Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) No. 3, 2014, 235–242

The circular Morse-Smale characteristic of closed surfaces

by

DORIN ANDRICA, DANA MANGRA AND CORNEL PINTEA

Abstract

In this paper we first compute the circular version of the Morse-Smale characteristic of all closed surfaces. We also observe that the critical points of the real valued height functions alongside those of some S^1 valued functions on a surface $\Sigma \subset \mathbb{R}^3$, are the characteristic points with respect to some involutive distributions. We finally study the size of the characteristic set of the compact orientable surface of genus g, embedded in a certain way in the first Heisenberg group, with respect to the horizontal distribution of the Heisenberg group.

Key Words: Morse functions, circular Morse-Smale characteristic, characteristic points.

2010 Mathematics Subject Classification: Primary 58E05, Secondary 58K45, 58K05.

1 Introduction and preliminary results

The minimum number of critical points of all Morse functions on a manifold M, equally called the Morse-Smale characteristic of M, is an important tool in differential topology as, for example, it is related to the minimum number of cells in the CW-decompositions of M up to homotopy. It is also a lower bound for the total curvature of M with respect to its embeddings in Euclidean spaces. In fact, the Chern-Lashof conjecture states that the Morse-Smale characteristic of a manifold M is precisely the infimum of the total curvatures of M with respect to its embeddings in Euclidean spaces. Recall that the Chern-Lashof conjecture holds true for several manifolds [7], [8].

The *Morse-Smale characteristic* of a compact smooth manifold is therefore worth to be studied. It is defined by

$$\gamma(M) = \min\{\operatorname{card}(C(f)) : f \in \mathfrak{F}(M)\},\$$

where $\mathfrak{F}(M)$ denotes the set of all real-valued Morse functions defined on M. For details, examples, properties and concrete computations we refer to monograph [1, pp.106-129].

The minimality of the number of cells in the CW-decompositions of M up to homotopy emphasizes the importance of $\gamma(M)$ and provides a serious reason why its computation is rather a hard problem in differential topology. On the other hand, the existence of F-perfect Morse functions on M, for some given field F, is characterized by the equality between $\gamma(M)$ and the sum of F-Betti numbers of M [1, Th. 4.2.3]. If M is additionally endowed with a symplectic structure, then the latter \mathbb{Z}_2 -sum associated to a coisotropic submanifold of M is a lower bound for the number of leaf-wise fixed points of suitable Hamiltonian diffeomorphisms and coisotropic submanifolds of M [22].

For maps with higher dimensional target manifold having finitely many critical points we refer the reader to the recent work by Funar [11] and the references therein.

The circular version of the Morse-Smale characteristic was introduced in [2]

Definition 1.1. If M is a differential manifold, then the *circular Morse-Smale characteristic* of M is defined by

$$\gamma_{c1}(M) := \min\{\operatorname{card}(C(f)) : f \in \mathcal{F}(M, S^1)\}$$

$$(1.1)$$

where $\mathcal{F}(M, S^1)$ stands for the collection of all circular Morse functions $f: M \to S^1$.

The number $\gamma_{S^1}(M)$ is a special case of φ -category of a pair of manifolds (M, N) corresponding to a family of smooth mappings $\mathfrak{F} \subseteq C^{\infty}(M, N)$ (see the recent expository paper [4]), where N is the circle S^1 and the family \mathfrak{F} is given by the set of all circle-valued Morse functions $f: M \to S^1$ defined on M. The systematic study of circle-valued Morse functions was initiated by S.P.Novikov in 1980. The motivation came from a problem in hydrodynamics, where the application of the variational approach led to a multi-valued Lagrangian. The formulation of the circle-valued Morse theory as a new branch of differential topology with its own problems was outlined also by S.P.Novikov. For specific definitions and properties we refer to the recent monographs of M.Farber [10] and A.Pajitnov [17].

Some properties of the circular Morse-Smale characteristic are already proved in the papers [2] and [3]. For instance, for every closed manifold (i.e.compact and without boundary) we have the inequality

$$\gamma_{\varsigma^1}(M) \le \gamma(M), \tag{1.2}$$

as every Morse real valued function composed with the universal cover $\exp : \mathbb{R} \longrightarrow S^1$ produces a circle valued Morse function. These property imply that $\gamma_{S^1}(M)$ is finite whenever M is compact.

Proposition 1.2. If Hom $(\pi_1(M), \mathbb{Z}) = 0$ for some connected differential manifold M, then $\gamma_{S^1}(M) = \gamma(M)$. In particular $\gamma_{S^1}(M) = \gamma(M)$ whenever M is connected and simply-connected.

Proof: Indeed, in this case every smooth circle valued function $f: M \longrightarrow S^1$ can be lifted to a smooth real valued function $\tilde{f}: M \longrightarrow \mathbb{R}$, i.e. $\exp \circ \tilde{f} = f$. Since the universal cover $\exp : \mathbb{R} \longrightarrow S^1$ is a local diffeomorphism, it follows that $C(f) = C(\tilde{f}) \Rightarrow \operatorname{card}(C(f)) =$ $\operatorname{card}(C(\tilde{f})) \ge \gamma(M)$ for every smooth function $f: M \longrightarrow S^1$. This shows that $\gamma_{s^1}(M) \ge$ $\gamma(M)$, which combined to the general inequality (1.2), leads to the desired equality. \Box The circular Morse-Smale characteristic

Corollary 1.3. If $m, n \geq 2$ are natural numbers, then $\gamma_{S^1}(S^n) = \gamma(S^n) = 2$ and $\gamma_{S^1}(\mathbb{RP}^n) = \gamma(\mathbb{RP}^n) = n + 1$.

Proof: While the equalities $\gamma_{S^1}(S^n) = \gamma(S^n)$, $\gamma_{S^1}(\mathbb{RP}^n) = \gamma(\mathbb{RP}^n)$ follow from Proposition 1.2, the equality $\gamma(S^n) = 2$ is obvious. On the other hand,

$$\gamma(\mathbb{RP}^n) \le \operatorname{card}(C(f)) = n+1,$$

where $f : \mathbb{RP}^n \longrightarrow \mathbb{R}$ is the Morse function defined by

$$f_n([x_1, \dots, x_{n+1}]) = \frac{x_1^2 + 2x_2^2 + \dots + nx_n^2 + (n+1)x_{n+1}^2}{x_1^2 + x_2^2 + \dots + x_n^2 + x_{n+1}^2}$$

whose critical set consists of n + 1 critical points of indices 0, 1, ..., n (see e.g. [14, pp. 84,85]). Finally,

$$\gamma(\mathbb{RP}^n) \ge \operatorname{cat}(\mathbb{RP}^n) = n+1$$

where $cat(\mathbb{RP}^n)$ stands for the Lusternik-Schnirelmann category of the projective space \mathbb{RP}^n (see e.g. [18, pp. 190-192]).

Corollary 1.4. If $m_1, \ldots, m_k \geq 2$ are natural numbers, then

$$\gamma_{S^1}(S^{m_1} \times \cdots \times S^{m_k}) = \gamma(S^{m_1} \times \cdots \times S^{m_k}) = 2^k, \gamma_{S^1}(\mathbb{RP}^{m_1} \times \cdots \times \mathbb{RP}^{m_k}) = \gamma(\mathbb{RP}^{m_1} \times \cdots \times \mathbb{RP}^{m_k}) = (m_1 + 1) \cdots (m_k + 1).$$

Proof: While the equalities $\gamma_{S^1}(S^{m_1} \times \cdots \times S^{m_k}) = \gamma(S^{m_1} \times \cdots \times S^{m_k})$ and $\gamma_{S^1}(\mathbb{RP}^{m_1} \times \cdots \times \mathbb{RP}^{m_k}) = \gamma(\mathbb{RP}^{m_1} \times \cdots \times \mathbb{RP}^{m_k})$ follow from Proposition 1.2, the equality $\gamma(S^{m_1} \times \cdots \times S^{m_k}) = 2^k$, which works for $m_1, \ldots, m_k \ge 1$, appears in [1, Ex. 4.2.9] and the equality $\gamma(\mathbb{RP}^{m_1} \times \cdots \times \mathbb{RP}^{m_k}) = (m_1 + 1) \cdots (m_k + 1)$ follow from [1, Th. 4.2.7] combined with Corollary 1.3.

Another property relating the circular Morse-Smale characteristics of the total and base spaces of a finite-fold covering map is provided by the following:

Proposition 1.5. If \tilde{M} is a k-fold cover of M, then $\gamma_{s1}(\tilde{M}) \leq k \cdot \gamma_{s1}(M)$.

Proof: Let $\pi : \tilde{M} \longrightarrow M$ be the k-fold covering map and $f : M \longrightarrow S^1$ be a Morse function. Then $f \circ \pi : \tilde{M} \longrightarrow S^1$ is obviously a Morse function and $\operatorname{card}(C(f \circ \pi)) = k \cdot \operatorname{card}(C(f))$, as $C(f \circ \pi)) = \pi^{-1}(C(f))$. This shows that the following relations hold

$$\operatorname{card}(C(f)) = \frac{1}{k} \operatorname{card}(C(f \circ \pi)) \ge \frac{1}{k} \gamma_{{}_{S^1}}(\tilde{M}). \tag{1.3}$$

Consequently $\gamma_{S^1}(M) \geq \frac{1}{k}\gamma_{S^1}(\tilde{M})$, as the relations (1.3) are satisfied for every Morse function $f: M \longrightarrow S^1$.

It is an interesting and challenging problem to compute the circular Morse-Smale category for closed manifolds M for which Hom $(\pi_1(M), \mathbb{Z}) \neq 0$. The main purpose of this paper is to do this computation for smooth, compact, connected surfaces of genus $g \geq 1$. Recall that a such surface is

$$\Sigma_q = T^2 \# T^2 \# \cdots \# T^2$$
 or $g' \mathbb{RP}^2 = \mathbb{RP}^2 \# \mathbb{RP}^2 \# \cdots \# \mathbb{RP}^2$

a connected sum of some g copies of the 2-dimensional torus $T^2 = S^1 \times S^1$ or a connected sum of some g' copies of the projective plane \mathbb{RP}^2 . We can extend the definition for g = 0 by considering $\Sigma_0 = S^2$, the 2-dimensional sphere. From the classification theorem of surfaces, it follows that every smooth, compact, connected and orientable surface without boundary, is diffeomorphic to some Σ_g . Recall that the Morse-Smale characteristic of surfaces was completely determined by Kuiper [13] who proved the formula $\gamma(\Sigma) + \chi(\Sigma) = 4$ for every compact connected surface S. In this paper we will prove that for every closed surface Σ , except for the sphere S^2 and the projective plane \mathbb{RP}^2 , one has $\gamma_{s1}(\Sigma) + \chi(\Sigma) = 0$.

2 The circular Morse-Smale characteristic of the compact surfaces

According to the results of the previous section, we have $\gamma_{S^1}(\Sigma_0) = \gamma_{S^1}(S^2) = \gamma(S^2) = 2$ and $\gamma_{S^1}(\mathbb{RP}^2) = 3$, as follows from Corollary 1.3. Also $\gamma_{S^1}(\Sigma_1) = \gamma_{S^1}(T^2) = 0$, as the projection $T^2 = S^1 \times S^1 \to S^1$ is a submersion and it has no critical points. More generally, we shall prove the following:

Theorem 2.1. The circular Morse-Smale characteristic of a closed surface $\Sigma \neq \mathbb{RP}^2$ is

$$\gamma_{S^1}(\Sigma) = |\chi(\Sigma)|. \tag{2.1}$$

Proof: We only need to consider the situation $b_1(\Sigma) \ge 2$, where $b_k(X)$ stands for the k-th Betti number of X with \mathbb{Z}_2 -coefficients, as for the sphere the equality $\gamma_{S^1}(S^2) = 2 = |\chi(S^2)|$ is obvious.

Let $f: \Sigma \longrightarrow S^1 = \mathbb{R}/2\pi\mathbb{Z}$ be a Morse function and $t_0 \in S^1$ be a regular value of f such that $[t_0 - \varepsilon, t_0 + \varepsilon] \subseteq S^1$ is an arc of regular values, for some $\varepsilon > 0$. We may assume, for simplicity, that $t_0 = 0 \in \mathbb{R}/2\pi\mathbb{Z}$.

The codimension 1 submanifold $\Sigma_0 := f^{-1}(0)$ is cooriented (by the differential of f) and therefore defines a cohomology class in $H^1(\Sigma, \mathbb{Z})$. This cohomology class is actually f^*u , where u is the generator of $H^1(S^1, \mathbb{Z})$.

The complement $\Sigma_{\varepsilon} := \Sigma \setminus f^{-1}((-\varepsilon, \varepsilon))$ is a manifold whose boundary consists of two parts

$$\partial_{\pm}\Sigma_{\varepsilon} = \Sigma_0 \times \{\mp\varepsilon\}.$$

Moreover, Σ_{ε} is connected if and only if $f^*u \neq 0$, i.e. $f: \Sigma \longrightarrow S^1$ does not admit any lift to any smooth map $\Sigma \longrightarrow \mathbb{R}$. Here the identification between $H^1(\Sigma, \mathbb{Z})$ and $\operatorname{Hom}(\pi_1(\Sigma), \mathbb{Z})$ is being used.

The region $C_{\varepsilon} := f^{-1}([-\varepsilon, \varepsilon])$ is diffeomorphic to the cylinder $\Sigma_0 \times [-\varepsilon, \varepsilon]$ and the restriction $f_0: C_{\varepsilon} \longrightarrow [-\varepsilon, \varepsilon], f_0(x) = f(x)$ is a real-valued Morse function without critical points. The

238

The circular Morse-Smale characteristic

gradient flow of f_0 defines a diffeomorphism $\Phi : \partial_+ \Sigma_{\varepsilon} \longrightarrow \partial_- \Sigma_{\varepsilon}$. The restriction of f to Σ_{ε} is a Morse function

$$f_{\varepsilon}: \Sigma_{\varepsilon} \longrightarrow [\varepsilon, 2\pi - \varepsilon] = S^1 \setminus (-\varepsilon, \varepsilon)$$

such that the gradient points inwardly on $\partial_{-}\Sigma_{\varepsilon}$ and outwardly on $\partial_{+}\Sigma_{\varepsilon}$. Note that on $\partial_{+}\Sigma_{\varepsilon}$ one gets $f = 2\pi - \varepsilon$.

The original function can be now recovered from the triplet $(\Sigma_{\varepsilon}, f_{\varepsilon}, \Phi)$. The number of critical points of f is equal to the number of critical points of f_{ε} , as $C(f) = C(f_{\varepsilon})$.

The Morse inequalities imply that the number of critical points of f_{ε} is bounded from below by the sum

$$b(\Sigma_{\varepsilon}, \partial_{+}\Sigma_{\varepsilon}) := \sum_{k \ge 0} b_{k}(\Sigma_{\varepsilon}, \partial_{+}\Sigma_{\varepsilon}).$$

If $f^*u \neq 0$, then $b_1(M) \geq 2$, Σ_{ε} is connected and

$$b_0(\Sigma_{\varepsilon}, \partial_+\Sigma_{\varepsilon}) = b_2(\Sigma_{\varepsilon}, \partial_+\Sigma_{\varepsilon}) = 0.$$

Hence, in this case

$$b(\Sigma_{\varepsilon}, \partial_{+}\Sigma_{\varepsilon}) = b_{1}(\Sigma_{\varepsilon}, \partial_{+}\Sigma_{\varepsilon}) = |\chi(\Sigma_{\varepsilon}, \partial_{+}\Sigma_{\varepsilon})|$$

The boundary components $\partial_{\pm}\Sigma_{\varepsilon}$ are disjoint unions of circles and have trivial Euler-characteristics therefore. Using the additivity of the Euler characteristic with respect to the increasing squences $\emptyset \subset \partial_{\pm}\Sigma_{\varepsilon} \subset \Sigma_{\varepsilon}$ (see e.g. [18, p. 218]) we obtain

$$\chi(\Sigma_{\varepsilon}, \partial_{+}\Sigma_{\varepsilon}) = \chi(\Sigma_{\varepsilon}, \partial_{-}\Sigma_{\varepsilon}) = \chi(\Sigma_{\varepsilon}).$$

The Mayer-Vietoris principle applied to $M = \Sigma_{\varepsilon} \cup C_{\varepsilon}$ then yields

$$\chi(\Sigma_{\varepsilon}) = \chi(M).$$

Consequently we get successively:

$$\gamma_{\varsigma^1}(\Sigma) \ge b(\Sigma_{\varepsilon}, \partial_+ \Sigma_{\varepsilon}) = |\chi(\Sigma_{\varepsilon}, \partial_+ \Sigma_{\varepsilon})| = |\chi(\Sigma_{\varepsilon})| = |\chi(\Sigma)|.$$

To prove the opposite inequality when $b_1(\Sigma) \ge 2$, i.e. $H^1(\Sigma, \mathbb{Z}) \ne 0$ we first observe that if Σ is a Riemann surface without boundary, then $\gamma(\Sigma) = b_1(\Sigma) + 2$.

Indeed, the classical description of the Riemann surface Σ with $b_1(\Sigma) = n > 0$ as a polygon with 2n edges identified according to the description

$$a_1b_1a_1^{-1}b_1^{-1}\cdots a_gb_ga_g^{-1}b_g^{-1}, n = 2g, \Sigma$$
 orientable $a_1a_1\cdots a_na_n, n = 2g, \Sigma$ is nonorientable.

This description produces a handle decomposition of the Riemann surface Σ with a single 0-handle, *n* 1-handles and a single 2-handle. As shown in [15], any handle decomposition of a manifold corresponds to a Morse function on the manifold with one critical point for each handle. In our case there is a Morse function on the Riemann surface Σ with $b_1(\Sigma) + 2$ critical points.

If $H^1(\Sigma, \mathbb{Z}) \neq 0$, i.e. $b_1(\Sigma) \geq 2$, then one can find a nonseparating circle C in Σ representing a primitive homology class in $H_1(\Sigma, \mathbb{Z})$. Cut Σ along C to obtain a connected Riemann surface Σ' with two boundary components C and -C. A simple computation shows that $\chi(\Sigma') = \chi(\Sigma)$. Cap the components C and -C of the boundary of Σ' with two disks D_{\pm} to obtain a closed surface S satisfying

$$\chi(S) = \chi(\Sigma') + 2 = \chi(\Sigma) + 2.$$

In particular

$$b_1(S) = b_1(\Sigma) - 2.$$

We now choose a Morse function $h: S \longrightarrow \mathbb{R}$ which has a minimal number of critical points $b_1(S) + 2$. This function has a unique maximum point p_+ and a unique minimum point p_- . By composing h with a suitable diffeomorphism of S we may assume that p_{\pm} is the center of D_{\pm} and that h has no other critical points inside these disks. The restriction of h to Σ' has $b_1(S) = b_1(\Sigma) - 2 = |\chi(\Sigma)|$ critical points. We now extend h to a Morse function $\Sigma \longrightarrow S^1$ with the same number of critical points by using the same type of arguments we used in the first part of the proof.

3 On the minimum number of characteristic points

If $\Sigma \subset \mathbb{R}^3$ is a surface and $f : \mathbb{R}^3 \longrightarrow N$ is a submersion, where N is either the real line or the circle S^1 , then the critical points of the restriction $f|_{\Sigma}$ are the *characteristic points*, equally called *tangency points* [6] in the higher codimension case, of the surface Σ with respect to the involutive distribution $\{\ker(df)_x\}_{x\in\mathbb{R}^3}$ of the tangent planes to the fibers of f. In other words the *characteristic point* looks like an extended concept for the *critical point* of real or S^1 valued functions. Indeed, while the distributions behind the notion of *critical point* of real or circle valued functions are some particular involutive distributions, the notion of *characteristic point* is defined in relation with an arbitrary distribution such as highly noninvolutive distributions coming, for instance, from contact forms [9]. In fact we will be dealing, in this section, with the minimum number of characteristic points with respect to the highly noninvolutive horizontal distribution of the Heisenberg group $\mathbb{H}^n = (\mathbb{R}^{2n+1}, *)$, namely

$$\mathcal{H}_n = \operatorname{Span}\{X_1, \dots, X_n, Y_1, \dots, Y_n\}$$

= { $\mathcal{H}_{n,p} := \operatorname{Span}\{X_{1,p}, \dots, X_{n,p}, Y_{1,p}, \dots, Y_{n,p}\}$ }

where $X_i = \partial_{x_i} + 2y_i \partial_t$ and $Y_i = \partial_{y_i} - 2x_i \partial_t$ for i = 1, ..., n. Some special attention will be payed to the minimum characteristic number of the compact orientable surface of genus g, embedded into the first Heisenberg group \mathbb{H}^1 with respect to its horizontal distribution $\mathcal{H}_1 = \text{Span}\{X, Y\}$, where $X = \partial_x + 2y \partial_t$, $Y = \partial_y - 2x \partial_t$.

Let us consider a C^1 smooth hypersurface $S \subseteq \mathbb{R}^{2n+1}$. The *characteristic set* of S is defined by

$$C(S, \mathcal{H}_n) := \{ p \in S : T_p S = \mathcal{H}_{n,p} \}.$$

While the reference [5] provides upper bounds for the size of $C(S, \mathcal{H}_n)$ is terms of Hausdorff dimension, we emphasize here the possibility to get finite characteristic sets $C(\Sigma_q, \mathcal{H}_1)$ for

suitable embeddings of the closed connected surface Σ_g of genus g and provide some bounds on its cardinality. Note that the characteristic set $C(\Sigma, \mathcal{H}_1)$ of some surface $\Sigma \subset \mathbb{R}^3$ with respect to the horizontal distribution \mathcal{H}_1 is the set of singularities of the vector field Z_{Σ} on Σ obtained by projecting orthogonally $X \wedge Y$ on the tangent spaces of Σ , i.e $C(\Sigma, \mathcal{H}_1) = \operatorname{Sing}(Z_{\Sigma})$.

Definition 3.1. If S is a C^1 smooth hypersurface of \mathbb{R}^{2n+1} , then the minimum characteristic number of S relative to the distribution \mathcal{H}_n on \mathbb{R}^{2n+1} is defined by

$$mcn(S, \mathcal{H}_n) := \min\{ \operatorname{card} \left(C(f(S), \mathcal{H}_n) \right) : f \in \operatorname{Embed}(S, \mathbb{R}^{2n+1}) \},\$$

where $\text{Embed}(S, \mathbb{R}^{2n+1})$ stands for the set of all C^1 embeddings of S into \mathbb{R}^{2n+1} .

Remark 3.2. If M is a compact orientable 2*n*-manifold of non-zero Euler-Poincaré characteristic, then, according to [6, Ex. 8.9], $mcn(M, \mathcal{H}_n) \geq 2$. In fact $mcn(S^{2n}, \mathcal{H}_n) = 2$, as the Euler-Poincaré characteristic of the sphere S^{2n} is two and it admits an embedding into \mathbb{H}^n with exactly two characteristic points. The image of this embedding is the well-known Korányi sphere. On the other hand the standard torus $T^{2n} \subset \mathbb{H}^n$ has no characteristic points at all (see [21]), i.e. $mcn(T^{2n}, \mathcal{H}_n) = 0$.

Theorem 3.3. If $g \geq 2$, then $2g - 2 \leq mcn(\Sigma_g, \mathcal{H}_1) \leq 4g - 4$.

The lower bound 2g - 2 for $mcn(\Sigma_g, \mathcal{H}_1)$ follows from [12, Theorem 4.6.14] combined with a stability result on Morse-Smale vector fields by Peixoto (see [19, 20]). Another argument towards this lower bound relies on the Poincaré-Hopf theorem

$$2 - 2g = \chi(\Sigma_g) = \sum_{x \in \operatorname{Sing}(Z_{\Sigma_g})} \operatorname{index}_z(Z_{\Sigma_g}).$$

applied to the vector field Z_{Σ} , whose singularities are generally of index ± 1 [9]. The details on the upperbound 4g - 4 are rather elementary.

Acknowledgements

Cornel Pintea was supported by two grants of the Romanian National Authority for Scientific Research CNCS-UEFISCDI, partly by the project number PN-II-ID-PCE-2011-3-0024 and partly by the project number PN-II-ID-PCE-2011-3-0994. The authors thank the referee for suggesting a different point of view on the proof of Theorem 2.1.

References

- [1] D. ANDRICA, Critical Point Theory and Some Applications, Cluj University Press, 2005.
- D. ANDRICA, D. MANGRA, Morse-Smale characteristic in circle-valued Morse theory, Acta Universitatis Apulensis, 22 (2010) 215-220.
- [3] D. ANDRICA, D. MANGRA, Some remarks on circle-valued Morse functions, Analele Universitatii din Oradea, Fascicola de Matematica, Tome XVII, Issue No.1, (2010) 23-27.
- [4] D. ANDRICA, C. PINTEA, Recent results on the size of critical sets, in "Essays in Mathematics and Applications" (In honor of Stephen Smale's 80th Birthday), P. Pardalos, Th. M. Rassias (Eds.), Springer, 2012.

- [5] Z. M. BALOGH, Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math. 564 (2003) 63-83.
- [6] Z. M. BALOGH, C. PINTEA, H. ROHNER, Size of tangencies to non-involutive distributions, Indiana Univ. Math. J. 60 (2011), 2061-2092.
- [7] S. CHERN, R. K. LASHOF, On the total curvature of immersed manifolds I, Amer. J. Math. 5 (1958) 5-12.
- [8] S. CHERN, R., K. LASHOF, On the total curvature of immersed manifolds II, Michigan J. Math. 79 (1957) 306-318.
- Y. ELIASHBERG, Contact 3-manifolds twenty years since J. Martinet's work, Ann. Inst. Fourier, 42, 1-2 (1992), 165-192.
- [10] M. FARBER, Topology of Closed One-Forms, Mathematical Surveys and Monographs, Volume 108 AMS, 2003.
- [11] L. FUNAR, Global classification of isolated singularities in dimensions (4,3) and (8,5), Ann. Scuola Norm. Sup. Pisa Cl. Sci., vol X (2011), 819-861.
- [12] H. GEIGES, An Introduction to Contact Topology, Cambridge University Press, 2008.
- [13] N.H. KUIPER, Tight embeddings and Maps. Submanifolds of Geometrical Class Three in Eⁿ, The Chern Symposium 1079 (Proc. Internat. Sympos., Berkley, Calif., 1979), 79-145, Springer-Verlag, 1980.
- [14] Y. MATSUMOTO, An introduction to Morse Theory, Iwanami Series in Modern Mathematics, 1997 (Translations of Mathematical Monographs, Vol. 208 AMS, 2002).
- [15] J. W. MILNOR, Lectures on the h-cobordism, Princeton University Press, 1965.
- [16] L. NICOLAESCU, An Invitation to Morse Theory (Universitext), Springer, 2011.
- [17] A. PAJITNOV, Circle-Valued Morse Theory, Walter de Gruyter, Berlin, New York, 2006.
- [18] R.S. PALAIS, C.-L. TERNG, Critical Point Theory and Submanifold Geometry, Lecture Notes in Mathematics 1353, Springer-Verlag, Berlin, 1988.
- [19] M. M. PEIXOTO, Structural stability on two-dimensional manifolds a further remark, Topology 2 (1963), 179-180.
- [20] M. M. PEIXOTO, On the classification of flows on 2manifolds, in: Dynamical Systems (Salvador, 1971), Academic Press, New York (1973), 389-419.
- [21] J. T. TYSON, Global conformal Assouad dimension in the Heisenberg group, Conformal Geometry and Dynamics, An Electronic Journal of the American Mathematical Society, 12, (2008) 32-57.
- [22] F. ZILTENER, Coisotropic submanifolds, leaf-wise fixed points, and presymplectic embeddings, J. Symplectic Geom. Vol. 8, No. 1, 2010, 1-24.

Received: 15.01.2013 Revised: 23.06.2013 Accepted: 03.08.2013

> Department of Mathematics, "Babeş-Bolyai" University 400084 M. Kogălniceanu 1, Cluj-Napoca, Romania E-mails: dandrica@math.ubbcluj.ro mdm_dana@yahoo.com cpintea@math.ubbcluj.ro