Time-independent Schrödinger polyharmonic equation and applications
by
IMED BACHAR

Abstract
We prove that the time-independent Schrödinger polyharmonic equation $(-\Delta)^m u + q(x)u = \psi(x) > 0$, $x \in D$, where D is an unbounded domain of \mathbb{R}^n ($n \geq 2$) has a positive solution provided that the function q belongs to a certain Kato class of functions $K_{\infty}^{m,n}(D)$. As applications, the existence and asymptotic behavior of positive solutions of some polyharmonic problems are established.

Key Words: Schrödinger polyharmonic equation, Green function, polyharmonic elliptic equation, positive solution.

2010 Mathematics Subject Classification: Primary 34B27, Secondary 35J40.

1 Introduction and statement of main results
Considerable attention has been given to the time-independent Schrödinger equation

$$-\Delta u + q(x)u = \psi(x), \quad x \in \Omega \subseteq \mathbb{R}^n,$$

where Ω is an open subset of \mathbb{R}^n and the potential q belongs to the Kato class $K_{\text{loc}}^{n,1}(\Omega)$. See, e.g., Aizenman and Simon [1], Chiarenza, Fabes and Garofalo [4], Fabes and Strook [9], Hinz and Kalf [14], Simader [17], Zhao [20-22] and the references therein. Following different approaches these authors have studied the existence and regularity of the solutions for the Dirichlet problem. In [12, Theorem 5.1], the authors considered the following Schrödinger polyharmonic equation:

$$(-\Delta)^m u + q(x)u = \psi(x), \quad x \in \Omega \subseteq \mathbb{R}^n,$$

where Ω is the unit ball in \mathbb{R}^n with $n \geq 1$ and $m \geq 1$. They have proved that if the coefficient q in (1.2) is continuous in $\overline{\Omega}$ and sufficiently small, ψ positive implies that the solution u of the Dirichlet problem for (1.2) is positive. The later result has been extended by the same authors in [13], by considering domains which are close to the unit ball and operators close to $(-\Delta)^m$. On the other hand in [5, Proposition 2.10], the authors studied the equation (1.2) in the case $m = 2$, $n > 4$ and where $\Omega = B(0,r)$ is the open ball of center 0 and radius r.
They have showed that the problem (1.2) subject to either Dirichlet boundary conditions or Navier boundary conditions admits a nonnegative Green function on $B(0, r)$ provided that the function q belongs to the Kato class $K^{n,2}_{loc}(B(0, r))$. For more related results we refer to [10]. For the convenience of the reader, we recall the definition of the functional class $K^{n,m}_{loc}$.

Definition 1.1. [5] Given $n > 2m$ and Ω be an open subset of \mathbb{R}^n. The Kato class $K^{n,m}_{loc}(\Omega)$ is the set of functions $q \in L^1_{loc}(\Omega)$ such that for any compact set $K \subset \Omega$ the quantity

$$\Phi_q(r, K) = \sup_{x \in \mathbb{R}^n} \int_{B(x, r)} \frac{|q(y)| \chi_K(y)}{|x - y|^{n-2m}} dy$$

is finite (here, χ_K denotes the characteristic function of K) and

$$\lim_{r \to 0} \Phi_q(r, K) = 0.$$

We emphasize that the proofs presented by these authors are based in the following 3-G Theorem satisfied by be the Green function $G^B_{m,n}$ for the m-polyharmonic operator $u \to (-\Delta)^m u$ with Dirichlet boundary conditions on the unit ball B in \mathbb{R}^n.

Theorem 1.2. [12, Proposition 4.1] Given $n > 2m$. There exists a constant $C_{m,n} > 0$ such that for all $x, y, z \in B$,

$$\frac{G^B_{m,n}(x, z) G^B_{m,n}(z, y)}{G^B_{m,n}(x, y)} \leq C_{m,n} [\|x - z\|^{2m-n} + \|z - y\|^{2m-n}].$$

We shall prove similar results remain valid for the equation (1.2) on the unbounded domain $D = \{ x \in \mathbb{R}^n : |x| > 1 \}$, where the function q is assumed to belongs to the Kato class $K^{\infty}_{m,n}(D)$ (see Definition 1.3 below). As application we will answer the questions of existence and asymptotic behavior of positive solutions of some polyharmonic problems of the form:

$$\begin{cases}
(-\Delta)^m u + f(., u) = 0, & \text{in } D \quad \text{(in the sense of distributions)} \\
u > 0, \\
\lim_{x \to \zeta \in \partial D} \frac{u(x)}{|x|^{1-n} - 1} = \varphi(\zeta), \\
u(x) \simeq \rho_0(x) & \text{near } x = \infty,
\end{cases} \quad (1.3)$$

where φ is a nonnegative continuous function on ∂D, m is a positive integer and

$$\rho_0(x) = \begin{cases}
1, & \text{for } n > 2m \\
\ln |x|, & \text{for } n = 2m \\
|x|^{2m-n}, & \text{for } n < 2m.
\end{cases} \quad (1.4)$$

The notation $u(x) \simeq \rho_0(x)$, near $x = \infty$, means that for some constant $C > 0$,

$$\frac{1}{C} \rho_0(x) \leq u(x) \leq C \rho_0(x), \text{ when } x \text{ near } \infty.$$
Throughout this paper, we denote by $G_{m,n}^D$ a Green function of $(-\Delta)^m$ on D with Dirichlet boundary conditions $(\frac{\partial}{\partial \nu})^j u = 0$, $0 \leq j \leq m - 1$.

In [3, Theorem 2.6], the authors proved the following 3-G Theorem: there exists a constant $C_{m,n} > 0$ such that for each $x, y, z \in D$,

$$\frac{G_{m,n}^D(x, z)G_{m,n}^D(z, y)}{G_{m,n}^D(x, y)} \leq C_{m,n} \left[\left(\frac{\rho(z)}{\rho(x)} \right)^m G_{m,n}^D(x, z) + \left(\frac{\rho(z)}{\rho(y)} \right)^m G_{m,n}^D(y, z) \right],$$

(1.5)

where

$$\rho(z) = \begin{cases} |z|^{-1} & \text{if } n \geq 2m \\ |z|^{1-\frac{n}{m}} (|z|-1) & \text{if } n < 2m. \end{cases}$$

(1.6)

This form of the 3-G Theorem has been exploited to introduce the Kato class $K_{\infty}^{m,n}(D)$ as follows:

Definition 1.3. A Borel measurable function q in D belongs to the class $K_{\infty}^{m,n}(D)$ if q satisfies the following conditions

$$\lim_{r \to 0} \left(\sup_{x \in D} \int_{D \cap B(x, r)} \left(\frac{\rho(y)}{\rho(x)} \right)^m G_{m,n}^D(x, y) |q(y)| dy \right) = 0,$$

(1.7)

$$\lim_{M \to \infty} \left(\sup_{x \in D} \int_{|y| \geq M} \left(\frac{\rho(y)}{\rho(x)} \right)^m G_{m,n}^D(x, y) |q(y)| dy \right) = 0,$$

(1.8)

where ρ is given by (1.6).

This class contains for example any function belonging to $L^s(D) \cap L^1(D)$ with $s > \frac{n}{2m} > 1$ (see Example 3.1).

We point out that the class $K_{\infty}^{m,n}(D)$ is well adapted to study various existence and multiplicity results for wide classes of polyharmonic boundary value problems including the case of equations with blow-up at infinity. In the later case, we develop a more careful analysis with respect to other recent papers in this field for $m = 1$ (see, e.g. [6, 11, 16]).

Next we shall often refer in this paper to $h_{m,n}$ the m-harmonic function defined in D by

$$h_{m,n}(x) := |x|^{2m-n} G_{m,n}^B(j(x), 0) = k_{m,n} \int_{1}^{v} \frac{(v^2 - 1)^{m-1}}{v^{n-1}} dv,$$

(1.9)

where $j : D \cup \{\infty\} \to B$, $j(x) = |x|^{-2} x$ is the inversion and $k_{m,n} = \frac{\Gamma(\frac{n}{2})}{2^{2m-1} \pi^{\frac{n}{2}} (m-1)!^2}$.

Observe that,

$$h_{m,n}(x) \simeq \rho_0(x), \text{ near } x = \infty.$$

(1.10)

We also let $H_D \varphi$ be the bounded continuous solution of the Dirichlet problem

$$\begin{cases}
\Delta u = 0, & \text{in } D \\
u = \varphi & \text{on } \partial D \\
\lim_{|x| \to \infty} u(x) = 0,
\end{cases}$$

(1.11)
where \(\varphi \) is a nonnegative nontrivial continuous on \(\partial D \) and \(h_{1,n} \) is the harmonic function defined by (1.9).

Note that from [8, p.427], the function \(H_D \varphi \) belongs to \(C(\overline{D} \cup \{\infty\}) \) and satisfies

\[
\lim_{|x| \to \infty} |x|^{n-2} H_D \varphi (x) = c > 0.
\] (1.12)

Our plan is organized as follows. In section 2, we will first study the existence and uniqueness of positive classical solution for the linear problem

\[
\begin{cases}
(-\Delta)^m u = \mathcal{F}, & \text{in } D \\
u > 0, & \\
(-\partial_j\nu)^j u = 0 & \text{on } \partial D \text{ for } j = 0, \ldots, m-2, \\
(-\partial_{\nu}^{m-1}) u = \phi & \text{on } \partial D,
\end{cases}
\]

subject to an asymptotic behavior at \(\infty \), where the functions \(\mathcal{F} \) and \(\phi \) are required to satisfy some convenient hypotheses.

In section 3, we collect some properties of functions belonging to \(K_{\infty,m,n} (D) \). In particular, we derive from the 3-G Theorem (1.5) that for each \(q \in K_{\infty,m,n} (D) \), we have

\[
\alpha_q := \sup_{x,y \in D} \int_D \frac{G_{m,n}^D(x,z)G_{m,n}^D(z,y)}{G_{m,n}^D(x,y)} |q(z)| \, dz < \infty.
\]

Next, we exploit again the inequality (1.5) to prove that on \(D \) the inverse of polyharmonic operators that are perturbed by a zero-order term, are positivity preserving. That is, if the coefficient \(q \in K_{\infty,m,n} (D) \) with \(\alpha_q \leq \frac{1}{2} \) and \(\psi \) is positive, then the equation

\[
(-\Delta)^m u + q(x) u = \psi(x), \quad x \in D
\] (1.13)

has a positive solution.

In section 4, we will establish two existence results for the problem (1.3), where the function \(f \) is closed to linear.

More precisely, first we consider the nonlinearity \(f(x,t) = tg(x,t) \), we let

\[
\omega(x) := h_{m,n}(x) + \left(|x|^2 - 1\right)^{m-1} H_D \varphi(x),
\] (1.14)

and we assume that

\((H_1)\) \(g \) is a nonnegative measurable function on \(D \times [0, \infty) \).

\((H_2)\) For each \(\lambda > 0 \), there exists a positive function \(q_\lambda = q \in K_{\infty,m,n} (D) \) with \(\alpha_q \leq \frac{1}{2} \) such that for each \(x \in D \), the map \(t \mapsto t (q(x) - g(x, \omega(x))) \) is continuous and nondecreasing on \([0, \lambda] \).

Using the pointwise estimates for the Green function and a perturbation arguments, we prove the following.
Theorem 1.4. Under hypotheses \((H_1)-(H_2) \), the problem
\[
\begin{cases}
(-\Delta)^m u + u g(\cdot, u) = 0, \text{ in } D \ (\text{in the sense of distributions}) \\
u > 0, \\
\lim_{x \to \zeta \in \partial D} \frac{u(x)}{|x|^2-1}^{m-1} = \varphi(\zeta), \\
u(x) \asymp \rho_0(x), \text{ near } x = \infty,
\end{cases}
\]
(1.15)
has at least one positive continuous solution \(u \) satisfying
\[
(1 - \alpha_q) \omega(x) \leq u(x) \leq \omega(x).
\]
Moreover, for \(n \geq 2m \) we obtain
\[
\lim_{|x| \to \infty} \frac{u(x)}{h_{m,n}(x)} = 1.
\]
This result extends Theorem 2 of [15] to the polyharmonic case.

To prove a second existence result for the problem (1.3), we fix a positive harmonic function \(h_0 \) in \(D \), which is continuous and bounded in \(D \), we let
\[
\omega_0(x) = h_{m,n}(x) + \left(|x|^2 - 1\right)^{m-1} h_0(x),
\]
and we assume that:

\((A_1) \) \(f \) is a nonnegative Borel measurable function on \(D \times (0, \infty) \), which is continuous with respect to the second variable.

\((A_2) \) There exists a positive function \(q \in K_{m,n}^\infty(D) \) with \(\alpha_q \leq \frac{1}{2} \) such that \(\forall x \in D \) and \(\forall t \geq s \geq \omega_0(x) \) we have
\[
\begin{cases}
f(x,t) - f(x,s) \leq q(x)(t-s) \text{ and} \\
0 \leq f(x,t) \leq tq(x).
\end{cases}
\]
Then we prove the following theorem, which extends Theorem 1.2 of [18] to the polyharmonic case.

Theorem 1.5. Assume \((A_1)-(A_2) \), then there exists a constant \(c_1 > 1 \) such that if \(\bar{c} \geq c_1 \) and \(\varphi \geq c_1 h_0 \) on \(\partial D \), then problem (1.3) has at least one positive continuous solution \(u \) satisfying for each \(x \in D \)
\[
\omega_0(x) \leq u(x) \leq \omega(x),
\]
where \(\omega(x) = \bar{c} h_{m,n}(x) + \left(|x|^2 - 1\right)^{m-1} H_D \varphi(x) \).
Moreover, for \(n \geq 2m \) we have
\[
\lim_{|x| \to \infty} \frac{u(x)}{h_{m,n}(x)} = \bar{c}.
\]
A typical example of nonlinearity satisfying \((A_1)-(A_2) \) :
\[
f(x,t) = p(x)t^\gamma, \text{ for } \gamma \in (0,1] \text{ and some appropriate } p \text{ admissible.}
\]
As usual, we denote by \(B^+(D) \), the set of of nonnegative Borel measurable functions in \(D \).
For $x, y \in \mathbb{R}^n$, we let
\[
[x, y]^2 = |x - y|^2 + \left(|x|^2 - 1 \right) \left(|y|^2 - 1 \right),
\]
and
\[
\theta(x, y) = [x, y]^2 - |x - y|^2 = \left(|x|^2 - 1 \right) \left(|y|^2 - 1 \right).
\]

For $\psi \in \mathcal{B}^+(D)$, we define
\[
V\psi(x) := V_{m,n}\psi(x) = \int_D G_{m,n}^D(x, y)\psi(y)dy, \text{ for } x \in D.
\]
and
\[
\|\psi\| := \sup_{x \in D} \int_D \left(\frac{\rho(y)}{\rho(x)} \right)^m G_{m,n}^D(x, y)\psi(y)dy.
\]

For a continuous function φ on ∂D we denote by $P\varphi$ the function defined in D by
\[
P\varphi(x) = \int_{\partial D} P(x, \xi)\varphi(\xi)\sigma(d\xi),
\]
where $P(x, \xi) := \frac{|x|^2 - 1}{|x - \xi|^n}$ is the Poisson kernel on D and σ is the normalized measure on the unit sphere of \mathbb{R}^n. We remark that $P\varphi$ is a harmonic function in D satisfying $\lim_{x \to \xi \in \partial D} P\varphi(x) = \varphi(\xi)$. We also denote by \mathcal{H} the set of nonnegative harmonic functions h defined in D by
\[
h(x) = \int_{\partial D} P(x, \xi)\nu(d\xi),
\]
where ν is a nonnegative measure on ∂D and $P(x, \xi)$ is the Poisson kernel on D.

Let f and g be two nonnegative functions on a set S. We call $f \preceq g$ on S if and only if there exists a constant $C > 0$ such that
\[
f(x) \leq Cg(x) \text{ for all } x \in S.
\]
We say $f \simeq g$ on S if and only if there exists a constant $C > 0$ such that
\[
\frac{1}{C}g(x) \leq f(x) \leq Cg(x) \text{ for all } x \in S.
\]
The letter C will denote a generic positive constant which may vary from line to line.

2 The linear boundary value problem

First we consider the polyharmonic prototype Dirichlet problem:

\[
\begin{cases}
(-\Delta)^m u = f^*, \text{ in } B, \\
u > 0, \text{ in } B, \\
(-\frac{\partial}{\partial \nu})^j u = 0 \text{ on } \partial B \text{ for } j = 0, \ldots, m - 2, \\
(-\frac{\partial}{\partial \nu})^{m-1} u = \phi \text{ on } \partial B,
\end{cases}
\]
where f^* is a positive function belonging to $C^{0,\gamma}(\mathcal{B})$ and ϕ is a positive function belonging to $C^{m+1,\gamma}(\partial\mathcal{B})$, for $0 < \gamma < 1$.

We recall the following existence results which is stated in [10].

Theorem 2.1. [10] The problem (2.1) admits a unique classical solution u given by

$$u(x) = \int_B G_{m,n}^B(x,y)f^*(y)dy + \int_{\partial B} L_{m,n}^B(x,\xi)\phi(\xi)d\omega(\xi), \quad x \in B$$

(2.2)

where the Poisson kernel $L_{m,n}^B$ is defined by

$$L_{m,n}^B(x,\xi) = \frac{\Gamma\left(\frac{n}{2}\right)}{2^m(m-1)!\pi^{\frac{n}{2}}} \frac{(1-|x|^2)^m}{|x-\xi|^n}, \quad \text{with } x \in B, \ \xi \in \partial B.$$

(2.3)

Proposition 2.2. The unique positive solution u of the problem (2.1), satisfies

$$(1-|x|)^m \leq u(x) \leq (1-|x|)^{m-1}, \quad \text{on } B.$$

(2.4)

Proof: Let f^* be a positive function belonging to $C^{0,\gamma}(\mathcal{B})$ and ϕ be a positive function belonging to $C^{m+1,\gamma}(\partial\mathcal{B})$, for $0 < \gamma < 1$. It is clear that

$$(1-|x|)^m \leq \int_{\partial B} L_{m,n}^B(x,\xi)\phi(\xi)d\omega(\xi) \leq (1-|x|)^{m-1}.$$

(2.5)

Next, we aim at proving that

$$\int_B G_{m,n}^B(x,y)f^*(y)dy \simeq (1-|x|)^m, \quad \text{on } B,$$

(2.6)

where, $G_{m,n}^B$ is the Green function for the m-polyharmonic operator $u \rightarrow (-\Delta)^m u$ with Dirichlet boundary conditions on the unit ball B in \mathbb{R}^n.

To this end, we claim that on B^2 (that is $(x,y) \in B^2$), we have

$$(1-|x|)^m (1-|y|)^m \leq G_{m,n}^B(x,y) \leq \begin{cases} (1-|x|)^m & \text{if } m \geq n, \\ \frac{(1-|x|)^m}{|x-y|^n} & \text{if } m < n. \end{cases}$$

(2.7)

Indeed, from [12, Proposition 2.3], we have

$$G_{m,n}^B(x,y) \simeq \begin{cases} |x-y|^{2m-n} \min\left(1, \frac{(1-|x|)(1-|y|)^m}{|x-y|^{2m}}\right) & \text{for } n > 2m, \\ \log(1+ \frac{(1-|x|)(1-|y|)^m}{|x-y|^{2m}}) & \text{for } n = 2m, \\ \frac{(1-|x|)(1-|y|)^m-\frac{n}{2}}{|x-y|^n} \min\left(1, \frac{(1-|x|)(1-|y|)^m}{|x-y|^{2m}}\right) & \text{for } n < 2m. \end{cases}$$
Which implies that

$$G_{m,n}^B(x,y) \simeq \begin{cases}
\frac{((1 - |x|)(1 - |y|))^m}{|x - y|^m} & \text{for } n > 2m, \\
\frac{((1 - |x|)(1 - |y|))^m}{|y|^n} & \text{for } n < 2m.
\end{cases}$$

So the lower inequality in (2.7) follows from (2.8) and the fact that for each $x, y \in B$, we have $|x - y| \leq |x, y| \leq 1$.

Now, if $m \geq n$, then using the fact that for each $x, y \in B$, we have $(1 - |y|) \leq |x, y|$, we deduce form (2.8) that

$$G_{m,n}^B(x,y) \simeq \frac{((1 - |x|)(1 - |y|))^m}{|x, y|^n} \leq ((1 - |x|))^m.$$

By similar argument we prove the upper inequality in (2.7) for the case $m < n$.

So using (2.7), we obtain

$$(1 - |x|)^m \leq \int_B G_{m,n}^B(x,y)f^*(y)dy \leq (1 - |x|)^m \int_B \frac{f^*(y)}{|x-y|^m}dy
\leq (1 - |x|)^m \int_{B(0,2)} \frac{1}{z^{\max(m-n,0)}}dz
\leq (1 - |x|)^m.$$

This proves (2.6).

Finally, the required inequality (2.4) follows from (2.2), (2.5) and (2.6).

The m-Kelvin transform of a function u, is defined by

$$v(y) = |y|^{2m-n} u\left(\frac{y}{|y|^2}\right), \text{ for } y \in D.$$ (2.9)

By direct computation, $v(y)$ satisfies

$$\Delta^m v(y) = |y|^{-2m-n} (\Delta^m u)\left(\frac{y}{|y|^2}\right).$$ (2.10)

See [19, p. 221]. This fact and Theorem 2.1 and Proposition 2.2 immediately imply the following result.

Theorem 2.3. Let F be a nonnegative function such that $x \rightarrow |x|^{-2m-n} F\left(\frac{y}{|y|^2}\right) \in C^{\alpha,\gamma}(B)$ and ϕ is a positive function belonging to $C^{m+1,\gamma}(\partial B)$, for $0 < \gamma < 1$. Then the problem

$$\begin{cases}
(-\Delta)^m v = F, \text{ in } D, \\
v > 0, \text{ in } D, \\
(-\frac{\partial}{\partial u})^j v = 0 \text{ on } \partial D \text{ for } j = 0, \ldots, m - 2, \\
(-\frac{\partial}{\partial u})^{m-1} v = \phi \text{ on } \partial D, \\
v(y) \simeq |y|^{2m-n} \text{ near } \infty
\end{cases}$$ (2.11)
admits a unique classical solution \(v \) satisfying

\[
|y|^{m-n} (|y|-1)^{m} \leq v(y) \leq |y|^{m-n+1} (|y|-1)^{m-1}, \quad \text{on } D.
\]

(2.12)

3 The Kato class \(K_{m,n}^{\infty} (D) \) and Schrödinger polyharmonic equation

3.1 The Kato class \(K_{m,n}^{\infty} (D) \)

Example 3.1. Given \(s > \frac{n}{2m} > 1 \). Then \(L^{s} (D) \cap L^{1} (D) \subset K_{m,n}^{\infty} (D) \).

Indeed, let \(0 < r < 1 \) and \(q \in L^{s} (D) \cap L^{1} (D) \) with \(s > \frac{n}{2m} > 1 \).

Since for each \(x, y \in D \), we have

\[
G_{m,n}^{D}(x, y) = |x|^{2m-n} |y|^{2m-n} G_{m,n}^{B}(j(x), j(y)),
\]

(3.1)

then by using (2.8), there exists a constant \(C > 0 \), such that for each \(x, y \in D \)

\[
\left(\frac{\rho(y)}{\rho(x)} \right)^{m} G_{m,n}^{D}(x, y) \leq C \frac{1}{|x-y|^{n-2m}}.
\]

(3.2)

This fact and the Hölder inequality imply that

\[
\int_{B(x,r) \cap D} \left(\frac{\rho(y)}{\rho(x)} \right)^{m} G_{m,n}^{D}(x, y) |q(y)| dy \leq C \int_{B(x,r) \cap D} \frac{|q(y)|}{|x-y|^{s-2m}} dy
\]

\[
\leq C \left(\int_{D} |q(y)|^{s} dy \right)^{\frac{1}{s}} \times \left(\int_{B(x,r)} |x-y|^{(2m-n)\frac{s-1}{s}} dy \right)^{\frac{s-1}{s}}
\]

\[
\leq C \left(\int_{0}^{r} t^{(2m-n)\frac{s-1}{s}} + n-1 dt \right)^{\frac{s-1}{s}} \to 0,
\]

as \(r \to 0 \), since \((2m-n) \frac{s-1}{s} + n-1 < -1 \) when \(s > \frac{n}{2m} \).

This shows that \(q \) satisfies (1.7).

We claim that \(q \) satisfies (1.8). Indeed, let \(M > 0 \), then for each \(\varepsilon > 0 \), there exists \(r > 0 \), such that

\[
\int_{|y| \geq M} \left(\frac{\rho(y)}{\rho(x)} \right)^{m} G_{m,n}^{D}(x, y) |q(y)| dy
\]

\[
\leq \frac{\varepsilon}{2} + C \int_{|x-y| \geq r \cap |y| \geq M} \frac{|q(y)|}{|x-y|^{s-2m}} dy
\]

\[
\leq \frac{\varepsilon}{2} + C \int_{|y| \geq M} |q(y)| dy \to 0, \quad \text{as } M \to \infty.
\]

\[\Box \]

Next we collect some properties of the Kato class \(K_{m,n}^{\infty} (D) \), which are useful to establish of our main results. For the proofs we refer to [3].
Proposition 3.2. [3] Let \(q \) be a nonnegative function in \(K_{\infty}^{m,n}(D) \). Then we have

(i) \(\|q\| < \infty \).

(ii) \(x \to q(x) \in L_{\text{loc}}^1(D) \).

(iii) For each bounded function \(h \) in \(\mathfrak{F} \), the function

\[
x \to \int_D \frac{(|y|^2-1)^{m-1}}{(|x|^2-1)^{m-1}} h(y) G_{m,n}^{D}(x,y) |q(y)| \, dy,
\]

is continuous in \(\overline{D} \), vanishes at the boundary \(\partial D \).

(iv) The family of functions \(\left\{ \frac{1}{h_{m,n}()} \int_D G_{m,n}^{D}(\cdot,y) h_{m,n}(y) \zeta(y) \, dy : |\zeta| \leq q \right\} \) is relatively compact in \(C(\overline{D} \cup \{\infty\}) \).

Furthermore,

\[
\lim_{|x| \to \infty} \frac{1}{h_{m,n}(x)} \int_D G_{m,n}^{D}(x,y) h_{m,n}(y) q(y) \, dy = 0, \text{ for } n \geq 2m.
\]

Lemma 3.3. Let \(q \) be a nonnegative function in \(K_{\infty}^{m,n}(D) \). Then we have

(i)

\[
\alpha_q := \sup_{x,y \in D} \int_D \frac{G_{m,n}^{D}(x,z) G_{m,n}^{D}(z,y)}{G_{m,n}^{D}(x,y)} |q(z)| \, dz < \infty. \tag{3.3}
\]

(ii)

\[
V(qG_{m,n}^{D}(\cdot,y))(x) \leq \alpha_q G_{m,n}^{D}(x,y), \text{ for each } x,y \in D. \tag{3.4}
\]

Proof: (i) It follows from the 3-G Theorem (1.5) and proposition 3.2, that \(\alpha_q \leq 2C_{m,n} \|q\| < \infty \).

(ii) Inequality (3.4) follows immediately from the definitions of the potential function \(V \) and \(\alpha_q \).

Proposition 3.4. Let \(q \in K_{\infty}^{m,n}(D) \). Then for each \(x \in D \),

\[
\int_D G_{m,n}^{D}(x,y) h_{m,n}(y) |q(y)| \, dy \leq \alpha_q h_{m,n}(x). \tag{3.5}
\]

Proof: It follows from (3.1), that

\[
h_{m,n}(x) = \lim_{|y| \to \infty} |y|^{n-2m} G_{m,n}^{D}(x,y). \tag{3.6}
\]

In particular

\[
\lim_{|y| \to \infty} G_{m,n}^{D}(z,y) = h_{m,n}(z) h_{m,n}(x)^{-1}. \tag{3.7}
\]

Thus by Fatou’s lemma and (3.7), we deduce that, for \(x \in D \)

\[
\int_D G_{m,n}^{D}(x,y) h_{m,n}(y) |q(y)| \, dy \leq \lim_{|z| \to \infty} \int_D \frac{G_{m,n}^{D}(x,y) G_{m,n}^{D}(y,z)}{G_{m,n}^{D}(x,z)} |q(y)| \, dy \leq \alpha_q.
\]
Proposition 3.5. For all \(q \in K_{m,n}^\infty (D) \) and any \(h \in \mathcal{J} \), we have for each \(x \in D \),
\[
\int_D G_{m,n}^D(x,z) \left(|z|^2 - 1 \right)^{m-1} h(z) |q(z)| \, dz \leq \alpha_q \left(|x|^2 - 1 \right)^{m-1} h(x).
\]

Proof: Let \(h \in \mathcal{J} \). Then there exists a nonnegative measure \(\nu \) on \(\partial D \) such that
\[
h(x) = \int_{\partial D} P(x,\xi) \nu(d\xi).
\]
So we need only to verify (3.8) for \(h(y) = P(y,\xi) \) uniformly in \(\xi \in \partial D \).

From (3.1) and [12, lemma 2.1], we deduce that the Green function \(G_{m,n}^D \) satisfies
\[
G_{m,n}^D(x,y) = k_{m,n} |x-y|^{2m-n} \int_0^{\frac{|x-y|}{|x-y|^2}} \frac{(v^2-1)^{m-1}}{v^{m-1}} \, dv.
\]

Using the transformation \(v^2 = 1 + \frac{\theta(x,y)}{|x-y|^2} (1-t) \) in (3.9), we obtain
\[
G_{m,n}^D(x,y) = \frac{k_{m,n}}{2} \frac{(\theta(x,y))^m}{|x,y|^n} \int_0^1 \frac{(1-t)^{m-1}}{(1-t \frac{\theta(x,y)}{|x,y|^2})^\frac{n}{2}} \, dt.
\]
This implies that for each \(x,z \in D \) and \(\xi \in \partial D \),
\[
\lim_{y \to \xi} \frac{G_{m,n}^D(z,y)}{G_{m,n}^D(x,y)} = \frac{(|z|^2 - 1)^{m-1} P(z,\xi)}{(|x|^2 - 1)^{m-1} P(x,\xi)}.
\]
Thus by Fatou’s lemma and (3.10), we deduce that, for \(x \in D \), and \(\xi \in \partial D \),
\[
\int_D G_{m,n}^D(x,z) \left(|z|^2 - 1 \right)^{m-1} P(z,\xi) |q(z)| \, dz \leq \liminf_{y \to \xi} \int_D \frac{G_{m,n}^D(x,z)G_{m,n}^D(z,y)}{G_{m,n}^D(x,y)} |q(z)| \, dz \leq \alpha_q.
\]

3.2 The Schrödinger polyharmonic equation

For a nonnegative function \(q \) in \(K_{m,n}^\infty (D) \) such that \(\alpha_q \leq \frac{1}{2} \), we put
\[
G_{m,n}(x,y) = \begin{cases} \sum_{k \geq 0} (-1)^k (V(q))^k \left(G_{m,n}^D(\cdot,y) \right)(x) & \text{if } x \neq y \\ +\infty & \text{if } x = y. \end{cases}
\]
Then we have
Lemma 3.6. Let q be a nonnegative function in $K_{m,n}^\infty(D)$ such that $\alpha_q \leq \frac{1}{2}$. Then for each x, y in D, we have
\[
(1 - \alpha_q) G_{m,n}^D(x,y) \leq G_{m,n}(x,y) \leq G_{m,n}^D(x,y).
\]

Proof: Since $\alpha_q \leq \frac{1}{2}$, we deduce from (3.4), that for $x \neq y$
\[
|G_{m,n}(x,y)| \leq \sum_{k \geq 0} (\alpha_q)^k G_{m,n}^D(x,y) = \frac{1}{1 - \alpha_q} G_{m,n}^D(x,y).
\]
On the other hand, from the expression for $G_{m,n}$, we deduce that for $x \neq y$
\[
G_{m,n}(x,y) = G_{m,n}^D(x,y) - V(qG_{m,n}(.,y))(x).
\]
Using these facts and (3.4), we obtain that
\[
G_{m,n}(x,y) \geq G_{m,n}^D(x,y) - \frac{\alpha_q}{1 - \alpha_q} G_{m,n}^D(x,y) = \frac{1 - 2\alpha_q}{1 - \alpha_q} G_{m,n}^D(x,y) \geq 0.
\]
Hence the result follows from (3.12) and (3.4).

In the sequel, for a given nonnegative function $q \in K_{m,n}^\infty(D)$ such that $\alpha_q \leq \frac{1}{2}$, we define the operator V_q on $B^+(D)$ by
\[
V_q \psi(x) = \int_D G_{m,n}(x,y) \psi(y)dy, \quad x \in D.
\]
Then, we have the following Lemma.

Lemma 3.7. Let q be a nonnegative function in $K_{m,n}^\infty(D)$ such that $\alpha_q \leq \frac{1}{2}$ and $\psi \in B^+(D)$. Then $V_q \psi$ satisfies the following resolvent equation:
\[
V \psi = V_q \psi + V_q(qV \psi) = V_q \psi + V(qV_q \psi).
\]

Proof: From the expression for $G_{m,n}$, we deduce for $\psi \in B^+(D)$ such that $V \psi < \infty$,
\[
V_q \psi = \sum_{k \geq 0} (-1)^k (V(q.))^k V \psi.
\]
So we obtain that
\[
V_q(qV \psi) = \sum_{k \geq 0} (-1)^k (V(q.))^k [V(qV \psi)]
= - \sum_{k \geq 1} (-1)^k (V(q.))^k V \psi
= V \psi - V_q \psi.
\]
The second equality is proved by integrating (3.12).
Proposition 3.8. Let q be a nonnegative function in $K_{m,n}^\infty(D)$ such that $\alpha_q \leq \frac{1}{2}$ and let $\psi \in L^1_{\text{loc}}(D)$ be such that $V\psi \in L^1_{\text{loc}}(D)$. Then $V_q\psi$ is a solution of the time-independent Schrödinger polyharmonic equation (1.13).

Proof: Using the resolvent equation (3.13), we have

$$V_q\psi = V\psi - V(qV_q\psi).$$

Applying the operator $(-\Delta)^m$ on both sides of the above equality, we obtain that

$$(-\Delta)^m(V_q\psi) = \psi - qV_q\psi$$

(in the sense of distributions).

This completes the proof. \qed

4 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4.

Let φ be a nonnegative continuous function on ∂D and $H_D\varphi$ the bounded continuous solution of the Dirichlet problem (1.11). We recall that

$$\omega(x) = h_{m,n}(x) + \left(|x|^2 - 1 \right)^{m-1} H_D\varphi.$$

Since g satisfies (H_2), there exists a nonnegative function $q \in K_{m,n}^\infty(D)$ such that $\alpha_q \leq \frac{1}{2}$ and for each $x \in D$, the map $t \rightarrow t(g(x) - g(x,t\omega(x)))$ is continuous and nondecreasing on $[0,1]$. We consider the closed convex set Λ given by

$$\Lambda := \{ v \in B^+(D) : (1 - \alpha_q) \leq v \leq 1 \}.$$

We define the operator T on Λ by

$$Tv(x) := \frac{1}{\omega(x)} [\omega(x) - V_q(q\omega)(x)] + \frac{1}{\omega(x)} V_q[(q - g(.,\omega))\omega v](x), \quad \text{for } x \in D. \quad (4.1)$$

By (H_2), we deduce that

$$0 \leq g(x,t\omega(x)) \leq q(x), \quad \text{for each } x \in D \text{ and } t \in [0,1].$$

Hence,

$$0 \leq g(.,\omega v) \leq q, \quad \text{for all } v \in \Lambda. \quad (4.2)$$

So the operator T is well defined on Λ. On the other hand, using (3.5), (3.8) and (3.3) we have

$$\frac{1}{\omega} V_q(q\omega) \leq \alpha_q < \infty. \quad (4.3)$$

We claim that Λ is invariant under T. Indeed, using (4.1) and (4.3) we have for $v \in \Lambda$,

$$Tv \leq \frac{1}{\omega} [\omega - V_q(q\omega)] + \frac{1}{\omega} V_q(q\omega v) \leq 1.$$
Furthermore, from (4.1), (4.2) and (4.3), we obtain
\[Tv \geq \frac{1}{\omega} [\omega - V_{q}(\omega)] \geq (1 - \alpha_{q}). \]

Next, we will prove that the operator \(T \) is nondecreasing on \(\Lambda \). Indeed, let \(u, v \in \Lambda \) be such that \(u \leq v \). Since the map \(t \to t (q(x) - g(x, t\omega(x))) \) is nondecreasing on \([0, 1]\), for \(x \in D \), we obtain
\[Tv - Tu = \frac{1}{\omega} V_{q} [v (q - g (\omega)) - u (q - g (\omega))] \geq 0. \]

Now, we consider the sequence \((v_{k}) \) defined by \(v_{0} = (1 - \alpha_{q}) \in \Lambda \) and \(v_{k+1} = Tv_{k} \) for \(k \in \mathbb{N} \). Since \(\Lambda \) is invariant under \(T \), then \(v_{1} = Tv_{0} \geq v_{0} \), and so from the monotonicity of \(T \), we deduce that
\[(1 - \alpha_{q}) = v_{0} \leq v_{1} \leq \ldots \leq v_{k} \leq v_{k+1} \leq 1. \]

Furthermore, by \((H_{2}) \) it is clear for each \(x \in D \) that the map \(t \to t g (\omega(x)) \) is continuous on \([0, \infty)\). Which together with the dominated convergence theorem imply that the sequence \((v_{k}) \) converges to a function \(v \in \Lambda \) which is a fixed point of \(T \). We let \(u(x) = \omega(x) v(x) \), for each \(x \in D \).

Then \(u \) satisfies \((1 - \alpha_{q}) \omega \leq u \leq \omega \) and
\[u = (I - V_{q}(q)) \omega + V_{q} ([q - g (\omega, u)] u). \]

That is
\[(I - V_{q}(q)) u = (I - V_{q}(q)) \omega - V_{q} (ug(\omega, u)). \]

Applying the operator \((I + V(q))\) on both sides of the above equality and using (3.13) we deduce that \(u \) satisfies
\[u = \omega - V (ug(\omega, u)). \tag{4.4} \]

Finally, we need to verify that \(u \) is a positive continuous solution for the problem (1.3). Indeed, from (4.2) we obtain
\[ug(\omega, u) \leq \omega q. \tag{4.5} \]

We deduce by Proposition 3.2(ii), that \(ug(\omega, u) \in L_{loc}^{1}(D) \) and by (3.5) and (3.8) that \(V(ug(\omega, u)) \leq V(\omega q) \leq \alpha_{q} \omega \in L_{loc}^{1}(D) \).

Hence we conclude by [7], that \(u \) satisfies (in the sense of distributions) the elliptic differential equation
\[(-\Delta)^{m} u + u g(\omega, u) = 0 \text{ in } D. \]

Finally, since by Proposition 3.2, (3.5) and (3.8) the function \(x \mapsto \frac{V(\omega q)(x)}{\omega(x)} \), is continuous and bounded, then by writing
\[\frac{1}{\omega} V(\omega q) = \frac{1}{\omega} [V(ug(\omega, u)) + V(\omega q - ug(\omega, u))], \]

we deduce that \(u \in C(D) \). Using (4.4), (4.5), (1.12) and again Proposition 3.2, we obtain that
\[\lim_{x \to \zeta \in \partial D} \frac{u(x)}{|x|^{2} - 1} = \varphi(\zeta) \text{ and for } n \geq 2m, \lim_{|x| \to \infty} \frac{u(x)}{h_{m,n}(x)} = 1. \] This ends the proof. \(\square \)
Example 4.1. Let $\gamma, \sigma \in \mathbb{R}_+$ and $\lambda < 2m \leq 2m + \max (0, 2m - n) < \mu$.
Let φ be a nonnegative continuous bounded function on ∂D. Put $\omega (x) = h_{m,n}(x) + \left(|x|^2 - 1 \right)^{m-1} H_D \varphi$.
Assume that p is a nonnegative Borel measurable function on D satisfying
\[p(x) \leq \frac{\nu}{|x|^\mu - \lambda \left(|x| - 1 \right)^\lambda \omega (x) (1 + \omega (x))}, \]
where ν is a sufficiently small positive constant. Then the problem
\[
\begin{cases}
(-\Delta)^m u + p(x)u^\gamma \log (1 + u) = 0, & \text{in } D \text{ (in the sense of distributions)} \\
\lim_{x \to \xi \in \partial D} \frac{u(x)}{|x|^2 - 1}^{m-1} = \varphi (\xi), \\
u(x) \sim \rho_0(x), \text{ near } x = \infty,
\end{cases}
\]
has a continuous positive solution u satisfying
\[u(x) \sim h_{m,n}(x) + \left(|x|^2 - 1 \right)^{m-1} H_D \varphi. \]
Moreover, for $n \geq 2m$ we have
\[\lim_{|x| \to \infty} \frac{u(x)}{h_{m,n}(x)} = 1. \]

Proof of Theorem 1.5.

We recall that h_0 is a fixed positive harmonic function in D, which is continuous and bounded in D. Let φ be a nonnegative nontrivial continuous bounded function on ∂D and let $H_D \varphi$ be the bounded continuous solution of the Dirichlet problem (1.11).
Let $q \in K_{m,n}^\infty (D)$ be given by (A_2) and put $c_1 = \frac{1}{1 - \alpha_q} > 1$. Let $\bar{c} \geq c_1$ and assume that
\[(A_4) \quad \varphi (x) \geq c_1 h_0(x), \quad \forall x \in \partial D. \]
Put $\omega_0(x) = h_{m,n}(x) + \left(|x|^2 - 1 \right)^{m-1} h_0(x)$ and $\omega(x) = \bar{c} h_{m,n}(x) + \left(|x|^2 - 1 \right)^{m-1} H_D \varphi(x)$.
We consider the closed convex set S given by
\[S := \{ u \in B^+ (D) : \omega_0(x) \leq u(x) \leq \omega (x), \quad \text{for all } x \in D \}. \]
Since $H_D \varphi = \varphi$ on ∂D and h_0 is continuous and bounded in D, we obtain by (A_3) that $H_D \varphi \geq c_1 h_0$ on D. So S is a well defined nonempty set in $B^+ (D)$.
By (A_2), we deduce that
\[0 \leq f(\cdot, u) \leq q u, \quad \text{for any } u \in S. \quad (4.6) \]
So we define the operator L on S by
\[Lu := \omega - V_q (q \omega) + V_q [q u - f(\cdot, u)]. \quad (4.7) \]
It is easy to verify that S is invariant under L and that the operator L is nondecreasing on S.
Now, we consider the sequence (u_k) defined by $u_0 = \omega_0 \in S$ and $u_{k+1} = Lu_k$ for $k \in \mathbb{N}$. Then we have
\[\omega_0 \leq u_1 \leq \ldots \leq u_k \leq u_{k+1} \leq \omega. \]
Using (A_2) and similar argument as in the proof of Theorem 1.4, we prove that the sequence (u_k) converges to a function $u \in S$, which satisfies

$$u = \omega - Vf(\cdot, u).$$

Finally, we verify that u is the required solution. □

Example 4.2. Let $\gamma \in (0,1) \ n > 2m$ and $\lambda < 2m < \mu$. Let φ be a nonnegative continuous bounded function on D and h_0 be a positive harmonic function in D, which is bounded and continuous in \overline{D}. Then from [2, p.258], there exists a constant $C > 0$, such that for each $x \in D$,

$$\frac{C (|x| - 1)}{(|x| + 1)^{n-1}} \leq h_0(x).$$

Suppose that p is a nonnegative Borel measurable function on D satisfying

$$p(x) \leq \frac{\nu}{|x|^\mu - \lambda (\gamma - 1)(u-m)} \frac{(|x|^1 - 1)^{\lambda + (\gamma - 1)m}}{\lambda + (\gamma - 1)m}$$

where ν is a sufficiently small positive constant. Then there exists a constant $c_1 > 1$ such that if $c \geq c_1$ and $\varphi \geq c_1 h_0$ on ∂D, the problem

$$\begin{cases}
\begin{align*}
(-\Delta)^m u + p(x) u^\gamma(x) &= 0, &\text{in } D \text{ (in the sense of distributions)} \\
\lim_{x \to \zeta \in \partial D} \frac{u(x)}{|x|^\gamma - 1} &= \varphi(\zeta), \\
\lim_{|x| \to \infty} \frac{u(x)}{h_{m,n}(x)} &= \bar{c}.
\end{align*}
\end{cases}$$

has a continuous positive solution u satisfying for each $x \in D$

$$\omega_0(x) \leq u(x) \leq \omega(x).$$

Acknowledgement 1. The author thanks the referee for a careful reading of the paper and useful suggestions. This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

References

Time-independent Schrödinger polyharmonic equation

Received: 24.06.2012
Accepted: 10.08.2012

King Saud University College of Sciences Mathematics Department
P.O. Box 2455 Riyadh 11451 Kingdom of Saudi Arabia
E-mail: abachar@ksu.edu.sa