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Abstract

We introduce a so called canonical form of a factor of two monomial ideals. The depth
and the Stanley depth of such a factor are invariant under taking the canonical form. This
can be seen using a result of Okazaki and Yanagawa [7]. In the case of depth we present a
different proof. It follows easily that the Stanley Conjecture holds for the factor if and only
if it holds for its canonical form. In particular, we construct an algorithm which simplifies
the depth computation and using the canonical form we massively reduce the run time for
the sdepth computation.
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1 Introduction

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring over K in n variables. A Stanley
decomposition of a multigraded S−module M is a finite family

D = (Si, ui)i∈I

where ui are homogeneous elements of M and Si are multigraded K−algebra retract of S for
all i ∈ I such that Si ∩Ann(ui) = 0 and

M =
∑
i∈I

Siui

as a multigraded K−vector space. The Stanley depth of D, denoted by sdepth(D), is the depth

of the S−module
∑
i∈I

Siui. The Stanley depth of M is defined as

sdepth (M) := max{sdepth (D) | D is a Stanley decomposition of I}.
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Another definition of sdepth using partitions is given in [4].
Stanley’s Conjecture [12] states that sdepth(M) is ≥ depth(M).
Let J ( I ⊂ S be two monomial ideals in S. In [5], Ichim et. al. studied the sdepth

and depth of the factor I/J under polarization and reduced the Stanley’s Conjecture to the
case where the ideals are monomial squarefree. This may be the best result from the last
years concerning Stanley’s depth. It is worth to mention that this result is not very useful in
computing sdepth since it introduces a lot of new variables. In the squarefree case there are
not many known results about the Stanley conjecture (see for example [9]).

Another result of [5] which helps in the sdepth computation is the following proposition,
which extends [2, Lemma 1.1], [6, Lemma 2.1].

Proposition 1. [5, Proposition 5.1] Let k ∈ N and I ′′, J ′′ be the monomial ideals obtained
from I, J in the following way: Each generator whose degree in xn is at least k is multiplied by
xn and all other generators are taken unchanged. Then sdepthS

I/J = sdepthS
I′′
/J′′.

Inspired by this proposition we introduce a canonical form of a factor I/J of monomial ideals
(see Definition 2) and we prove easily that sdepth is invariant under taking the canonical form
(see Theorem 1). This leads us to the idea to also study the depth case (see Theorem 2).
Theorem 3 says that Stanley’s Conjecture holds for a factor of monomial ideals if and only if it
holds for its canonical form. As a side result, in the depth (respectively sdepth) computation
algorithm for I/J, one can first compute the canonical form and use the algorithm on this new
much more simpler module (see the Appendix).

In Example 3 we conclude that the depth and sdepth algorithms are faster when consid-
ering the canonical form: using CoCoA[1], Singular[3] and Rinaldo’s sdepth computation
algorithm [11] we see a small decrease in the depth case timing, but in the case of sdepth the
running time is massively reduced. We hope that our algorithm together with the one from [8]
will be used very often in problems concerning monomial ideals.

We owe thanks to Y.-H. Shen who noticed our results in a previous arXiv version and showed
us the papers of Okazaki and Yanagawa [7] and [13], because they are strongly connected with
this topic. Indeed Proposition 1 and Corollary 1 follow from [7, Theorem 5.2] (see also [7,
Section 2,3]). However, the proofs of Lemma 2 and Corollary 1 are completely different from
those that appeared in the quoted papers and we keep them for the sake of our completeness.

2 The canonical form of a factor of monomial ideals

Let R = K[x1, . . . , xn−1] be the polynomial K-algebra over a field K and S := R[xn]. Consider
J ( I ⊂ S two monomial ideals and denote by G(I), respectively G(J), the minimal (monomial)
system of generators of I, respectively J .

Definition 1. The power xr
n enters in a monomial u if xr

n|u but xr+1
n - u.

We say that I is of type (k1, . . . , ks) with respect to xn if xki
n are all the powers of xn which

enter in a monomial of G(I) for i ∈ [s] and 1 ≤ k1 < . . . < ks.
I is in the canonical form with respect to xn if I is of type (1, . . . , s) for some s ∈ N.
We simply say that I is the canonical form if it is in the canonical form with respect to all

variables x1, . . . , xn.
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Remark 1. Suppose that I is of type (k1, . . . , ks) with respect to xn. It is easy to get the
canonical form I ′ of I with respect to xn: replace xki

n by xi
n whenever xki

n enters in a generators
of G(I). Applying this procedure by recurrence for other variables we get the canonical form
of I, that is with respect to all variables. Note that a squarefree monomial ideal is of type (1)
with respect to each xi and it is in the canonical form with respect to xi, so in this case I ′ = I.

Definition 2. Let J ( I ⊂ S be two monomial ideals. We say that I/J is of type (k1, . . . , ks)
with respect to xn if xki

n are all the powers of xn which enter in a monomial of G(I) ∪ G(J)
for i ∈ [s] and 1 ≤ k1 < . . . < ks. All the terminology presented in Definition 1 will extend
automatically to the factor case. Thus we may speak about the canonical form I/J of I/J.

Remark 2. In order to compute the canonical form with respect to xn of the (k1, . . . , ks)−type
factor I/J, one will replace xki

n by xi
n whenever xki

n enters a generator of G(I) ∪G(J).

Example 1. We present some examples where we compute the canonical form of a monomial
ideal, respectively a factor of two monomial ideals.

1. Consider S = Q[x, y] and the monomial ideal I = (x4, x3y7). Then the canonical form of
I is I ′ = (x2, xy).

2. Consider S = Q[x, y, z], I = (x10y5, x4yz7, z7y3) and
J = (x10y20z2, x3y4z13, x9y2z7).

The canonical form of I/J is I/J =
(x4y5, x2yz2, y3z2)

(x4y6z, xy4z3, x3y2z2)
.

The canonical form of a factor of monomial ideals I/J is not usually the factor of the canonical
forms of I and J as shown in the following example.

Example 2. Let S = Q[x, y], I = (x4, y10, x2y7) be and J = (x20, y30). The canonical form
of I is I ′ = (x2, y2, xy) and the canonical form of J is J ′ = (x, y). Then J ′ 6⊂ I ′. But the

canonical form of the factor I/J is I/J =
(x2, y2, xy)

(x3, y3)
.

Using Proposition 1, we see that the Stanley depth of a monomial ideal does not change
when considering its canonical form.

Theorem 1. Let I, J be monomial ideals in S and I/J the canonical form of I/J. Then

sdepthS
I/J = sdepthS

I/J.

In order to prove this we apply inductively the following lemma.

Lemma 1. Suppose that I/J is of type (k1, . . . , ks) with respect to xn and kj + 1 < kj+1 for
some 0 ≤ j < s (we set k0 = 0). Let G(I ′) (resp. G(J ′)) be the set of monomials obtained from
G(I) (resp. G(J)) by substituting xki

n by xki−1
n for i > j whenever xki

n enters in a monomial of
G(I) (resp. G(J)). Let I ′ and J ′ be the ideals generated by G(I ′) and G(J ′). Then

sdepthS
I/J = sdepthS

I′
/J′.
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The proof of Lemma 1 follows from the proof of [5, Proposition 5.1] (see here Proposition
1).

Next we focus on the depth I/J and depth I/J. The idea of the proof of the following lemma
is taken from [10, Section 2].

Lemma 2. Let I0 ⊂ I1 ⊂ . . . ⊂ Ie ⊂ R, J ⊂ S, U0 ⊂ U1 ⊂ . . . ⊂ Ue ⊂ R, V ⊂ S be some
graded ideals of S, respectively R, such that Ui ⊂ Ii for 0 ≤ i ≤ e, Ie ⊂ J , V ⊂ J and Ue ⊂ V .

Consider Tk =

e∑
i=0

xi
nIiS + xk

nJ and Wk =

e∑
i=0

xi
nUiS + xk

nV for k > e. Then depthS

Tk

Wk
is

constant for all k > e.

Proof: Consider the following linear subspaces of S: I :=

e∑
i=0

xi
nIi and U :=

e∑
i=0

xi
nUi. Note

that I and U are not ideals in S.

If I = U , then the claim follows easily from the next chain of isomorphisms
Tk

Wk

∼=

xk
nJ

xk
nJ ∩ (I + xk

nV )S
∼=

xk
nJ

xk
n(I + V )S

∼=
J

(I + V )S
for all k > e, and hence depthS

Tk

Wk
is con-

stant for all k > e.
Assume now that I 6= U and consider the following exact sequence

0→ J

V

·xk
n−−→ Tk

Wk
→ Tk

Wk + xk
nJ
→ 0,

where we denote the last term by Hk. Note that Hk
∼=

IS

IS ∩ (U + xk
nJ)S

and IS∩(U+xk
nJ)S =

US + xk
nIS. Since xk

nHk = 0, Hk is a S/(xk
n)−module. Then depthS Hk = depthS/(xk

n) Hk =
depthR Hk because the graded maximal ideal m of R generates a zero dimensional ideal in

S/(xk
n). But Hk over R is isomorphic with

⊕k−1
i=0 Ii

⊕k−1
i=0 Ui

∼=
k−1⊕
i=0

Ii
Ui

, where Ii = Ie and Ui = Ue for

e < i < k. It follows that t := depthS Hk = mini

{
depthR

Ii
Ui

}
.

If depthS

J

V
= 0, then the Depth Lemma gives us depthS

Tk

Wk
= t = 0 for all k > e and

hence we are done. Therefore we may suppose that depthS

J

V
> 0. Note that t > 0 implies

depthS

Tk

Wk
> 0 by the Depth Lemma since otherwise we would have depthS

Tk

Wk
= depthS

J

V
=

0, which is false. Next we will split the proof in two cases.
◦ Case t = 0.
Let F =

{
i ∈ {0, . . . , e}

∣∣ depthR
Ii/Ui = 0

}
and Li ⊂ Ii be the graded ideal containing Ui

such that Li/Ui
∼= H0

m(Ii/Ui).
If i ∈ F and there exists u ∈ (Li ∩ V ) \ Ui then (ms, xk

n)xi
nu ⊂ Wk for some s ∈ N, that is

depthS

Tk

Wk
= 0 for all k > e.
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Now consider the case when Li ∩ V = Ui for all i ∈ F . If i ∈ F then note that Li ⊂ Lj for

i < j ≤ e. Set V ′ = V +LeS, U ′ = U +
∑
i∈F

xi
nLi and W ′k := U ′S +xk

nV
′ = U ′S +xk

nV because

xk
nLeS ⊂ U ′S. Consider the following exact sequence

0→ W ′k
Wk
→ Tk

Wk
→ Tk

W ′k
→ 0.

For the last term we have H0
m(Ij/U ′

j) = 0, 0 ≤ j ≤ e and so the new t > 0, which is our

next case. Thus we get depthS

Tk

W ′k
> 0 is constant for k > e. The first term is isomorphic

to
U ′S

U ′S ∩Wk
. But U ′S ∩Wk = US + (U ′S ∩ xk

nV ) since US ⊂ U ′S. Since U ′S ∩ (xk
nS) =

xk
n(Ue + Le)S and Ue ⊂ V it follows that U ′S ∩ xk

nV = xk
nUS + (xk

nLeS ∩ xk
nV S) = xk

nUS.

Consequently, the first term from the above exact sequence is isomorphic with
U ′S

US
. Note that

the annihilator of the element induced by some u ∈ Le \ V in U ′S/US contains a power of m

and so depthS

U ′S

US
≤ 1. The inequality is equality since xn is regular on U ′S/US. By the Depth

Lemma we get depthS

Tk

Wk
= 1 for all k > e.

◦ Case t > 0.

If depthR

J

V
≤ t = depthS Hk then Depth Lemma gives us the claim, i.e. depthS

Tk

Wk
=

depthS

J

V
for all k > e.

Assume that depthS

J

V
> t. We apply induction on t, the initial step t = 0 being done in

the first case. Suppose that t > 0. Then depthS

J

V
> t > 0 implies that depthS

J

V
≥ 2 and

so we may find a homogeneous polynomial f ∈ m that is regular on
J

V
. Moreover we may

find f to be regular also on all
Ii
Ui

, i ≤ e. Then f is regular on
Tk

Wk
. Set V ′′ := V + fJ and

U ′′i := Ui + fIi for all i ≤ e and set W ′′k :=

e∑
i=0

xi
nU
′′
i S + xk

nV
′′. By Nakayama’s Lemma we

get U ′′ 6= U , and therefore depthR

I

U ′′
= t − 1 and by induction hypothesis it implies that

depthS

Tk

Wk
= 1 + depthS

Tk

W ′′k
= constant for all k > e.

Finally, note that we may pass from the first case to the second one and conversely. In this
way U increases at each step. By Noetherianity we may arrive in finite steps to the case I = U ,
which was solved at the beginning.

The next corollary is in fact [5, Proposition 5.1] (see Proposition 1) for depth. It follows
easily from Lemma 2 but also from [7, Proposition 5.2] (see also [13, Sections 2, 3].
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Corollary 1. Let e ∈ N, I and J monomial ideals in S := K[x1, . . . , xn]. Consider I ′ and
J ′ be the monomial ideals obtained from I and J in the following way: each generator whose
degree in xn ≥ e is multiplied by xn and all the other generators are left unchanged. Then

depthS
I/J = depthS

I′
/J′.

This leads us to the equivalent result of Theorem 1 for depth.

Theorem 2. Let I and J be two monomial ideals in S and I/J the canonical form of I/J. Then

depthS
I/J = depthS

I/J.

Proof: Assume that I/J is of type (k1, . . . , ks) with respect to xn and obviously I/J is of type
(1, 2, . . . , s) with respect to xn. Starting with I/J, we apply Corollary 1 until we obtain an I′

1/J′
1

of type (k1, k1 + 1, . . . , k1 + s−1) having the same depth as I/J. We repeat the process until we
get I′

s/J′
s of type (k1, k2, . . . , ks) with respect to xn with the unchanged depth. Now we iterate

and take the next variable. At the end the claim will follow.

Theorem 1 and Theorem 2 give us the following theorem

Theorem 3. The Stanley conjecture holds for a factor of monomial ideals I/J if and only if it
holds for its canonical form I/J.

Using Theorem 2, instead of computing the depth or the sdepth of I/J, J ( I ⊂ S, we can
compute it for the simpler module I/J.

Example 3. We present the different timings for the depth and sdepth computation algorithms
with and without extracting the canonical form. Singular[3] was used in the depth computa-
tions while CoCoA [1] and Rinaldo’s paper[11] were used for the Stanley depth computation.

1. Consider the ideals from Example 1(2).

Timing for sdepth I/J computation: 22s.

Timing for sdepth I/J computation: 74 ms.

2. Consider R = Q[x, y, z] and I = (x100yz, x50yz50, x50y50z). Then the canonical form is
I ′ = (x2yz, xyz2, xy2z).

Timing for sdepth I computation: 13m 3s.

Timing for sdepth I ′ computation: 21 ms.

Note that the difference in timings is very large. Therefore using the canonical form in
the sdepth computation is a very important optimization step. On the other side, the
depth computation is immediate in both cases. In the last example, the timing difference
can be seen.

3. Consider R = Q[x, y, z, t, v, a1, . . . , a5],
I = (v4x12z73, v87t21y13, x43y18z72t28, vxy, vyz, vzt, vtx, a70001 , a4132 ; ),
J = (v5x13z74, v88t22y14, x44y19z73t29, v2x2y2, v2y2z2, v2z2t2, v2t2x2).

Timing for depth I/J computation: 16m 11s.

Timing for depth I/J computation: 11m.
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3 Appendix

We sketch the simple idea of the algorithm which computes the canonical form of a mono-
mial ideal I. This can easily be extended to compute the canonical form of I/J by simple
applying it for G(I) ∪ G(J) and afterwards extracting the generators corresponding to I and
J . This was used in Example 3.

The algorithm is based on Remark 2: for each variable xi we build the list gp in which we
save the pair (g, p), were p is chosen such that xp

i enters the g−generator of the monomial ideal
I. This list will be sorted by the powers p as in the following example

Example 4. Consider the ideal I := (x13, x4y7, y7z10) ⊂ Q[x, y, z]. Then for each variable we
will obtain a different gp as shown below:

◦ For the first variable x, gp is equal to 2 4 1 13 . Therefore I is of type (4, 13)
with respect to x. Hence, in order to obtain the canonical form with respect to x, one
has to divide the second generator by x4−1 = x3 and the first generator by x13−2 = x11.
After these computation we will get I1 = (x2, xy7, y7z10). Note that I1 is in the canonical
form w.r.t. x.

◦ For the second variable y, gp is equal to 3 7 2 7 . Similar as above, one has to

divide the second and the third generator by y6, and hence it results I2 = (x2, xy, yz10).
Again, I2 is in the canonical form w.r.t. y and x.

◦ For the last variable z, gp is equal to 3 10 . We divide the third generator of I2 by z9

and we get our final result I ′ = (x2, xy, yz)., which is in the canonical form with respect
to all variables.

Based on the above idea, we construct two procedures: putIn and canonical − the first
one constructing the list gp, and the second one computing the canonical form of a monomial
ideal. The proof of correctness and termination is trivial. The procedures were written in the
Singular language.

proc putIn(intvec v, int power, int nrgen)

{

if(size(v) == 1)

{

v[1] = nrgen;

v[2] = power;

return(v);

}

int i,j;

if(power <= v[2])

{

for(j = size(v)+2; j >=3; j--)

{

v[j] = v[j-2];
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}

v[1] = nrgen;

v[2] = power;

return(v);

}

if(power >= v[size(v)])

{

v[size(v)+1] = nrgen;

v[size(v)+1] = power;

return(v);

}

for(j = size(v) + 2; (j>=4) && (power < v[j-2]); j = j-2)

{

v[j] = v[j-2];

v[j-1] = v[j-3];

}

v[j] = power;

v[j-1] = nrgen;

return(v);

}

proc canonical(ideal I)

{

int i,j,k;

intvec gp;

ideal m;

intvec v;

v = 0:nvars(basering);

for(i = 1; i<=nvars(basering); i++)

{

gp = 0;

v[i] = 1;

for(j = 1; j<=size(I); j++)

{

if(deg(I[j],v) >= 1)

{

gp = putIn(gp,deg(I[j],v),j);

}

}

k = 0;

if(size(gp) == 2)

{

I[gp[1]] = I[gp[1]]/(var(i)^(gp[2]-1));

}
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else

{

for(j = 1; j<=size(gp)-2;)

{

k++;

I[gp[j]] = I[gp[j]]/(var(i)^(gp[j+1]-k));

j = j+2;

while((j<=size(gp)-2) && (gp[j-1] == gp[j+1]) )

{

I[gp[j]] = I[gp[j]]/(var(i)^(gp[j+1]-k));

j = j + 2;

}

}

if(j == size(gp)-1)

{

if(gp[j-1] == gp[j+1])

{

I[gp[j]] = I[gp[j]]/(var(i)^(gp[j+1]-k));

}

else

{

k++;

I[gp[j]] = I[gp[j]]/(var(i)^(gp[j+1]-k));

}

}

}

v[i] = 0;

}

return(I);

}
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