = t∗n.

We can apply the hybrid estimators in the case proposed previously, of several queries,
therefore of the generalized selectivity factor. We know that p1, ...pq are the selectivity factors
associated to the q queries. Consider fi the characteristic functions of the predicates associated
to each of the q queries and be xij a tuple in the query i. We consider a selection associated to
each query.
The functions fi are given by the formula:

yij = fi(xij) =

{
1, if xij satisfies the selection predicate of the query i;

0, otherwise.
(3.7)

Let ni be the sizes of the samples associated to the q queries. Then, an approximation of the
selectivity of the query i is given by:

p̂ni
=

1

ni
·
ni∑
j=1

yirj =
1

ni
·
ni∑
j=1

fi(xirj ), (3.8)

where rij is a random integer between 1 and ni.
The approximate number of tuples of the result of the query i will be ki · p̂ni

, where ki is the
total number of tuples of the relation in the query i.
Every query has an associated hybrid estimator:

p̆ni
= ti · p̂ni

+ (1− ti) · p̃i. (3.9)
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For the queries set, we obtain:

p =
1

N
·
∑
i

p̆ni
, (3.10)

where N was determined previously.
Thus, the algorithm AEGSF becomes:

Algorithm AEGSFHE (Algorithm for the estimation of the generalized selectivity,
using hybrid estimators)

Input: tδ.

Step 1. Determine N0 = [
t2δ

4 · (0, 01)2
] + 1. Choose N ≥ N0.

Step 2. For i = 1 to N do
Begin

Generate a random value U ∈ (0, 1).
Determine ni = m+ [(n−m)U ] + 1.
Calculate p̆ni

= ti · p̂ni
+ (1− ti) · p̃i.

End.

Step 3. Determine p =
1

N

∑
i

p̆ni .

On the basis of the values p̆n1 , p̆n2 , . . . , p̆nN
, generated at step 2, the selectivity factor of the

queries set can be estimated by p, computed in the last step of the algorithm.

4 Optimization on random databases query

We have extended the notion of random database, in which the records are random vectors
following a certain probability distribution, to heterogeneous random databases, in which each
column can have its own unidimensional distribution.
The operators of the relational model define the operations that can be performed on the
relations, in order to manipulate the database. The relational model includes the relational
algebra, whose operators are either the traditional set operators (union, intersect, product,
difference) or special relational operators (project, select, join, division).
The join operator allows the information retrieval from more correlated relations. This is a
binary operation whose result is a new relation in which each tuple is a combination of a tuple
in the first relation and a tuple in the second one. The required condition in order to apply the
join operator is that the tuples are similar.
In case of random databases, we have the following definition of the join operator:

Definition 1. Consider two relations R and S. The ε-join can be described as follows:

joinε(R,S) = {(x, y) ∈ R× S|d(xR, yS) ≤ ε}. (4.1)

We denote by Nε(joinε(R,S)) the number of lines in the result.
During our studies[6] we have noticed the existence of some relations between the cardinalities
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N=10000 N=20000

Join order Time Join order Time

T11UT21ET3 39,738 T11UT21ET3 256,79
T11NT21UT3 37,176 T11NT21UT3 229,03
T11NT21ET3 33,351 T11NT21ET3 199,48

Table 1: ε-Join operation time consuming

of the approximate join operation in different cases of the table columns’ types of probability
distributions. These remarks are shown in the Table 1.

We note by T11UT2 the ε − join operation which uses columns having values distributed
uniformly and with N the number of lines from each table.
The practical experiments were conducted with tables having at least three columns with their
values distributed uniformly, exponentially, normally and ε < 0.01. The best result it is obtained
when we evaluate first the join on columns wich follows normal distribution and then on the
columns which follows exponential distribution. Such result has an important impact in random
database query optimization.

5 Future Work

In [7] it is proposed a new algorithm EGO - Efficient Global Optimization (called Super-EGO)
to implement the ε-join operations. The new algorithm prevails over the others through a
new technique of subsets ordering which take part in join operations and through a parallel
implementation that can run on devices with multiple processors.
The basic EGO-join algorithm analyzes dimensions in a sequential order from 1 to n. However,
for higher dimensional cases, some of the dimensions might have more discriminative power
than the others. The Super-EGO algorithm use data sampling techniques to measure this
discriminative power to make a new order. We believe that by studying the distributions of
values that these dimensions could have and by using the result presented in this paper it is
possible to improve the technique of reordering the dimensions enhancing the performance of
this algorithm.
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