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Abstract

In this paper we first compute the circular version of the Morse-Smale characteristic
of all closed surfaces. We also observe that the critical points of the real valued height
functions alongside those of some S1 valued functions on a surface Σ ⊂ R3, are the charac-
teristic points with respect to some involutive distributions. We finally study the size of the
characteristic set of the compact orientable surface of genus g, embedded in a certain way
in the first Heisenberg group, with respect to the horizontal distribution of the Heisenberg
group.
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1 Introduction and preliminary results

The minimum number of critical points of all Morse functions on a manifold M , equally called
the Morse-Smale characteristic of M , is an important tool in differential topology as, for ex-
ample, it is related to the minimum number of cells in the CW -decompositions of M up to
homotopy. It is also a lower bound for the total curvature of M with respect to its embeddings
in Euclidean spaces. In fact, the Chern-Lashof conjecture states that the Morse-Smale char-
acteristic of a manifold M is precisely the infimum of the total curvatures of M with respect
to its embeddings in Euclidean spaces. Recall that the Chern-Lashof conjecture holds true for
several manifolds [7], [8].

The Morse-Smale characteristic of a compact smooth manifold is therefore worth to be
studied. It is defined by

γ(M) = min{card(C(f)) : f ∈ F(M)},

where F(M) denotes the set of all real-valued Morse functions defined on M . For details,
examples, properties and concrete computations we refer to monograph [1, pp.106-129].
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The minimality of the number of cells in the CW -decompositions of M up to homotopy
emphasizes the importance of γ(M) and provides a serious reason why its computation is
rather a hard problem in differential topology. On the other hand, the existence of F -perfect
Morse functions on M , for some given field F , is characterized by the equality between γ(M)
and the sum of F -Betti numbers of M [1, Th. 4.2.3]. If M is additionally endowed with a
symplectic structure, then the latter Z2-sum associated to a coisotropic submanifold of M is a
lower bound for the number of leaf-wise fixed points of suitable Hamiltonian diffeomorphisms
and coisotropic submanifolds of M [22].

For maps with higher dimensional target manifold having finitely many critical points we
refer the reader to the recent work by Funar [11] and the references therein.

The circular version of the Morse-Smale characteristic was introduced in [2]

Definition 1.1. If M is a differential manifold, then the circular Morse-Smale characteristic
of M is defined by

γ
S1 (M) := min{card(C(f)) : f ∈ F(M,S1)} (1.1)

where F(M,S1) stands for the collection of all circular Morse functions f:M→S1.

The number γ
S1 (M) is a special case of ϕ-category of a pair of manifolds (M,N) corre-

sponding to a family of smooth mappings F ⊆ C∞(M,N) (see the recent expository paper [4]),
where N is the circle S1 and the family F is given by the set of all circle-valued Morse functions
f : M → S1 defined on M . The systematic study of circle-valued Morse functions was initiated
by S.P.Novikov in 1980. The motivation came from a problem in hydrodynamics, where the
application of the variational approach led to a multi-valued Lagrangian. The formulation of
the circle-valued Morse theory as a new branch of differential topology with its own problems
was outlined also by S.P.Novikov. For specific definitions and properties we refer to the recent
monographs of M.Farber [10] and A.Pajitnov [17].

Some properties of the circular Morse-Smale characteristic are already proved in the papers
[2] and [3]. For instance, for every closed manifold (i.e.compact and without boundary) we have
the inequality

γ
S1 (M) ≤ γ(M), (1.2)

as every Morse real valued function composed with the universal cover exp : R −→ S1 produces
a circle valued Morse function. These property imply that γ

S1 (M) is finite whenever M is
compact.

Proposition 1.2. If Hom (π1(M),Z) = 0 for some connected differential manifold M , then
γ

S1 (M) = γ(M). In particular γ
S1 (M) = γ(M) whenever M is connected and simply-connected.

Proof: Indeed, in this case every smooth circle valued function f : M −→ S1 can be lifted
to a smooth real valued function f̃ : M −→ R, i.e. exp ◦ f̃ = f . Since the universal cover
exp : R −→ S1 is a local diffeomorphism, it follows that C(f) = C(f̃) ⇒ card (C(f)) =

card
�
C(f̃)

�
≥ γ(M) for every smooth function f : M −→ S1. This shows that γ

S1 (M) ≥
γ(M), which combined to the general inequality (1.2), leads to the desired equality.
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Corollary 1.3. If m,n ≥ 2 are natural numbers, then γ
S1 (Sn) = γ(Sn) = 2 and γ

S1 (RPn) =
γ(RPn) = n+ 1.

Proof: While the equalities γ
S1 (Sn) = γ(Sn), γ

S1 (RPn) = γ(RPn) follow from Proposition
1.2, the equality γ(Sn) = 2 is obvious. On the other hand,

γ(RPn) ≤ card(C(f)) = n+ 1,

where f : RPn −→ R is the Morse function defined by

fn([x
1
, . . . , x

n+1
]) =

x2
1 + 2x2

2 + · · ·+ nx2
n + (n+ 1)x2

n+1

x2
1 + x2

2 + · · ·+ x2
n + x2

n+1

whose critical set consists of n+ 1 critical points of indices 0, 1, . . . , n (see e.g. [14, pp. 84,85]).
Finally,

γ(RPn) ≥ cat(RPn) = n+ 1

where cat(RPn) stands for the Lusternik-Schnirelmann category of the projective space RPn

(see e.g. [18, pp. 190-192]).

Corollary 1.4. If m1, . . . ,mk ≥ 2 are natural numbers, then

γ
S1 (Sm1 × · · · × Smk)=γ(Sm1 × · · · × Smk)=2k,
γ

S1 (RPm1× · · · ×RPmk)=γ(RPm1× · · · ×RPmk)=(m1 + 1) · · · (mk + 1).

Proof: While the equalities γ
S1 (Sm1 × · · · × Smk)=γ(Sm1 × · · · × Smk) and γ

S1 (RPm1× · · · ×
RPmk)=γ(RPm1×· · ·×RPmk) follow from Proposition 1.2, the equality γ(Sm1×· · ·×Smk)=2k,
which works for m1, . . . ,mk ≥ 1, appears in [1, Ex. 4.2.9] and the equality γ(RPm1× · · · ×
RPmk)=(m1 + 1) · · · (mk + 1) follow from [1, Th. 4.2.7] combined with Corollary 1.3.

Another property relating the circular Morse-Smale characteristics of the total and base
spaces of a finite-fold covering map is provided by the following:

Proposition 1.5. If M̃ is a k-fold cover of M , then γ
S1 (M̃) ≤ k · γ

S1 (M).

Proof: Let π : M̃ −→ M be the k-fold covering map and f : M −→ S1 be a Morse function.
Then f ◦ π : M̃ −→ S1 is obviously a Morse function and card(C(f ◦ π)) = k · card(C(f)), as
C(f ◦ π)) = π−1(C(f)). This shows that the following relations hold

card(C(f)) =
1

k
card(C(f ◦ π)) ≥ 1

k
γ

S1 (M̃). (1.3)

Consequently γ
S1 (M) ≥ 1

kγS1 (M̃), as the relations (1.3) are satisfied for every Morse function
f : M −→ S1.



238 D. Andrica, D. Mangra and C. Pintea

It is an interesting and challenging problem to compute the circular Morse-Smale category
for closed manifolds M for which Hom (π1(M),Z) 6= 0. The main purpose of this paper is to do
this computation for smooth, compact, connected surfaces of genus g ≥ 1. Recall that a such
surface is

Σg = T 2#T 2# · · ·#T 2 or g′RP2 = RP2#RP2# · · ·#RP2

a connected sum of some g copies of the 2-dimensional torus T 2 = S1×S1 or a connected sum of
some g′ copies of the projective plane RP2. We can extend the definition for g = 0 by considering
Σ0 = S2, the 2-dimensional sphere. From the classification theorem of surfaces, it follows that
every smooth, compact, connected and orientable surface without boundary, is diffeomorphic
to some Σg. Recall that the Morse-Smale characteristic of surfaces was completely determined
by Kuiper [13] who proved the formula γ(Σ) + χ(Σ) = 4 for every compact connected surface
S. In this paper we will prove that for every closed surface Σ, except for the sphere S2 and the
projective plane RP2, one has γ

S1 (Σ) + χ(Σ) = 0.

2 The circular Morse-Smale characteristic of the compact surfaces

According to the results of the previous section, we have γ
S1 (Σ0) = γ

S1 (S2) = γ(S2) = 2 and
γ

S1 (RP2) = 3, as follows from Corollary 1.3. Also γ
S1 (Σ1) = γ

S1 (T 2) = 0, as the projection
T 2 = S1×S1 → S1 is a submersion and it has no critical points. More generally, we shall prove
the following:

Theorem 2.1. The circular Morse-Smale characteristic of a closed surface Σ 6= RP2 is

γ
S1 (Σ) = |χ(Σ)|. (2.1)

Proof: We only need to consider the situation b1(Σ) ≥ 2, where bk(X) stands for the k-th
Betti number of X with Z2-coefficients, as for the sphere the equality γ

S1 (S2) = 2 = |χ(S2)| is
obvious.

Let f : Σ −→ S1 = R/2πZ be a Morse function and t0 ∈ S1 be a regular value of f such that
[t0 − ε, t0 + ε] ⊆ S1 is an arc of regular values, for some ε > 0. We may assume, for simplicity,
that t0 = 0 ∈ R/2πZ.

The codimension 1 submanifold Σ0 := f−1(0) is cooriented (by the differential of f) and
therefore defines a cohomology class in H1(Σ,Z). This cohomology class is actually f∗u, where
u is the generator of H1(S1,Z).

The complement Σε := Σ \ f−1((−ε, ε)) is a manifold whose boundary consists of two parts

∂±Σε = Σ0 × {∓ε}.

Moreover, Σε is connected if and only if f∗u 6= 0, i.e. f : Σ −→ S1 does not admit any lift
to any smooth map Σ −→ R. Here the identification between H1(Σ,Z) and Hom(π1(Σ),Z) is
being used.

The region Cε := f−1([−ε, ε]) is diffeomorphic to the cylinder Σ0×[−ε, ε] and the restriction
f0 : Cε −→ [−ε, ε], f0(x) = f(x) is a real-valued Morse function without critical points. The
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gradient flow of f0 defines a diffeomorphism Φ : ∂+Σε −→ ∂−Σε. The restriction of f to Σε is
a Morse function

fε : Σε −→ [ε, 2π − ε] = S1 \ (−ε, ε)

such that the gradient points inwardly on ∂−Σε and outwardly on ∂+Σε. Note that on ∂+Σε

one gets f = 2π − ε.
The original function can be now recovered from the triplet (Σε, fε,Φ). The number of

critical points of f is equal to the numnber of critical points of fε, as C(f) = C(fε).
The Morse inequalities imply that the number of critical points of fε is bounded from below

by the sum

b(Σε, ∂+Σε) :=
X

k≥0

bk(Σε, ∂+Σε).

If f∗u 6= 0, then b1(M) ≥ 2, Σε is connected and

b0(Σε, ∂+Σε) = b2(Σε, ∂+Σε) = 0.

Hence, in this case

b(Σε, ∂+Σε) = b1(Σε, ∂+Σε) = |χ(Σε, ∂+Σε)|.

The boundary components ∂±Σε are disjoint unions of circles and have trivial Euler-characteristics
therefore. Using the additivity of the Euler characteristic with respect to the increasing squences
∅ ⊂ ∂±Σε ⊂ Σε (see e.g. [18, p. 218]) we obtain

χ(Σε, ∂+Σε) = χ(Σε, ∂−Σε) = χ(Σε).

The Mayer-Vietoris principle applied to M = Σε ∪ Cε then yields

χ(Σε) = χ(M).

Consequently we get successively:

γ
S1 (Σ) ≥ b(Σε, ∂+Σε) = |χ(Σε, ∂+Σε)| = |χ(Σε)| = |χ(Σ)|.

To prove the opposite inequality when b1(Σ) ≥ 2, i.e. H1(Σ,Z) 6= 0 we first observe that if
Σ is a Riemann surface without boundary, then γ(Σ) = b1(Σ) + 2.

Indeed, the classical description of the Riemann surface Σ with b1(Σ) = n > 0 as a polygon
with 2n edges identified according to the description

a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g , n = 2g, Σ orientable
a1a1 · · · anan, n = 2g, Σ is nonorientable.

This description produces a handle decomposition of the Riemann surface Σ with a single 0-
handle, n 1-handles and a single 2-handle. As shown in [15], any handle decomposition of
a manifold corresponds to a Morse function on the manifold with one critical point for each
handle. In our case there is a Morse function on the Riemann surface Σ with b1(Σ) + 2 critical
points.
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If H1(Σ,Z) 6= 0, i.e. b1(Σ) ≥ 2, then one can find a nonseparating circle C in Σ representing
a primitive homology class in H1(Σ,Z). Cut Σ along C to obtain a connected Riemann surface
Σ′ with two boundary components C and −C. A simple computation shows that χ(Σ′) = χ(Σ).
Cap the components C and −C of the boundary of Σ′ with two disks D± to obtain a closed
surface S satisfying

χ(S) = χ(Σ′) + 2 = χ(Σ) + 2.

In particular
b1(S) = b1(Σ)− 2.

We now choose a Morse function h : S −→ R which has a minimal number of critical points
b1(S) + 2. This function has a unique maximum point p+ and a unique minimum point p−.
By composing h with a suitable diffeomorphism of S we may assume that p± is the center of
D± and that h has no other critical points inside these disks. The restriction of h to Σ′ has
b1(S) = b1(Σ) − 2 = |χ(Σ)| critical points. We now extend h to a Morse function Σ −→ S1

with the same number of critical points by using the same type of arguments we used in the
first part of the proof.

3 On the minimum number of characteristic points

If Σ ⊂ R3 is a surface and f : R3 −→ N is a submersion, where N is either the real line or the
circle S1, then the critical points of the restriction f |Σ are the characteristic points, equally
called tangency points [6] in the higher codimension case, of the surface Σ with respect to the
involutive distribution {ker(df)x}x∈R3 of the tangent planes to the fibers of f . In other words
the characteristic point looks like an extended concept for the critical point of real or S1 valued
functions. Indeed, while the distributions behind the notion of critical point of real or circle
valued functions are some particular involutive distributions, the notion of characteristic point
is defined in relation with an arbitrary distribution such as highly noninvolutive distributions
coming, for instance, from contact forms [9]. In fact we will be dealing, in this section, with the
minimum number of characteristic points with respect to the highly noninvolutive horizontal
distribution of the Heisenberg group Hn = (R2n+1, ∗), namely

Hn = Span{X1, . . . , Xn, Y1, . . . , Yn}
= {Hn,p := Span{X1,p, . . . , Xn,p, Y1,p, . . . , Yn,p}}p∈Hn ,

where Xi = ∂xi+2yi∂t and Yi = ∂yi−2xi∂t for i = 1, . . . , n. Some special attention will be payed
to the minimum characteristic number of the compact orientable surface of genus g, embedded
into the first Heisenberg group H1 with respect to its horizontal distribution H1 = Span{X,Y },
where X = ∂x + 2y∂t, Y = ∂y − 2x∂t.

Let us consider a C1 smooth hypersurface S ⊆ R2n+1. The characteristic set of S is defined
by

C(S,Hn) := {p ∈ S : TpS = Hn,p}.

While the reference [5] provides upper bounds for the size of C(S,Hn) is terms of Hausdorff
dimension, we emphasize here the possibility to get finite characteristic sets C(Σg,H1) for
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suitable embeddings of the closed connected surface Σg of genus g and provide some bounds on
its cardinality. Note that the characteristic set C(Σ,H1) of some surface Σ ⊂ R3 with respect
to the horizontal distribution H1 is the set of singularities of the vector field ZΣ on Σ obtained
by projecting orthogonally X ∧ Y on the tangent spaces of Σ, i.e C(Σ,H1) = Sing(ZΣ).

Definition 3.1. If S is a C1 smooth hypersurface of R2n+1, then the minimum characteristic
number of S relative to the distribution Hn on R2n+1 is defined by

mcn(S,Hn) := min{card (C(f(S),Hn)) : f ∈ Embed(S,R2n+1)},

where Embed(S,R2n+1) stands for the set of all C1 embeddings of S into R2n+1.

Remark 3.2. If M is a compact orientable 2n-manifold of non-zero Euler-Poincaré charac-
teristic, then, according to [6, Ex. 8.9], mcn(M,Hn) ≥ 2. In fact mcn(S2n,Hn) = 2, as the
Euler-Poincaré characteristic of the sphere S2n is two and it admits an embedding into Hn

with exactly two characteristic points. The image of this embedding is the well-known Korányi
sphere. On the other hand the standard torus T 2n ⊂ Hn has no characteristic points at all (see
[21]), i.e. mcn(T 2n,Hn) = 0.

Theorem 3.3. If g ≥ 2, then 2g − 2 ≤ mcn(Σg,H1) ≤ 4g − 4.

The lower bound 2g − 2 for mcn(Σg,H1) follows from [12, Theorem 4.6.14] combined with
a stability result on Morse-Smale vector fields by Peixoto (see [19, 20]). Another argument
towards this lower bound relies on the Poincaré-Hopf theorem

2− 2g = χ (Σg) =
X

x∈Sing(ZΣg )

indexz(ZΣg
).

applied to the vector field ZΣ, whose singularities are generally of index ±1 [9]. The details on
the upperbound 4g − 4 are rather elementary.
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