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Time-independent Schrodinger polyharmonic equation and
applications
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Abstract

We prove that the time-independent Schrodinger polyharmonic equation (—A)™ u +
g(z)u =¥ (x) >0, z € D, where D is an unbounded domain of R" (n > 2) has a pos-
itive solution provided that the function ¢ belongs to a certain Kato class of functions
K. (D). As applications, the existence and asymptotic behavior of positive solutions of
some polyharmonic problems are established.
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1 Introduction and statement of main results
Considerable attention has been given to the time-independent Schrédinger equation
—Au+q(@z)u=v¢(z), € QCR", (1.1)

where (2 is an open subset of R™ and the potential ¢ belongs to the Kato class Klrfml (Q). See, e.g.,
Aizenman and Simon [1], Chiarenza, Fabes and Garofalo [4], Fabes and Strook [9], Hinz and Kalf
[14], Simader [17], Zhao [20-22] and the references therein. Following different approaches these
authors have studied the existence and regularity of the solutions for the Dirichlet problem. In

[12, Theorem 5.1], the authors considered the following Schrédinger polyharmonic equation:
(A" u+q(@)u=1(x), v €QCR, (1.2)

where 2 is the unit ball in R™ with n > 1 and m > 1. They have proved that if the coefficient
q in (1.2) is continuous in © and sufficiently small, v positive implies that the solution u of
the Dirichlet problem for (1.2) is positive. The later result has been extended by the same
authors in [13], by considering domains which are close to the unit ball and operators close
to (—A)™ . On the other hand in [5, Proposition 2.10], the authors studied the equation (1.2)
in the case m = 2, n > 4 and where Q = B(0,r) is the open ball of center 0 and radius r.
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They have showed that the problem (1.2) subject to either Dirichlet boundary conditions or
Navier boundary conditions admits a nonnegative Green function on B (0,r) provided that the
function ¢ belongs to the Kato class K 17262 (B(0,7)). For more related results we refer to [10].

For the convenience of the reader, we recall the definition of the functional class K] ().

Definition 1.1. [5] Given n > 2m and Q be an open subset of R™.The Kato class K" () is
the set of functions q € L}, () such that for any compact set K C Q the quantity

y(r, ) = sup /B la@)xx () ,

_ Y
TeR™ (z,r) |],‘ - yln 2m
is finite (here, x denotes the characteristic function of K) and

}1_r>r(1)<I>q(r, K)=0.

We emphasize that the proofs presented by these authors are based in the following 3-
G Theorem satisfied by be the Green function G2 for the m-polyharmonic operator u —
(—A)™ u with Dirichlet boundary conditions on the umt ball B in R".

Theorem 1.2. [12, Proposition 4.1] Given n > 2m. There exists a constant Cp, n, > 0 such
that for all z,y,z € B,

( ) mn(z y) 2m—n _ . 2m—n

In the present paper, we shall prove that similar results remain valid for the equation (1.2)
on the unbounded domain D = {x € R™ : |z| > 1} (n > 2), where the function ¢ is assumed to
belongs to the Kato class K}y, (D) (see Definition 1.3 below). As application we will answer
the questions of existence and asymptotic behavior of positive solutions of some polyharmonic
problems of the form:

(=A)™u+ f(.,,u) =0, in D (in the sense of distributions)
u >0,

_u@ (1.3)
z%érélaD (|$|2_1)'m71 90(4)3

u(z) >~ py(x), near r = oo,

where ¢ is a nonnegative continuous function on 9D, m is a positive integer and

1, for n > 2m
po(z) ={ Inlz|, for n = 2m (1.4)
lz|”™ "™, for n < 2m.

The notation u(z) ~ py(z), near x = oo, means that for some constant C' > 0,

%po(x) < u(z) < Cpy(x), when x near co.
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Throughout this paper, we denote by G,?L,n a Green function of (—A)™ on D with Dirichlet
boundary conditions ((%)ju =0,0<j<m-1.
In [3, Theorem 2.6], the authors proved the following 3-G Theorem: there exists a constant

Cn > 0 such that for each z,y,z € D,

GB. (2, )0B(29) PON™ AN o
where

(2) = |Z|‘Z_|1 if n>2m 16)

PEOE R (e - 1) i< 2m. ~

This form of the 3-G Theorem has been exploited to introduce the Kato class KJ¥,, (D) as
follows :

Definition 1.3. A Borel measurable function q in D belongs to the class K7, (D) if q satisfies
the following conditions

. P\ b
}1_{% (aSCIEIID) /DﬁB(:c,r) (M) Gm,n(x’y)m(y)ldy)

. W\ o,
Jim (igg/(lyw) (p($)> G ,y)lq(y)ldy)

where p is given by (1.6) .

I
o

(1.7)

Il
o

(1.8)

This class contains for example any function belonging to L* (D) N L' (D) with s > 5% > 1
(see Example 3.1).

We point out that the class K7, (D) is well adapted to study various existence and multiplicity
results for wide classes of polyharmonic boundary value problems including the case of equations
with blow-up at infinity. In the later case, we develop a more careful analysis with respect to
other recent papers in this field for m =1 (see, e.g. [6, 11, 16]).

Next we shall often refer in this paper to h,, , the m-harmonic function defined in D by

|z (’U2 _ 1)m71
—

i (2) = |2 GE L (j (2),0) = k. / dv, (1.9)

1 Gl

. ; 2, : : - e
where j: DU {o0} = B j (z) = ||~ « is the inversion and k, , = PP r—YTe
Observe that,

Ronon () =~ po(x), near x = oco. (1.10)
We also let Hpp be the bounded continuous solution of the Dirichlet problem

Au =0, in D

i u(@) _
|a:lllgloo hl,n(x) - 07
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where ¢ is a nonnegative nontrivial continuous on 0D and hy , is the harmonic function defined
by (1.9).
Note that from [8, p.427], the function Hpy belongs to C' (D U {oo}) and satisfies

lim |z[" 2 Hpep(z) =c¢> 0. (1.12)

Our plan is organized as follows. In section 2, we will first study the existence and uniqueness
of positive classical solution for the linear problem

( ) u=F, inD

u >0,

(- a%)Ju:0 on 9D for j =0,...,m — 2,
(-2 "w=¢ ondD,

subject to an asymptotic behavior at co, where the functions F and ¢ are required to satisfy
some convenient hypotheses.

In section 3, we collect some properties of functions belonging to K, (D). In particular,
we derive from the 3-G Theorem (1.5) that for each ¢ € K37, (D), we have

Gon(2,2)GP 1 (2,y)
Qg = sup / : : q(2)| dz < 0.
! z,yeD JD Grg,n(xvy) |( |

Next, we exploit again the inequality (1.5) to prove that on D the inverse of polyharmonic
operators that are perturbed by a zero-order term, are positivity preserving. That is, if the
coefficient ¢ € K77, (D) with a4 < % and 1 is positive, then the equation

(=A)"u+q(x)u=1(z), x€D (1.13)

has a positive solution.

In section 4, we will establish two existence results for the problem (1.3), where the function
f is closed to linear.
More precisely, first we consider the nounlinearity f (x,t) = tg (x,t), we let

w(@) = (@) + (12 ~1)" Hpp(e), (1.14)

and we assume that

(H1) g is a nonnegative measurable function on D X [0, 00).
(Hyz) For each A > 0, there exists a positive function ¢y = ¢ € K7, (D) with o < % such that
for each x € D, the map t — ¢ (¢ () — g (z,tw (z))) is continuous and nondecreasing on [0, \] .

Using the pointwise estimates for the Green function and a perturbation arguments, we prove
the following.
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Theorem 1.4. Under hypotheses (Hy)-(Hz), the problem

(=A)" u+ug(.,u) =0, in D (in the sense of distributions)
u >0,

u(z 1.15
i e =90, 19
u(x) ~ po(x), near x = o0,

has at least one positive continuous solution u satisfying
I-agw(z)<u(zr) <w(z).

Moreover, for n > 2m we obtain lim h“i =1.

This result extends Theorem 2 of [15] to the polyharmonic case.
To prove a second existence result for the problem (1.3), we fix a positive harmonic function
ho in D, which is continuous and bounded in D, we let

() = hnn() + (o2 = 1) o),

and we assume that:
(A1) f is a nonnegative Borel measurable function on D X (0,00), which is continuous with
respect to the second variable.

Ay) There exists a positive function ¢ € K° (D) with o, < i such that V2 € D and
m,n q 2
Vt > s > wo(xz) we have

flz,t) — f(x,s) < q(z)(t —s) and
0 < f(z,t) < tgq(x).

Then we prove the following theorem, which extends Theorem 1.2 of [18] to the polyharmonic
case.

Theorem 1.5. Assume (A1)-(Az), then there exists a constant ¢c; > 1 such that if ¢ > ¢1 and
@ > c1hg on 0D, then problem (1.3) has at least one positive continuous solution u satisfying
for each x € D

wo(z) < u(z) < w(z),

m—1
where w(x) = Chp n(x) + <|ac|2 - 1) Hpp(x).
Moreover, for n > 2m we have

lim Lac) =c.
|x] =00 hm,n (ZE)
A typical example of nonlinearity satisfying (A4;)-(4z) :

f(z,t) = p(x)t, for v € (0,1] and some appropriate p admissible.
As usual, we denote by BT (D), the set of of nonnegative Borel measurable functions in D.
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For z,y € R", we let

@y = o =y + (2" = 1) (Iw* - 1),

and
0 (@,y) = oy — o=yl = (lof = 1) (W = 1).
For ¢ € BT (D) , we define

Vip(x) := Vipnt¥(z) = /D G%n(m,y)@/}(y)dy, for x € D.

and

1= su M mGP (x
ol := sup | (ZE)"GE (w9}t

For a continuous function ¢ on 9D we denote by P the function defined in D by

Po(z)= [ P(z,§p(§)o(dE),

oD

2
r[*—1

where P(x,€) := || | & is the Poisson kernel on D and ¢ is the normalized measure on the
r—

unit sphere of R".

We remark that Py is a harmonic function in D satisfying 1ém8DPcp(a:) = ¢(§).
r—E£€

We also denote by J the set of nonnegative harmonic functions h defined in D by

hz)= [ P(z,&v(df),

oD

where v is a nonnegative measure on 9D and P(z,§) is the Poisson kernel on D.
Let f and g be two nonnegative functions on a set S.
We call f < g on S if and only if there exists a constant C' > 0 such that

f(x) <Cg(z) forallzes.

We say f ~ g on S if and only if there exists a constant C' > 0 such that

%g () < f(z)<Cg(x) forallzeS.

The letter C' will denote a generic positive constant which may vary from line to line.

2 The linear boundary value problem

First we consider the polyharmonic prototype Dirichlet problem:

(_A)mu = f*a in B7

u >0, in B,
(_%)Ju:O on B for 7 =0,....m — 2, (2.1)

(—a%)m71 u=¢ on dB,
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where f* is a positive function belonging to C%7(B) and ¢ is a positive function belonging to
C™H17(9B), for 0 < v < 1.
We recall the following existence results which is stated in [10].

Theorem 2.1. [10] The problem (2.1) admits a unique classical solution u given by

/ GE () f* () dy + [)BLﬁ,n<x,5>¢<s>dw<5>, reB (2.2)

where the Poisson kernel Lfl 08 defined by

PPN X O N G0 B
Ly o (2,8) = N T with x € B, £ € 0B. (2.3)

Proposition 2.2. The unique positive solution u of the problem (2.1), satisfies
(1—|z)™ <u(z) <= (1—|z)™", onB. (2.4)

Proof: Let f* be a positive function belonging to C%7(B) and ¢ be a positive function be-
longing to C™ 17 (9B), for 0 < v < 1. It is clear that

(1 )™ < /a LB @ 0(€) (6 = (1= Ja)" (2.5)

Next, we aim at proving that
/ Gﬁvn(x,y)f*(y)dy ~ (1—|z))™, on B, (2.6)
B

where, G5 ,, is the Green function for the m-polyharmonic operator u — (—A)™ u with Dirich-
let boundary conditions on the unit ball B in R™.
To this end, we claim that on B? (that is (z,y) € B?), we have

(1—1z))™ ifm>n,

(L= =)™ (1= ly)™ = G n(z,y) = { Qe i< (2.7)
z—y| ™
Indeed, from [12, Proposition 2.3|, we have

. 1—z)) (1= [y))™

|z —y |2m min | 1, ( 1) ( QJLyl)) for n > 2m,
|z —y]|
1— [2) (1 = [y)™

G o, y) = Log(1 + (@ = Ja]) 277\7y|)) ) for n = 2m,

(1~ Jal) (1 - y))™ % min (1 (A =leh @ - 'y”’) for n < 2m.

lz—y|"
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Which implies that
(O —Jz)) (A = fg)™

—2m m for n > 2m,
‘ r—=Yy |n [$,y] - 5
GB n(@,y) =~ (@ - |?) (]12; lv1) Log(1 + l[x’y] ‘2) for n = 2m, (2.8)
x,y r—Yy
(1 [+l} (1~ )" oy
[2,y]

So the lower inequality in (2.7) follows from (2.8) and the fact that for each z,y € B, we have
Now, if m > n, then using the fact that for each x,y € B, we have (1 — |y|) < [z,y], we deduce
form (2.8) that

(=) (1= Jy)™

o 2 (= )

By similar argument we prove the upper inequality in (2.7) for the case m < n.
So using (2.7), we obtain

CMERNES

(1 —Jz)™ /Gm W@y f*(y)dy = (1 —|z))" ‘x_ylﬂ%dy
=(1- C'3|)m/B Wdz
B2
=1z,

This proves (2.6) .
Finally, the required inequality (2.4) follows from (2.2), (2.5) and (2.6). d

The m-Kelvin transform of a function u, is defined by

v(y) = IyIQ’”_”U(| 7) fory € D. (2.9)
By direct computation, v (y) satisfies
m —2m—n m Yy
A" (y) = [y " (A ) (W) (2.10)

See [19, p. 221]. This fact and Theorem 2.1 and Proposition 2.2 immediately imply the following
result.

Theorem 2.3. Let [ be a nonnegative function such that & — |z| ™" F (\03\2) € CY7(B)
and ¢ is a positive function belonging to C™ 17 (OB), for 0 <y < 1. Then the problem

(-=A)"v=F, in D,

v > 0, lin D,
(—%)Jv_l:o on 0D forj=0,..m—2, (2.11)
( ady)m v—gb on 0D,

v(y) ~ |y\ " near co
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admits a unique classical solution v satisfying

™" (yl = D)™ = oly) Z ™ (ly - D™, on D. (2.12)

3 The Kato class K2°, (D) and Schrédinger polyharmonic equation

m,n
3.1 The Kato class K7, (D)

Example 3.1. Given s > 5%~ > 1. Then L* (D)N L' (D) C K;°,, (D).
Indeed, let 0 <r <1 and g € L* (D) N L' (D) with s > 3= > 1.
Since for each x,y € D, we have

G (@, y) = e "y G LG ()5 (9), 3.1)

then by using (2.8), there exists a constant C' > 0, such that for each x,y € D

P(y))m D 1
Gn(z,y) <C TR (3.2)
(p(x) ' |z — y| 2
This fact and the Hélder inequality imply that
[ () Ry <o g,
B(z,r)ND p ’ B(a,r =y

)nD )
gO(/M@W@)
D s—1
x </ o — | dy)
B(z,r)

<o (/Tt(gm—n)sjl+n—1dt) s . 0,
0

asr — 0, since (2m —n) >y +n—1> —1 when s > 5.

This shows that q satisfies (1.7).
We claim that q satisfies (1.8). Indeed, let M > 0, then for each € > 0, there exists r > 0, such
that

2" G (@ w)la(w)ldy

o)™ GR (w)law)ldy

(ly|= M) (
<t+

(Jz—yl=r)N(ly|= M) (
<tiC _lawl__ g,

‘w_yln—Zm

IN

le—y|>r)N(ly|=M)
5+C lg(y)|dy — 0, as M — oco.
(lyl=M)

O

Next we collect some properties of the Kato class K5, (D), which are useful to establish
of our main results. For the proofs we refer to [3].
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Proposition 3.2. [3] Let q be a nonnegative function in K35, (D). Then we have
(i) llall < oo.

( )$_>Q( )GLloc(‘D)

(#i1) For each bounded function h in J, the function

T — / :y:z ) ch(y)GE (x,y) lq(y)| dy, is continuous in D, vanishes at the boundary
(w) The family of functions {hml()/ GE () hmn (y) C(y)dy = || < q} is relatively com-
,ni. D ’

pact in C(D U {oo}).
Furthermore,

lim / Gm @Y hmn (Y) ¢(y)dy =0, forn > 2m.

Lemma 3.3. Let q be a nonnegative function in K33, (D). Then we have

(4)

GP o(2,2)GP L (2,9)
Qg = su mn mnAT z2)| dz < oo. 3.3
N e e G (33)
(i)
V(qG%n(., y))(x) < aqG%n(a:,y), for each x,y € D. (3.4)

Proof: (i) It follows from the 3-G Theorem (1.5) and proposition 3.2, that oy < 2C, , ||g]| <
00.

(49) Inequality (3.4) follows immediately from the definitions of the potential function V' and
Qq- 0

Proposition 3.4. Let g € K7, (D). Then for each x € D,

/D GP (9 (4) 14()| dy < tghm () (3.5)

Proof: It follows from (3.1), that

hpn (z) = lim |y/"~ 2m Gﬁ’n(a:,y). (3.6)

|ly|—o0

In particular
im .
mHmeAxy) D (@)

Thus by Fatou’s lemma and (3.7), we deduce that, forz € D
z,9)G,, (Y2
[ GE w2l latw) dy < timint [ Sx ORS00y < o,
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Proposition 3.5. For all ¢ € K°

n,n

(D) and any h € J, we have for each x € D,

m—1

m—1
[ 6Bt (1= 1) o) la) s < ag (jof 1) hia).
D
Proof: Let h € J. Then there exists a nonnegative measure v on 9D such that
o) = [ Plau(ae)
oD
So we need only to verify(3.8) for h(y) = P(y,£) uniformly in £ € 9D.

From (3.1) and [12, lemma 2.1], we deduce that the Green function GJ , satisfies

[z,y]

» Tz =yl 2 _ 1 m—1
le?z w(,y) = k| T~y |2m n/ ' %dv'
El 1 ,Unf

Using the transformation v? = 1+ 2&%) (1 —¢) in (3.9), we obtain

lz—y[?
GD (.’,E y) _ km,n (e(l‘,y))m /1 (1 — t)mil dt.
m,n\*" 92 [.T, y]n 0 (1 _y 0(z,y)>7
[z,y]?

This implies that for each z,z € D and £ € 0D,

A 8 O (Vi ( 1)

vt GO (xy) (22 = 1)t P(a,§)

Thus by Fatou’s lemma and (3.10), we deduce that, for z € D, and £ € 9D,

b (o (=1 P )
| @Rt g )iz

P (5, 2)GE., (2,y)

< liminf man mr 2)|dz < ay.

<t [ S s (s < oy
3.2 The Schroédinger polyharmonic equation
For a nonnegative function ¢ in K77, (D) such that a, < %, we put

k k .
gm,n (3379) = k=0
+ooif z =y.

Then we have

173

(3.8)

(3.10)
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Lemma 3.6. Let g be a nonnegative function in K5, (D) such that oy < % Then for each
xz,y in D, we have

(1= aq) G (2.9) < G (2,9) < Gy (2,9). (3.11)

1, we deduce from (3.4), that for = # y

o (2.9) < D (0g)" G (,9) = 1

k>0

Proof: Since a4 <

1

— a4

Gh o (x,y).

On the other hand, from the expression for G,, ,,, we deduce that for x # y

G (2,y) = G (2,9) =V (@G (4 9) (@) - (3.12)
Using these facts and (3.4), we obtain that

« 1 -2«
’ l—a, ™ 1—a ’
Hence the result follows from (3.12) and (3.4). 0

In the sequel, for a given nonnegative function ¢ € K7, (D) such that a, < %, we define
the operator V, on B (D) by

Vot () = /D Goom (2,9) By)dy, @ € D.

Then, we have the following Lemma.

Lemma 3.7. Let q be a nonnegative function in K3, (D) such that ag < % and ¢ € BT (D).
Then V1 satisfies the following resolvent equation:

Vip = Voo + Vo (qVh) = Vb + V (qVg) - (3.13)
Proof: From the expression for G, ,, we deduce for ¢ € B (D) such that Vi) < oo,
Vi = (-1 V(@) V.
k>0

So we obtain that

Vo(@Vy) = > (=D (V(g)" [V (V)]

k>0

= D> (=D (V(e) vy

k>1
= Vﬂ} - Vq7/’~

The second equality is proved by integrating (3.12). ]
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Proposition 3.8. Let ¢ be a nonnegative function in K32, (D) such that oy < % and let

m,n

Y € L}, (D) be such that Vi € L}, (D). Then Vg is a solution of the time-independent
Schrddinger polyharmonic equation (1.13).
Proof: Using the resolvent equation (3.13), we have
Ve =V =V (gVgr)) .
Applying the operator (—A)™ on both sides of the above equality, we obtain that
(=)™ (Vyb) = ¢ — ¢V, (in the sense of distributions).

This completes the proof. 0

4 Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4.

Let ¢ be a nonnegative continuous function on 0D and Hpp the bounded continuous solu-
tion of the Dirichlet problem (1.11).We recall that

m—1
w(x) = hmn(z) + (\m|2 - 1) Hpo.
Since g satisfies (Hz) , there exists a nonnegative function ¢ € K5, (D) such that a, < 3 and
for each « € D, the map ¢t — t (¢ () — g (x, tw (z))) is continuous and nondecreasing on [0, 1].
We consider the closed convex set A given by

A={veB"(D):(1-ay) <v<1}.

We define the operator T on A by

Tv@%=w@0W@ﬂ—VA%0@H+5%5%Kq—g@wWMWMw,brxeD- (4.1)

By (H3), we deduce that
0 < g(z,tw(x)) < g(x), foreachz € D andt e [0,1].

Hence,
0<g(.,wv) <gq, forallveA. (4.2)

So the operator T is well defined on A.
On the other hand, using (3.5), (3.8) and (3.3) we have

1
qu (qw) < g < 0. (4.3)
We claim that A is invariant under 7. Indeed, using (4.1) and (4.3) we have for v € A,

1 1
T < —|w— -V, <1
v < — [ = Vy ()] + — Vi (qwo) <
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Furthermore, from (4.1), (4.2) and (4.3), we obtain
1
To> Loy ()] 2 (1 - a).

Next, we will prove that the operator T' is nondecreasing on A. Indeed, let u,v € A be such
that v < v. Since the map ¢ — ¢ (¢ (z) — g (x,tw (x))) is nondecreasing on [0,1], for x € D, we
obtain

Tv—Tu= %Vq wlv(g—g(,wv))—u(g—g(,wu))]] > 0.

Now, we consider the sequence (vy) defined by vg = (1 —ay) € A and vgy1 = Ty, for k € N.
Since A is invariant under T , then v; = Tvy > vg, and so from the monotonicity of T, we
deduce that

I—ag)=v9<v <..<wvp<vpy1 <L

Furthermore, by (Hs) it is clear for each x € D that the map t — tg (., tw (z)) is continuous on
[0, 00). Which together with the dominated convergence theorem imply that the sequence (vy)
converges to a function v € A which is a fixed point of T. We let u (z) = w (x) v (z), for each
zeD.

Then u satisfies (1 — ay)w < u < w and

u=(I—-Vy(g)w+Vellg—g(,u))ul.
That is
(I =Velg))u=(1-Ve(q.))w—Vg(ug(,u)).

Applying the operator (I +V (g.)) on both sides of the above equality and using (3.13) we
deduce that u satisfies
u=w-—V (ug(.,u)). (4.4)

Finally, we need to verify that u is a positive continuous solution for the problem (1.3). Indeed,
from (4.2) we obtain

ug (., u) < wg. (4.5)
We deduce by Proposition 3.2(ii), that ug (.,u) € L}, (D) and by (3.5) and (3.8) that V (ug (.,u)) <
V(wq) < Qqw € Llloc (D> :
Hence we conclude by [7], that u satisfies (in the sense of distributions) the elliptic differential

equation
(—A)"u+ug(.,u) =0 in D.

Finally, since by Proposition 3.2, (3.5) and (3.8) the function = * , is continuous and

bounded, then by writing
1 1
SV (wa) = =V (ug () + V(wq — ug ()]

we deduce that v € C(D). Using (4.4), (4.5), (1.12) and again Proposition 3.2, we obtain that

Ll ﬁ = ¢(¢) and for n. > 2m, lim L5 = 1. This ends the proof. [J
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Example 4.1. Let v,0 € Ry and A < 2m < 2m + max (0,2m — n) < p.
m—1
Let ¢ be a nonnegative continuous bounded function on 0D. Putw (z) = hm,n(x)+(|z|2 - 1) Hpep.

Assume that p is a nonnegative Borel measurable function on D satisfying

z) < 7
p(z) < 2 (2] — 1w (2) (1 + w° (@)

v

where v is a sufficiently small positive constant. Then the problem
(—A)™ u+ p(x)uYLog(1 +u°) =0, in D (in the sense of distributions)

u(z)
L o AO2

u(z) ~ po(x), near x = oo,

has a continuous positive solution u satisfying

m—1

u(x) 2 by () + (|:E|2 - 1) Hpo.

Moreover, for n > 2m we have
. u(x)
lim

—— =1

Proof of Theorem 1.5.

We recall that hg is a fixed positive harmonic function in D, which is continuous and bounded
in D. Let ¢ be a nonnegative nontrivial continuous bounded function on 9D and let Hpp be
the bounded continuous solution of the Dirichlet problem (1.11).

Let g € K57, (D) be given by (Ay) and put ¢; = ﬁ > 1. Let ¢ > ¢; and assume that

(A;) ¢ (x) > crho(x), Vo € dD.

m—1 m—1
Put wo(z) = humn(z) + (|x|2 - 1) ho(z) and w(z) = Shymn(z) + (\xﬁ - 1) Hpp(z).
We consider the closed convex set S given by

S:={ueB"(D):wy(r) <u(r) <w(z), forallz € D}.

Since Hpp = ¢ on dD and hg is continuous and bounded in D, we obtain by (As) that
Hpy > c1hg on D. So S is a well defined nonempty set in B (D).
By (A3), we deduce that

0< f(.,u) <qu, foranyuesS. (4.6)

So we define the operator L on S by
Lu = w -V, (qw) + Vylgu — f (., u)]. (4.7)

It is easy to verify that S is invariant under L and that the operator L is nondecreasing on S.
Now, we consider the sequence (uy) defined by ug = wo € S and ugy1 = Luy for k € N. Then
we have

wo <up <. Sup S Uy Sw.
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Using (A2) and similar argument as in the proof of Theorem 1.4, we prove that the sequence
(u) converges to a function v € S, which satisfies

u=w-—-Vf(,u). (4.8)
Finally, we verify that u is the required solution.[]

Example 4.2. Let v € (0,1] n > 2m and A\ < 2m < u. Let ¢ be a nonnegative continuous
bounded function on D and ho be a positive harmonic function in D, which is bounded and
continuous in D. Then from [2, p.258], there exists a constant C > 0, such that for each

r€eD,
(e - 1)
C————— < hy(x).
(al+ DT =W

Suppose that p is a nonnegative Borel measurable function on D satisfying

p(x) <

- ‘xlu*A*(Wfl)(ﬂ*m) (|lz| — 1)>\+(7*1)m’

v

where v is a sufficiently small positive constant. Then there exists a constant ¢c; > 1 such that
if ¢ > ¢y and p > c1hg on 0D, the problem

(=A)" u+ p(z)uY(x) =0, in D (in the sense of distributions)
li u(z) _
.L_>1<rélaD (\z|271)m_1 @(C)?
lim &)=
\z|—>oo hm,n(ﬂi) :

has a continuous positive solution u satisfying for each x € D

wo(z) <wu(z) <w(z).
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