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Abstract

We prove that a discrete evolution family

U = {U(m,n)}m≥n∈Z+

of bounded linear operators acting on a complex Banach spaceX is uniformly exponentially
stable if and only if it is admissible in respect to the pair (c00(Z+, X), c00(Z+, X)), (i. e. the

sequence n 7→
n∑

k=0

U(n, k)fk : Z+ → X belongs to c00(Z+, X) for each (fk) ∈ c00(Z+, X)).

The approach is based on the theory of discrete evolution semigroups associated to such
families.
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1 Introduction

The study of the asymptotic behavior of the non-autonomous discrete systems xn+1 = Anxn
or yn+1 = Anyn + fn is much more difficult than the corresponding study of the autonomous
ones. For the systems in latter case there are a lot of spectral criteria which characterizes
different types of stability (or other types of asymptotic behavior) of their solutions. However,
only in some particular cases (for example in the case when the coefficients are periodic) such
criteria work (partially) for time periodic systems. New difficulties appear in the study of the
inhomogeneous systems, especially because the part of the solution generated by the forced
term (fn), i. e.

∑n
k=ν U(n, k)fk, is not a convolution in the classical sense. These difficulties

may by passed by using the so called evolution semigroups. Having in mind the well known
results in the continuous case, see for example [6],[3], [4] and [7], we can say that this method is
a very efficient one. Mention however, that is not very easy to apply such method. For example,
even when the coefficients of the non-autonomous system are complex scalars, the elements of
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the associated evolution semigroup act in an infinite dimensional space. Here we develop the
theory of discrete evolution semigroups on some spaces of bounded sequences. Results of this
type in the continuous case may found in [5], [1], [2] and the references therein. However, by
contrast with the continuous case, we didn’t find in the existent literature papers written in
the spirit of the present paper refereing to discrete evolution semigroups. Such results could be
new and useful for people whose area of research is restricted to the difference equations.

2 Notations and Preliminary Results

Let X be a complex Banach space and let L(X) be the Banach algebra of all linear and bounded
operators acting on X. The norms in X and in L(X) will be denoted by the same symbol || · ||.
Let Z be the set of all integer numbers and let Z+ the set of all nonnegative integers. By
c00(Z+, X) will denote the set of all X-valued sequences defined on Z+ which decays at 0 and
at ∞. Also, c00(Z, X) is defined as the set of all X-valued sequences which decay at infinities.
Clearly these spaces became Banach spaces if endow them by the ”sup” norm. Let Y be a
Banach space. A family T = {T (j)}j∈Z+ of bounded linear operators acting on Y is called
discrete semigroups if T (0) = I (I being the identity operator on Y ) and T (k+ j) = T (k)◦T (j)
for all k, j ∈ Z+. Clearly for each j ∈ Z+ have that T (j) = T (1)j . We call T (1) the algebraic
generator of the semigroup T. Having in mind the notion of infinitesimal generator for a strongly
continuous semigroup, we define the ”infinitesimal generator” for a discrete semigroup as being
G := T (1)− I. The Taylor formula of order one for discrete semigroups may be written as:

T (j)f − f =

j−1∑
k=0

T (k)Gf ∀j ∈ Z+, j ≥ 1, f ∈ Y. (2.1)

In fact,
j−1∑
k=0

T (k)Gf =

j−1∑
k=0

[T (k + 1)− T (k)]f = T (j)f − f.

Let J ∈ {Z,Z+}. A discrete evolution family on the Banach space X is a family of two
parameters UJ := {U(n,m) : n ≥ m ∈ J}, having the properties: U(m,m) = I and
U(m,n) = U(m, p)U(p, n) for any m ≥ p ≥ n ∈ J. Here I is the identity operator on X.
Such family has exponential growth if there exist two real constants M and ω, such that

||U(n,m)|| ≤M exp (ω(n−m)) for all n ≥ m ∈ J.

Clearly M ≥ 1 and ω may be chosen a positive real number. By contrast with the semigroup
case, the exponential growth condition is not automatically verified for discrete evolution fam-
ilies. For any operator A acting on X we denote by ρ(A) its resolvent set, i.e. the set of all
complex scalars z for which zI −A is an invertible operator in L(X). By σ(A) := C \ ρ(A) we
denote the spectrum of the operator A. The spectral radius of A, denoted by r(A), is defined
by r(A) := sup{|z| : z ∈ σ(A)}. It is well known that

r(A) = lim
n→∞

||An|| 1n .

As a consequence, a discrete semigroup {T (j)} is uniformly exponentially stable if and only if
the spectral radius of T (1) is less than 1.
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3 Evolution semigroups and uniform exponential stability for evolution families
on Z+.

Let U = {U(m,n) : m ≥ n ≥ 0} be a discrete evolution family of bounded linear operators
acting on a Banach space X having exponential growth. For each j ∈ Z+, the linear operator
given by

(T (j)f)(n) =

{
U(n, n− j)f(n− j), for all n ≥ j;
0, otherwise

is well defined and acts on Y := c00(Z+, X). Moreover it is a bounded operator on Y and
||T (j)||L(Y ) ≤ M exp (ωj). The family T = {T (j)}j∈Z+

is called the evolution semigroup as-
sociated to U on c00(Z+, X). The following Lemma is the key tool in the proof of the main
result of this section. It connects the ”infinitesimal generator” of the evolution semigroup and
a non-homogeneous discrete Cauchy Problem leading to the evolution family.

Lemma 3.1. Let T = {T (j)}j∈Z+
be the evolution semigroup associated to the discrete evolu-

tion family U on the space c00(Z+, X) and let x, f ∈ c00(Z+, X). The following two statements
are equivalent:

• (i) Gx = −f.

• (ii) x(j) =
∑j
k=0 U(j, k)f(k) for j ∈ Z+.

Proof: (i)⇒ (ii) For j = 0 the assertion is obvious. Let j ∈ Z+, j ≥ 1. From (2.1) follows:

T (j)x− x =

j−1∑
k=0

T (k)Gx = −
j−1∑
k=0

T (k)f.

By applying both sides to j, obtain:

x(j) = (T (j)x)(j) +

(
j−1∑
k=0

T (k)f

)
(j)

= U(j, 0)x(0) +

j−1∑
k=0

U(j, j − k)f(j − k)

=

j∑
r=0

U(j, r)f(r).
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(ii)⇒ (i) Let n ≥ 1. Successively one has:

(Gx)(n) = [(T (1)− I)x](n)

= U(n, n− 1)x(n− 1)− x(n)

=

n−1∑
j=0

U(n, j)f(j)− x(n)

=

n∑
j=0

U(n, j)f(j)− U(n, n)f(n)− x(n)

= −f(n).

Lemma 3.2. Let U be a discrete evolution family of bounded linear operators acting on a
Banach space X having exponential growth. If there exists a positive constant c such that

(n− j + 1)‖U(n, j)‖ ≤ c for all n ≥ j ≥ 0 (3.1)

then there exist two positive constants K and ν such that

‖U(n, j)‖ ≤ Ke−ν(n−j) for all n ≥ j ≥ 0, (3.2)

that is, the family is uniformly exponentially stable.

Proof: Let N ≥ 1 be an integer number such that c
n−j+1 ≤

1
2 for all n − j ≥ N. From (3.1),

we get:

‖U(n, j)‖ ≤ 1

2
for all n ≥ N + j.

Let m be the integer part of n−j
N ∈ Z+. Then m ≥ 1 and n may be represented as n =

j +mN + ρN, with ρ ∈ [0, 1). Thus

U(n, j) = U(j +Nm+ ρN, j +Nm)U(j +Nm, j).

By using exponential growth property, we get

‖U(n, j)‖ ≤MeωN‖U(j +Nm, j)‖. (3.3)

On the other hand, using the evolution property, we may write

U(j +Nm, j) = U(j +Nm, j +N(m− 1))U(j +N(m− 1), j +N(m− 2)) · · ·U(j +N, j)

and hence

‖U(j +Nm, j)‖ ≤ 1

2m
. (3.4)
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By combining (3.3) and (3.4) we get:

‖U(n, j)‖ ≤ 1

2m
MeωN ≤MeωN

(
1

2

)n−j
N −1

= Ke−ν(n−j),

where K = 2MeωN and ν = ln 2
N .

Theorem 3.3. Let U = {U(n,m)}n≥m≥0 be a discrete evolution family of bounded linear
operators acting on a complex Banach space X having exponential growth. Let’s consider the
map gU,f given by

gU,f (n) :=

n∑
k=0

U(n, k)f(k), f ∈ c00(Z+, X).

If for each f belonging to c00(Z+, X) have that gU,f belongs to c00(Z+, X) then the family U is
uniformly exponentially stable.

Proof: We give the proof in three steps.
Step 1: Let us consider the linear operator

K : c00(Z+, X)→ c00(Z+, X)

defined by
(Kf)(n) := gU,f (n) n ∈ Z+, f ∈ c00(Z+, X).

We prove that the operator K is bounded. In view of the Closed Graph Theorem it is enough
to prove that the operator K is closed. For this purpose, let us choose fj , f, g ∈ c00(Z+, X) ,
j ∈ Z+ such that

fj → f ( as j →∞) in c00(Z+, X)

and
Kfj → g ( as j →∞) in c00(Z+, X).

Since fj → f in c00(Z+, X), the X-valued sequence {fj(k)}∞j=0 converges, for each k ∈ Z+, to
f(k). By using the continuity of the operators U(n, k) we also get:

lim
j→∞

(Kfj)(n) = (Kf)(n), for each n ∈ Z+.

On the other hand (Kfj)(n) → g(n) ( as j → ∞) for each fixed n ∈ Z+ and thus Kf = g.
The continuity of the operator K assures the existence of a constant c > 0 such that

‖Kf‖c00(Z+,X) ≤ c for all f ∈ c00(Z+, X) with ‖f‖ ≤ 1. (3.5)

Step 2: We prove that the family U is uniformly bounded. We put U(n,m) = 0 whenever
n < m. Let j ∈ Z+, j ≥ 1, and let fj defined by

fj(k) := 1{j}(k)U(k, j)b, b ∈ X, ‖b‖ ≤ 1.
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As is usually by 1S we denote the characteristic function of the non-empty set S. Clearly
fj ∈ c00(Z+, X) and ‖f‖c00(Z+,X) = ‖b‖ ≤ 1. Then (3.5) provides

c ≥ ‖Kfj‖c00(Z+,X) ≥ ‖(Kfj)(n)‖ = ‖U(n, j)b‖, n ≥ j ≥ 1.

On the other hand

‖U(n, 0)‖ = ‖U(n, 1)U(1, 0)‖ ≤ ‖U(n, 1)‖‖U(1, 0)‖ ≤ c‖U(1, 0)‖.

Finally, we may write:

sup
n≥j≥0

‖U(n, j)‖ ≤ c1 <∞ where c1 = max{c, c‖U(1, 0)‖},

that is, the family U is uniformly bounded. Moreover, for each fixed j ≥ 1 and all b ∈ X with
||b|| ≤ 1 have that U(n, j)b→ 0 (as n→∞). This happens because ‖U(n, j)b‖ = ‖(Kfj)(n)‖ →
0, as n→∞ and taking into account that Kfj ∈ c00(Z+, X).

Step 3: We prove that

sup
n≥j≥0

[(n− j + 1)‖U(n, j)‖] = c2 <∞.

Let us consider j ≥ 1 and hj(k) := 1
c1

1{j,··· ,n}(k)U(k, j)b. Obviously hj belongs to c00(Z+, X)
and ‖hj‖c00(Z+,X) ≤ 1 because ‖U(n, j)‖ ≤ c1 and ‖b‖ ≤ 1.Using again (3.5) we get: ‖Khj(n)‖ ≤
‖Khj‖c00(Z+,X) ≤ c. On the other hand

(Khj)(n) =
1

c1

n∑
k=0

U(n, k)1{j,··· ,n}(k)U(k, j)b (3.6)

=
1

c1

n∑
k=j

U(n, j)b =
1

c1
(n− j + 1)U(n, j)b (3.7)

and thus (n− j + 1)‖U(n, j)b‖ ≤ cc1 for all n ≥ j ≥ 1. Moreover

(n+ 1)‖U(n, 0)‖ = (n+ 1)‖U(n, 1)U(1, 0)‖ ≤ (n+ 1)‖U(n, 1)‖‖U(1, 0)‖

= n
n+ 1

n
‖U(n, 1)‖‖U(1, 0)‖ ≤ 2cc1‖U(1, 0)‖.

Hence
‖U(n, j)‖ ≤ c2

n− j + 1

for all n ≥ j ≥ 0, where c2 = max{cc1, 2cc1‖U(1, 0)‖}. The assertion follows now by Lemma
3.2.

Theorem 3.4. The following four statements are equivalent.
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• (i) The family U is uniformly exponentially stable.

• (ii) The evolution semigroup T associated to the family U on c00(Z+, X) is uniformly
exponentially stable.

• (iii) The ”infinitesimal generator” T (1)− I of T is invertible.

• (iv) For each f ∈ c00(Z+, X) have that gU,f ∈ c00(Z+, X).

Proof: (i)⇒(ii). It is obvious.
(ii)⇒(iii). It is well known that the semigroup T is uniformly exponentially stable if and

only if r(T (1)) < 1. Then the assumption assure that 1 ∈ ρ(T (1)) and so T (1)− I is invertible.
(iii)⇒(iv). Let T (1)− I be invertible. Then for each f ∈ c00(Z+, X) there exists a unique

u ∈ c00(Z+, X) such that [T (1)− I]u = −f. From Lemma 3.1 this is equivalent to the fact that

u(j) =
∑j
k=0 U(j, k)f(k) for all j ∈ Z+, i. e. gU,f ∈ c00(Z+, X).

(iv)⇒(i). Follows from Theorem 3.3.

Theorem 3.5. Let U = {U(n,m) : n ≥ m ≥ 0} be a discrete evolution family having exponen-
tial growth and let T = {T (j)}j≥0 be the evolution semigroup associated to U on c00(Z+, X)
having G0 = T (1)− I as infinitesimal generator. The following two statements hold true:

• (i) σ(T (1)) = {z ∈ C : |z| ≤ r(T (1))}.

• (ii) σ(G0) = σ(T (1))− 1.

Proof: We prove (i) in two steps.
Step 1. Consider the case when T is uniformly exponentially stable. First we prove that if

λ ∈ ρ(T (1)) then µ ∈ ρ(T (1)) for all |µ| ≥ |λ|. For this to be end let us consider a new evolution
family defined by

Uλ(n,m) = λ−(n−m)U(n,m).

Its associated evolution semigroup on the space c00(Z+, X) is

Tλ(j) = λ−jT (j).

Then 1 ∈ ρ(Tλ(1)) if and only if λ ∈ ρ(T (1)). As a consequence, the assumption is equivalent
with uniform exponential stability of the family {Uλ(n,m) : n ≥ m ≥ 0} (say with the constants
N and ν). Now, if |µ| ≥ |λ|, then

Uµ(n,m) = µ−(n−m)U(n,m) (3.8)

=

(
λ

µ

)n−m
λ−(n−m)U(n,m) (3.9)

=

(
λ

µ

)n−m
Uλ(n,m). (3.10)

It follows
‖Uµ(n,m)‖ ≤ Ne−ν(n−m) for all n ≥ m.
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Since the family {Uµ(n,m)} is uniformly exponentially stable its associated evolution semigroup
Tµ is uniformly exponentially stable as well. Then the infinitesimal generator µ−1T (1) − I is
an invertible operator, i. e. T (1)− µI is invertible, which provides µ ∈ ρ(T (1)).

Step 2: Here we analyze the case when the evolution semigroup {T (j)}j≥0 is not uniformly
exponentially stable. Let ω ∈ R such that ‖T (j)‖ ≤ eωj for all j ∈ Z+. Define

S(j) := e−νjT (j)

for a given ν > ω. Then ‖S(j)‖ ≤ e(ω−ν)j for all j ∈ Z+ i. e. the semigroup {S(j)} is uniformly
exponentially stable. Let λ ∈ ρ(T (1)) and let µ be a complex number such that |µ| ≥ |λ|.
Clearly e−νT (1) − λe−νI is invertible, i. e. S(1) − λe−νI is invertible. Thus λe−ν ∈ ρ(S(1))
and |µe−ν | ≥ |λe−ν |. The previous step assures that µe−ν ∈ ρ(S(1)). Hence µ ∈ ρ(T (1)).

Now we prove our required result. Let λ ∈ C such that |λ| < r(T (1)). Suppose for a
contradiction that λ ∈ ρ(T (1)). Then, as stated before, all complex numbers µ with |µ| ≥ |λ|
belong to ρ(T (1)). Thus only the complex numbers w having modulus less than |λ| may be
in σ(T (1)). This shows that |λ| ≥ r(T (1)) which is a contradiction. Hence if z ∈ C is such
that |z| < r(T (1)) then z ∈ σ(T (1)). But σ(T (1)) is a closed set, so σ(T (1)) = {z ∈ C : |z| ≤
r(T (1))}.
(ii) The Spectral Mapping Theorem says that if f : C→ C is an analytic function and A ∈ L(X)
then σ(f(A)) = f(σ(A)), where by f(σ(A)) we denote the set{f(z) : z ∈ σ(A)}. For our purpose
set z 7→ f(z) = z−1, which is an analytic function and f(A) = A−I, so σ(A−I) = σ(A)−1 =
{z − 1 : z ∈ σ(A)}.

In as follows we give a concrete example of operator whose spectrum is the closed unit disk.

Example 3.6. Let us consider the Banach space X := C and consider the discrete evolu-
tion family U defined by U(n,m)x := m+1

n+1 x for all x ∈ C and for all n ≥ m ≥ 0. Clearly
‖U(n,m)‖ ≤ 1 for all n ≥ m ≥ 0. In particular, the family U is uniformly bounded. Let
{T (j)}j∈Z+

be the evolution semigroup associated to the family U on c00(Z+,C). Let’s consider
fj(k) := 1{j}(k)U(k, j)b, b ∈ C, j ≥ 1, k ∈ Z+, |b| = 1, and let ν ∈ Z+, be fixed. Then

(T (ν)fj)(j + ν) = U(j + ν, j)b =
j + 1

j + ν + 1
b.

This shows that ‖T (ν)fj‖ → 1( as j → ∞) and so ‖T (ν)‖ = 1. Thus r(T (1)) = 1 and by
Theorem 3.5 follows that σ(T (1)) is the closed unit disk.

The next example is a concrete application of the Theorem 3.4.

Example 3.7. Let X be a complex Banach space and let {Aj}j∈Z+
be a family of bounded

linear operators acting on X which is uniformly bounded, i.e. supj∈Z+
||Aj || <∞. Consider the

following two discrete Cauchy problems.{
xj+1 = Ajxj , j ∈ Z+, j ≥ k
xk = b (for fixed) k ∈ Z+ (Aj , k, b)
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and {
yj+1 = Ajyj + fj+1, j ∈ Z+

y0 = 0. (Aj , fj , 0)

The solutions of (Aj , k, b) and (Aj , fj , 0) are (respectively) given by: xj = U(j, k)b and

yj =
∑j
k=0 U(j, k)f(k). Here U(j, k) := Aj−1 · · ·Ak when j > k. The following two statements

are equivalent:

• For each b ∈ X the solution of (Aj , k, b) decays exponentially or, equivalently, there exist
two positive constants K and ν such that

sup
n>k

[Keν(n−k)||An−1 · · ·Ak||] <∞.

• For each fj ∈ c00(Z+, X) the solution of (Aj , fj , 0) belongs to c00(Z+, X).

4 Evolution semigroups and uniform exponential stability for evolution families
on Z.

Let U = {U(m,n) : m ≥ n ∈ Z} be a discrete evolution family of bounded linear operators
acting on a Banach space X. For each j ∈ Z+, the linear operator given by

(T (j)f)(n) = U(n, n− j)f(n− j) for all n ∈ Z

is well defined and acts on the Banach space Z := c00(Z, X). When the evolution family U has
exponential growth (say with the constants M and ω) the operator T (j) is a bounded on Z and

||T (j)||L(Z) ≤M exp (ωj).

The family T = {T (j)}j∈Z+ is called the evolution semigroup associated to U on c00(Z, X). The
following Lemma is similar to the above Lemma 3.1. However, in the proof of the next lemma
we use the uniform boundedness of the family U .

Lemma 4.1. Let U = {U(m,n) : m ≥ n ∈ Z} be a uniformly bounded discrete evolution family
and let T = {T (j)}j∈Z+

be the evolution semigroup associated to U on the space c00(Z, X)
”generated” by G. Let f, x ∈ c00(Z, X) be fixed. The following two statements are equivalent:

• (i) Gx = −f.

• (ii) For each n ∈ Z there exists

u(n) := lim
k→−∞

n∑
ρ=k

U(n, ρ)f(ρ),

and x(n) = u(n) for all n ∈ Z.
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Proof: (i)⇒(ii). As we know

T (j)x− x =

j−1∑
k=0

T (k)Gx = −
j−1∑
k=0

T (k)f

and thus for any n ∈ Z, one has

x(n) = T (j)x(n) +

j−1∑
k=0

T (k)f(n)

= U(n, n− j)x(n− j) +

j−1∑
k=0

U(n, n− k)f(n− k)

= U(n, n− j)x(n− j) +

n∑
ρ=n−j+1

U(n, ρ)f(ρ).

Using the uniform boundedness of the family {U(n,m)}, obtain:

‖U(n, n− j)x(n− j)‖ ≤ K‖x(n− j)‖ → 0 (as j →∞).

It follows that limj→∞
∑n
ρ=n−j+1 U(n, ρ)f(ρ). exists, and

x(n) =

n∑
ρ=−∞

U(n, ρ)f(ρ)

(ii) ⇒ (i). In view of the above definitions have that:

(Gx)(n) = (T (1)− I)x(n) = U(n, n− 1)x(n− 1)− x(n).

Based on the continuity of the operator U(n, n− 1), obtain:

(Gx)(n) = U(n, n− 1)

n−1∑
j=−∞

U(n− 1, j)f(j)− x(n)

=

n−1∑
j=−∞

U(n, j)f(j)− x(n) = −f(n).

Theorem 4.2. Let U = {U(m,n) : m ≥ n ∈ Z}, be a uniformly bounded discrete evolution
family of bounded linear operators acting on the Banach space X and let T be the evolution
semigroup associated to U on the space c00(Z, X). The following four statements are equivalent:

• (i) The family U is uniformly exponentially stable.
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• (ii) The evolution semigroup T is uniformly exponentially stable.

• (iii) The ”infinitesimal generator” G = T (1)− I of T is invertible.

• (iv) For each f ∈ c00(Z, X) and each n ∈ Z, there exists

x(n) := lim
k→−∞

n∑
ν=k

U(n, ν)f(ν).

Moreover, x(·) belongs to c00(Z, X).

Proof: The proof of (i)⇒(ii)⇒(iii) are similar as already given in Theorem 3.4.

(iii)⇒ (iv) : As T (1) − I is invertible, for each f ∈ c00(Z, X) there exists an unique x ∈
c00(Z, X) such that [T (1)− I]x = −f. Then from Lemma 4.1, obtain:

x(n) := lim
k→−∞

n∑
ν=k

U(n, ν)f(ν),

exists and x(n) ∈ c00(Z, X).

(iv)⇒(i): We adapt the technique used in Theorem 3.3 and prove this result in two steps.

Step 1: Let us consider the linear operator

K : c00(Z, X)→ c00(Z, X)

defined by (Kf)(n) = x(n) where

x(n) := lim
k→−∞

n∑
ν=k

U(n, ν)f(ν), n ∈ Z.

We prove that K is bounded operator. As in the previous section we use the Closed Graph
Theorem. It is enough to prove that the operator K is closed. Let fj , f, g ∈ c00(Z, X) , j ∈ Z+

such that

fj → f in c00(Z, X) (as j →∞) and

Kfj → g in c00(Z, X) as (j →∞).

For any fixed integers N,n with N < n, let consider the following sequences in c00(Z, X).

f0(k) =

{
f(k), when k ≥ N
0, when k < N

and

f0j (k) =

{
fj(k), when k ≥ N
0, when k < N.
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Clearly f0j (k)→ f0(k) and Kf0j (k)→ g(k) for every k ≥ N. On the other hand

Kf0j (n)−Kf0(n) =

n∑
K=N

U(n, k)(f0j (k)− f0(k))

=

n∑
K=N

U(n, k)(fj(k)− f(k))→ 0 as (j →∞),

But Kf0j (n)→ g(n). Hence Kf0(n) = g(n). Taking into the account our assumption, obtain:

(Kf)(n)− g(n) =

N−1∑
k=−∞

U(n, k)f(k)→ 0 as (N → −∞).

Then (Kf)(n)− g(n) = 0 for all n ∈ Z which assures the boundedness of the operator K. As a
consequence, there exists a positive constant L such that ‖Kf‖c00(Z,X) ≤ L for all f ∈ c00(Z, X)
with ‖f‖ ≤ 1.

Step 2: For any j ∈ Z, we define: fj(k) = 1{j}(k)U(k, j)b where b ∈ X with ‖b‖ ≤ 1.
Clearly fj ∈ c00(Z, X) and

(Kfj)(n) =

{
0 for n < j

U(n, j)b for n ≥ j.

Since

(Kfj)(n)→ 0 (as n→∞)

have that

lim
n→∞

‖U(n, j)b‖ = 0 for all j ∈ Z.

Set hj(k) := 1
M 1{j,··· ,n}(k)U(k, j)b where M = supn≥m ||U(n,m)||. Obviously, hj ∈ c00(Z, X)

and ‖hj‖ ≤ 1. Then ‖(Khj)(n)‖ ≤ L. On the other hand (Khj)(n) = 1
M (n − j + 1)U(n, j)b,

hence

(n− j + 1)‖U(n, j)b‖ ≤ c for all n ≥ j,

where c = LM . The assertion follows now by Lemma 3.2.
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