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The Exponential Diophantine Equation
((22m − 1)n)x + (2m+1n)y = ((22m + 1)n)z

by
1Zhang Xinwen and 2Zhang Wenpeng

Abstract

Let m, n be positive integers. Let (a, b, c) be a primitive Pythagorean triplet with
a2 + b2 = c2. In 1956, L. Jeśmanowicz conjectured that the equation (an)x +(bn)y = (cn)z

has only the positive integer solution (x, y, z) = (2, 2, 2). In this paper, using certain
elementary methods, we prove that if (a, b, c) = (22m − 1, 2m+1, 22m + 1), then the above
equation has only the positive integer solution (x, y, z) = (2, 2, 2). Thus it can be seen that
Jeśmanowicz’s conjecture is true for infinitely many primitive Pythagorean triplets.
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1 Introduction

Let Z,N be the sets of all integers and positive integers respectively. Let m, n be positive
integers. Let (a, b, c) be a primitive Pythagorean triplet such that

a2 + b2 = c2, a, b, c ∈ N, gcd(a, b, c) = 1, 2|b. (1.1)

Then we have

a = u2 − v2, b = 2uv, c = u2 + v2, u, v ∈ N,

u > v, gcd(u, v) = 1, 2|uv. (1.2)

In 1956, L. Jeśmanowicz[2] conjectured that the equation

(an)x + (bn)y = (cn)z, x, y, z ∈ N (1.3)

has only the solution (x, y, z) = (2, 2, 2) for any n.
This conjecture has been proved to be true in many special cases (see [7] and its references).
But, in general, the problem is not solved as yet.
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Most of the results concerning the above conjecture deal with the case that n = 1, and very
little is known about (1.3) for n > 1. In this paper, we discuss the case that

u = 2m, v = 1. (1.4)

Substituting (1.4) into (1.2), we have

a = 22m − 1, b = 2m+1, c = 22m + 1, (1.5)

and by (1.5), the equation (1.3) can be written as

((22m − 1)n)x + (2m+1n)y = ((22m + 1)n)z, x, y, z ∈ N. (1.6)

In this connection, by an early result of W. -T. Lu[5], (1.6) has only the solution (x, y, z) =
(2, 2, 2) for n = 1. In 1998, M. -J. Deng and G. L. Cohen[1] showed that if m = 1, then (1.6) has
only the solution (x, y, z) = (2, 2, 2) for n > 1. Recently, Z. -J. Yang and M. Tang[10] proved a
similar result for m = 2. In this paper, using certain elementary methods, we prove a general
result as follows.

Theorem 1. For any positive integers m and n, (1.6) has only the solution (x, y, z) = (2, 2, 2).

Thus it can be seen that Jeśmanowicz’s conjecture is true for infinitely many primitive
Pythagorean triplets.

2 Preliminaries

Let k be a positive integer, and let P (k) denote the product of all distinct prime divisors of k.
Further let P (1) = 1.

Lemma 2.1.[6] Let t be a positive integer. If 2t ≡ 1(mod 2k − 1), then k|t.
Lemma 2.2. Every solution (X,Y, Z) of the equation

X2 + Y 2 = Zk, X, Y, Z ∈ N, gcd(X,Y ) = 1, 2|Y (2.1)

can be expressed as
Z = A2 +B2, A,B ∈ N, gcd(A,B) = 1, 2|B (2.2)

and
X + Y

√
−1 = λ1(A+ λ2B

√
−1)k, λ1, λ2 ∈ {±1}. (2.3)

Moreover, if 2r||Y, 2s||k and 2t||B, then r > s and r = s+ t.
Proof. By [8, Section 15.2], every solution (X,Y, Z) of (2.1) can be expressed as (2.2) and

(2.3). Further, by (2.3), we have

Y = λ1λ2B

[(k−1)/2]∑
i=0

(
k

2i+ 1

)
Ak−2i−1(−B2)i, (2.4)

where [(k − 1)/2] is the integral part of (k − 1)/2.
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By (2.2), we have 2 - A,

2s+t || λ1λ2
(
k
1

)
Ak−1B (2.5)

and

2s+3t | (−1)iλ1λ2

(
k

2i+ 1

)
Ak−2i−1B2i+1

= (−1)iλ1λ2k

(
k − 1

2i

)
Ak−2i−1B2i+1

2i+ 1
, i ≥ 1. (2.6)

Therefore, by (2.5) and (2.6), we get

2s+t || λ1λ2B
[(k−1)/2]∑
i=0

(
k

2i+ 1

)
Ak−2i−1(−B2)i. (2.7)

Since 2|B, we see from (2.4) and (2.7) that r > s and r = s+ t. The lemma is proved.
Lemma 2.3. Every solution (X,Y, Z) of the equation

X2 + 2Y 2 = Zk, X, Y, Z ∈ N, gcd(X,Y ) = 1 (2.8)

can be expressed as

Z = A2 + 2B2, A,B ∈ N, gcd(A,B) = 1, 2 - A (2.9)

and
X + Y

√
−2 = λ1(A+ λ2B

√
−2)k, λ1, λ2 ∈ {±1}. (2.10)

Moreover, if 2r || Y, 2s || k and 2t || B, then r ≥ s and r = s+ t.
Proof. Notice that h(−8) = 1, where h(−8) is the class number of primitive binary

quadratic forms of discriminant -8. Therefore, by [3, Theorems 1 and 2], every solution (X,Y, Z)
of (2.8) can be expressed as (2.9) and (2.10). Further, by (2.10), we have

Y = λ1λ2B

[(k−1)/2]∑
i=0

(
k

2i+ 1

)
Ak−2i−1(−2B2)i. (2.11)

Thus, using the same method as in the proof of Lemma 2.2, we can get from (2.11) that r ≥ s
and r = s+ t. The lemma is proved.

Lemma 2.4.[9] If k ≥ 3, then the equation

Xk + Y k = Zk, X, Y, Z ∈ N (2.12)

has no solution (X,Y, Z).
Lemma 2.5.[4] If n > 1 and (x, y, z) is a solution of (1.3) with (x, y, z) 6= (2, 2, 2), then one

of the following conditions is satisfied:
(i) max{x, y} > min{x, y} > z, P (n) | c and P (n) < P (c).
(ii) x > z > y and P (n) | b.
(iii) y > z > x and P (n) | a.
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3 Proof of Theorem

By the results of [1], [5] and [10], it suffices to prove the theorem for m ≥ 3 and n > 1. We
now assume that (x, y, z) is a solution of (1.6) with (x, y, z) 6= (2, 2, 2). By Lemma 2.5, we only
need to examine the following four cases:

Case I. x > y > z, P (n) | 22m + 1 and P (n) < P (22m + 1).
Under these assumptions, by (1.6), we get

22m + 1 = c1c2, c1, c2 ∈ N, gcd(c1, c2) = 1, c2 > 1, (3.1)

ny−z = cz1, c1 > 1 (3.2)

and (
22m − 1

)x
nx−y + 2(m+1)y = cz2. (3.3)

Since c1 > 1 and every prime divisor p of 22m + 1 satisfies p ≡ 1(mod 4), we have c1 ≥ 5 and
c2 ≤ (22m + 1)/5 by (3.1). Therefore, by (3.3), we get(

22m + 1

5

)z
≥ cz2 >

(
22m − 1

)x
>

(
22m + 1

2

)x
>

(
22m + 1

2

)z
, (3.4)

a contradiction.
Case II. y > x > z, P (n) | 22m + 1 and P (n) < P (22m + 1).
Using the same method as in the proof of Case I, we can exclude this case immediately.
Case III. x > z > y and P (n) | b.
Since n > 1, we get from (1.6) that P (n) = 2,

nz−y = 2(m+1)y (3.5)

and
(22m − 1)xnx−z + 1 = (22m + 1)z. (3.6)

By (3.5), we have
n = 2r, r ∈ N (3.7)

and
r(z − y) = (m+ 1)y. (3.8)

Substituting (3.7) into (3.6), we get

(22m − 1)x · 2r(x−z) + 1 = (22m + 1)z. (3.9)

Since 22m + 1 ≡ 2(mod 22m − 1), we see from (3.9) that

2z ≡ 1( mod 22m − 1). (3.10)

Applying Lemma 2.1 to (3.10), we obtain 2m | z and therefore

z = 2mk, k ∈ N. (3.11)
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If 2 | k, then (22m+1)mk ≡ 2mk ≡ 1(mod 22m−1) and gcd((22m+1)mk+1, (22m+1)mk−1) =
1. Hence, by (3.9) and (3.11), we get(

22m + 1
)mk − 1 = 2r(x−z)−1

(
22m − 1

)x
, (22m + 1)mk + 1 = 2, (3.12)

a contradiction.
If 2 - k, then (22m+1)mk ≡ 2mk ≡ 1(mod 2m−1) and (22m+1)mk ≡ 2mk ≡ −1(mod 2m+1).

Hence, by (3.9) and (3.11), we get

(22m + 1)mk + 1 = 2(2m + 1)x (3.13)

and
(22m + 1)mk − 1 = 2r(x−z)−1(2m − 1)x, (3.14)

whence we obtain
(2m + 1)x − 2r(x−z)−2(2m − 1)x = 1. (3.15)

Since 2m + 1 ≡ 2(mod 2m − 1), we see from (3.15) that 2x ≡ 1(mod 2m − 1). It results that
m | x, that is

x = ml, l ∈ N. (3.16)

Therefore, by (3.9), (3.11) and (3.16), we get(
(22m − 1)l · 2r(l−2k)

)m
+ 1m =

(
(22m + 1)2k

)m
. (3.17)

But, since m ≥ 3, by Lemma 2.4, (3.17) is impossible.
Case IV. y > z > x and P (n) | 22m − 1.
Then we have

22m − 1 = a1a2, a1, a2 ∈ N, gcd(a1, a2) = 1, (3.18)

nz−x = ax1 , a1 > 1 (3.19)

and
ax2 + 2(m+1)yny−z = (22m + 1)z. (3.20)

Let
x = 2αx1, z = 2βz1, α, β ∈ Z, α ≥ 0, β ≥ 0,

x1, z1 ∈ N, 2 - x1z1. (3.21)

If a2 = 1, then from (3.20) we get

2(m+1)yny−z = (22m + 1)z − 1 =

z∑
i=1

(
z
i

)
22mi. (3.22)

Using the same method as in the proof of Lemma 2.2, we get

22m+β ||
z∑
i=1

(
z
i

)
22mi. (3.23)
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Hence, by (3.22) and (3.23), we get

(m+ 1)y = 2m+ β. (3.24)

But, since y > z > x and y ≥ 3, by (3.21) and (3.24), we get

y > z ≥ 2β = 2(m+1)y−2m = 2(y−2)m+y > 2y, (3.25)

a contradiction. So we have a2 > 1.
By (3.20) and (3.23), we get

ax2 ≡ 1(mod22m+β). (3.26)

Further, by (3.21) and (3.26), we have

a2 ≡ λ(mod22m+β−α), (3.27)

where λ = (−1)(a2−1)/2. Since a2 > 1, we have a2 + 1 ≥ a2 − λ > 0. Hence, by (3.27), we get

a2 ≥ 22m+β−α − 1. (3.28)

On the other hand, we see from (3.18) and (3.19) that a2 = (22m−1)/a1 < 22m−1. Therefore,
by (3.28), we get

α > β. (3.29)

Further, by (3.21) and (3.29), x/2β is even and (z − x)/2β is odd. Thus, we find from (3.19)
that n must be a square, namely,

n = l2, l ∈ N, l > 1, 2 - l. (3.30)

Substituting (3.30) into (3.20), we get

(a
x/2
2 )2 + 2(m+1)y(ly−z)2 = (22m + 1)z. (3.31)

If 2 | (m+ 1)y, then, by (3.31), (2.1) has the solution

(X,Y, Z, k) = (a
x/2
2 , 2(m+1)y/2ly−z, 22m + 1, z). (3.32)

Applying Lemma 2.2 to (3.32), we have

22m + 1 = A2 +B2, A,B ∈ N, gcd(A,B) = 1, 2 | B (3.33)

and
2(m+1)y/2−β | B. (3.34)

By (3.33) and (3.34), we get
2m ≥ B ≥ 2(m+1)y/2−β , (3.35)

whence we obtain

β ≥ 1

2
((y − 2)m+ y) . (3.36)
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Since m ≥ 3 and y ≥ 3, we see from (3.21) and (3.36) that β ≥ 3, y > z ≥ 2β ≥ 8 and

y > z ≥ 2β ≥ 2((y−2)m+y)/2 ≥ 22y−3, (3.37)

a contradiction.
If 2 - (m+ 1)y, then, by (3.31), (2.8) has the solution

(X,Y, Z, k) = (a
x/2
2 , 2((m+1)y−1)/2ly−z, 22m + 1, z). (3.38)

Applying Lemma 2.3 to (3.38), we have

22m + 1 = A2 + 2B2, A,B ∈ N, gcd(A,B) = 1, 2 - A (3.39)

and

2((m+1)y−1)/2−β | B. (3.40)

Therefore, by (3.39) and (3.40), we get 22m ≥ 2B2 and (3.36) holds too. Thus, we can deduce
a contradiction as (3.37).

To sum up, the theorem is proved.
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[4] M.-H. Le, A note on Jeśmanowicz’ conjecture concerning Pythagorean triples, Bull. Aus-
tral. Math. Soc., 59 (1999), 477–480.

[5] W. -T. Lu, On the Pythagorean numbers 4n2−1, 4n and 4n2 +1, J. Sichuan Univ. Natur.
Sci., 2 (1959), 39–42. (in Chinese)
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