Existence of positive solutions for $(p(x), q(x))$ Laplacian system

by
Samira Ala ${ }^{1}$, Ghasem Alizadeh Afrouzi ${ }^{2}$ and Asadollah Niknam ${ }^{3}$

Abstract

We consider the system of differential equations $$
(P) \begin{cases}-\Delta_{p(x)} u=\lambda_{1}^{p(x)} g(x) a(u)+\mu_{1}^{p(x)} c(x) f(v) & \text { in } \Omega, \\ -\Delta_{q(x)} v=\lambda_{2}^{q(x)} g(x) b(v)+\mu_{2}^{q(x)} c(x) h(u) & \text { in } \Omega, \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$ where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with C^{2} boundary $\partial \Omega, 1<p(x), q(x) \in C^{1}(\bar{\Omega})$ are functions, the operator $\Delta_{p(x)} u=\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is called $p(x)$-Laplacian λ_{1}, λ_{2}, μ_{1} and μ_{2} are positive parameters and g, c are continuous functions and f, h, a, b are C^{1} nondecreasing functions satisfying $f(0), h(0), a(0), b(0) \geq 0$. We discuss the existence of positive solution via sub-super solutions.

Key Words: Positive solutions; $p(x)$-Laplacian Problems; sub-supersolution. 2010 Mathematics Subject Classification: Primary 34B15, Secondary 35B38, 58E05.

1 Introduction

The study of differential equatons and variational problems with variable exponent has been a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological fluids, etc.(see $[3,10,13])$. Many results have been obtained on this kind of problems, for example $[1,3,4,5,6,9]$. In [2], the authors discussed the existence of at least one positive solution of the system

$$
\text { (I) }\left\{\begin{array}{cc}
-\Delta_{p(x)} u=\lambda^{p(x)} F(x, u, v) & \text { in } \Omega \\
-\Delta_{p(x)} v=\lambda^{p(x)} G(x, u, v) & \text { in } \Omega \\
u=v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $p(x) \in C^{1}(\bar{\Omega})$ is a function, $F(x, u, v)=[g(x) a(u)+f(v)], G(x, u, v)=[g(x) b(v)+h(u)], \lambda$ is a positive parameter and $\Omega \subset R^{N}$ is a bounded domain. But in the present paper we extend the problem (I) to problem (P). In this paper, we mainly consider the existence of positive weak
solutions for the problem (P) and we have proved the existence of at least one positive solution for the problem (P).

To study $p(x)$-Laplacian problems, we need some theory on the spaces $L^{p(x)}(\Omega)$, $W^{1, p(x)}(\Omega)$ and properties of $p(x)$-Laplacian which we will use later (see $[5,11]$). If $\Omega \subset \mathbb{R}^{N}$ is an open domain, we write

$$
\begin{gathered}
C_{+}(\Omega)=\{h: h \in C(\Omega), h(x)>1 \text { for } x \in \Omega\} \\
h^{+}=\sup _{x \in \Omega} h(x), h^{-}=\inf _{x \in \Omega} h(x), \quad \text { for any } h \in C(\bar{\Omega}) .
\end{gathered}
$$

Throughout the paper, we will assume that:
$\left(H_{1}\right) \Omega \subset \mathbb{R}^{N}$ is an open bounded domain with C^{2} boundary $\partial \Omega$.
$\left(H_{2}\right) p(x), q(x) \in C^{1}(\bar{\Omega})$ are functions and $1<p^{-} \leq p^{+}$and $1<q^{-} \leq q^{+}$.
$\left(H_{3}\right) a, b, f, h:[0, \infty] \rightarrow R$ are C^{1}, nondecreasing functions such that $f(0), h(0), a(0), b(0) \geq 0$ and $\lim _{u \rightarrow+\infty} a(u)=\lim _{u \rightarrow+\infty} b(u)=\lim _{u \rightarrow+\infty} f(u)=\lim _{u \rightarrow+\infty} h(u)=+\infty$.
$\left(H_{4}\right) \lim _{u \rightarrow+\infty} \frac{f\left[M(h(u))^{\frac{1}{\left(p^{-}-1\right)}}\right]}{u^{p^{-}-1}}=0, \quad \forall M>0$.
$\left(H_{5}\right) g, c: \bar{\Omega} \rightarrow[1, \infty]$ are continuous functions such that
$A_{1}=\min _{x \in \bar{\Omega}} g(x), \quad A_{2}=\max _{x \in \bar{\Omega}} g(x), \quad B_{1}=\min _{x \in \bar{\Omega}} c(x), \quad B_{2}=\max _{x \in \bar{\Omega}} c(x)$.
$\left(H_{6}\right) \lim _{u \rightarrow+\infty} \frac{a(u)}{u^{p^{-}-1}}=0, \quad \lim _{u \rightarrow+\infty} \frac{b(u)}{u^{p^{-}-1}}=0$.
Definition 1. If $(u, v) \in\left(W_{0}^{1, p(x)}(\Omega), W_{0}^{1, q(x)}(\Omega)\right),(u, v)$ is called a weak solution of (P) if it satisfies
$\begin{cases}\int_{\Omega}|\nabla u|^{p(x)-2} \nabla u \cdot \nabla \varphi d x=\int_{\Omega} \lambda_{1}^{p(x)} g(x) a(u)+\mu_{1}^{p(x)} c(x) f(v) \varphi d x, & \forall \varphi \in W_{0}^{1, p(x)}(\Omega), \\ \int_{\Omega}|\nabla v|^{q(x)-2} \nabla v \cdot \nabla \psi d x=\int_{\Omega} \lambda_{2}^{q(x)} g(x) b(v)+\mu_{2}^{q(x)} c(x) h(u) \psi d x, & \forall \psi \in W_{0}^{1, q(x)}(\Omega) .\end{cases}$
Lemma 1. (Comparison Principle).
Let $u, v \in W^{1, p(x)}(\Omega)$ satisfying $A u-A v \geq 0$ in $\left(W_{0}^{1, p(x)}(\Omega)\right)^{*}, \varphi(x)=\min \{u(x)-v(x), 0\}$. If $\varphi(x) \in W_{0}^{1, p(x)}(\Omega)($ i.e. $u \geq v$ on $\partial \Omega)$, then $u \geq v$ a.e. in Ω.

Here and hereafter, we will use the notation $d(x, \partial \Omega)$ to denote the distance of $x \in \Omega$ to the boundary of Ω.
Denote $d(x)=d(x, \partial \Omega)$ and $\partial \Omega_{\epsilon}=\{x \in \Omega \mid d(x, \partial \Omega)<\epsilon\}$. Since $\partial \Omega$ is C^{2} regularly, then there exists a constant $\delta \in(0,1)$ such that $d(x) \in C^{2}\left(\overline{\partial \Omega_{3 \delta}}\right)$, and $|\nabla d(x)| \equiv 1$.
Denote

$$
v_{1}(x)= \begin{cases}\gamma d(x), & d(x)<\delta, \\ \gamma \delta+\int_{\delta}^{d(x)} \gamma\left(\frac{2 \delta-t}{\delta}\right)^{\frac{2}{p^{-}-1}}\left(\lambda_{1}^{p^{+}} A_{1}+\mu_{1}^{p^{+}} B_{1}\right)^{\frac{2}{p^{-}-1}} d t, & \delta \leq d(x)<2 \delta, \\ \gamma \delta+\int_{\delta}^{2 \delta} \gamma\left(\frac{2 \delta-t}{\delta}\right)^{\frac{2}{p^{-}-1}}\left(\lambda_{1}^{p^{+}} A_{1}+\mu_{1}^{p^{+}} B_{1}\right)^{\frac{2}{p^{-}-1}} d t, & 2 \delta \leq d(x)\end{cases}
$$

Obviously, $0 \leq v_{1}(x) \in C^{1}(\bar{\Omega})$. Considering

$$
\begin{equation*}
-\Delta_{p(x)} w(x)=\eta \quad \text { in } \Omega, \quad w=0 \quad \text { on } \partial \Omega \tag{1}
\end{equation*}
$$

we have the following result
Lemma 2. (see [7]). If positive parameter η is large enough and w is the unique solution of (1), then we have
(i) For any $\theta \in(0,1)$ there exists a positive constant C_{1} such that

$$
C_{1} \eta^{\frac{1}{p^{+}-1+\theta}} \leq \max _{x \in \bar{\Omega}} w(x)
$$

(ii) There exists a positive constant C_{2} such that

$$
\max _{x \in \bar{\Omega}} w(x) \leq C_{2} \eta^{\frac{1}{p^{-}-1}}
$$

2 Existence results

In the following, when there be no misunderstanding, we always use C_{i} to denote positive constants.

Theorem 1. On the conditions of $\left(H_{1}\right)-\left(H_{6}\right)$, then (P) has a positive solution.
Proof: We shall establish Theorem 1 by constructing a positive subsolution $\left(\Phi_{1}, \Phi_{2}\right)$ and supersolution $\left(z_{1}, z_{2}\right)$ of (P), such that $\Phi_{1} \leq z_{1}$ and $\Phi_{2} \leq z_{2}$.
According to the sub-supersolution method for $p(x)$-Laplacian equations (see [8]), then (P) has a positive solution.
Step 1. We construct a subsolution of (P).
Let $\sigma \in(0, \delta)$ is small enough. Denote

$$
\begin{aligned}
& \phi_{1}(x)= \begin{cases}e^{k d(x)}-1, \quad d(x)<\sigma, \\
e^{k \sigma}-1+\int_{\sigma}^{d(x)} k e^{k \sigma}\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{p^{--1}}} d t, & \sigma \leq d(x)<2 \delta, \\
e^{k \sigma}-1+\int_{\sigma}^{2 \delta} k e^{k \sigma}\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{p^{--1}}} d t, & 2 \delta \leq d(x) .\end{cases} \\
& \phi_{2}(x)= \begin{cases}e^{k d(x)}-1, \quad d(x)<\sigma, \\
e^{k \sigma}-1+\int_{\sigma}^{d(x)} k e^{k \sigma}\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{q^{--1}}} d t, & \sigma \leq d(x)<2 \delta, \\
e^{k \sigma}-1+\int_{\sigma}^{2 \delta} k e^{k \sigma}\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{q^{--1}}} d t, & 2 \delta \leq d(x) .\end{cases}
\end{aligned}
$$

It is easy to see that $\phi_{1}, \phi_{2} \in C^{1}(\bar{\Omega})$. Denote

$$
\alpha=\min \left\{\frac{\inf p(x)-1}{4(\sup |\nabla p(x)|+1)}, \frac{\inf q(x)-1}{4(\sup |\nabla q(x)|+1)}, 1\right\} .
$$

By computation

$$
-\Delta_{p(x)} \phi_{1}=\left\{\begin{array}{l}
-k\left(k e^{k d(x)}\right)^{p(x)-1}\left[(p(x)-1)+\left(d(x)+\frac{\ln k}{k}\right) \nabla p \nabla d+\frac{\Delta d}{k}\right], \quad d(x)<\sigma, \\
\left\{\frac{1}{2 \delta-\sigma} \frac{2(p(x)-1)}{p^{-}-1}-\left(\frac{2 \delta-d}{2 \delta-\sigma}\right)\left[\left(\ln k e^{k \sigma}\left(\frac{2 \delta-d}{2 \delta-\sigma}\right)^{\frac{2}{p--1}}\right) \nabla p \nabla d+\Delta d\right]\right\} \\
\times\left(k e^{k \sigma}\right)^{p(x)-1}\left(\frac{2 \delta-d}{2 \delta-\sigma}\right)^{\frac{2(2(x)-1)}{p-1}-1}, \sigma<d(x)<2 \delta, \\
0, \quad 2 \delta<d(x) .
\end{array}\right.
$$

From $\left(H_{3}\right)$ and $\left(H_{4}\right)$, there exists a positive constant $M>1$ such that

$$
f(M-1) \geq 1, h(M-1) \geq 1, a(M-1) \geq 1, b(M-1) \geq 1 .
$$

Let $\sigma=\frac{1}{k} \ln M$, then
$\sigma k=\ln M$.
If k is sufficiently large, from (2), we have

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1} \leq-k^{p(x)} \alpha, \quad d(x)<\sigma . \tag{3}
\end{equation*}
$$

Let $k \alpha=\left(\lambda_{1} A_{1}+\mu_{1} B_{1}\right)$, then

$$
k^{p(x)} \alpha \geq-\left(\lambda_{1}^{p(x)} A_{1}+\mu_{1}^{p(x)} B_{1}\right)
$$

from (3), then we have

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1} \leq \lambda_{1}^{p(x)} A_{1}+\mu_{1}^{p(x)} B_{1} \leq \lambda_{1}^{p(x)} g(x) a\left(\phi_{1}\right)+\mu_{1}^{p(x)} c(x) f\left(\phi_{2}\right), \quad d(x)<\sigma . \tag{4}
\end{equation*}
$$

Since $d(x) \in C^{2}\left(\overline{\partial \Omega_{3 \delta}}\right)$, then there exists a positive constant C_{3} such that $-\Delta_{p(x)} \phi_{1} \leq\left(k e^{k \sigma}\right)^{p(x)-1}\left(\frac{2 \delta-d}{2 \delta-\sigma}\right)^{\frac{2(p(x)-1)}{p^{--1}}-1}$

$$
\begin{aligned}
& \quad \cdot\left|\left\{\frac{2(p(x)-1)}{(2 \delta-\sigma)\left(p^{-}-1\right)}-\left(\frac{2 \delta-d}{2 \delta-\sigma}\right)\left[\left(\ln k e^{k \sigma}\left(\frac{2 \delta-d}{2 \delta-\sigma}\right)^{\frac{2}{p^{--1}}}\right) \nabla p \nabla d+\Delta d\right]\right\}\right| \\
& \leq C_{3}\left(k e^{k \sigma}\right)^{p(x)-1} \ln k, \quad \sigma<d(x)<2 \delta .
\end{aligned}
$$

If k is sufficiently large, let $k \alpha=\left(\lambda_{1} A_{1}+\mu_{1} B_{1}\right)$, we have

$$
C_{3}\left(k e^{k \sigma}\right)^{p(x)-1} \ln k=C_{3}(k M)^{p(x)-1} \ln k \leq \lambda_{1}^{p(x)} A_{1}+\mu_{1}^{p(x)} B_{1} .
$$

then

$$
-\Delta_{p(x)} \phi_{1} \leq \lambda_{1}^{p(x)} A_{1}+\mu_{1}^{p(x)} B_{1}, \quad \sigma<d(x)<2 \delta .
$$

Since $\phi_{1}(x) \geq 0$ and a, f are nondecreasing, then we have

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1} \leq \lambda_{1}^{p(x)} g(x) a\left(\phi_{1}\right)+\mu_{1}^{p(x)} c(x) f\left(\phi_{2}\right), \quad \sigma<d(x)<2 \delta . \tag{5}
\end{equation*}
$$

Obviously

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1}=0 \leq \lambda_{1}^{p(x)} A_{1}+\mu_{1}^{p(x)} B_{1} \leq \lambda_{1}^{p(x)} g(x) a\left(\phi_{1}\right)+\mu_{1}^{p(x)} c(x) f\left(\phi_{2}\right), \quad 2 \delta<d(x) \tag{6}
\end{equation*}
$$

Combining (4), (5) and (6), we can conclude that

$$
\begin{equation*}
-\Delta_{p(x)} \phi_{1} \leq \lambda_{1}^{p(x)} g(x) a\left(\phi_{1}\right)+\mu_{1}^{p(x)} c(x) f\left(\phi_{2}\right), \quad \text { a.e. on } \Omega . \tag{7}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
-\Delta_{q(x)} \phi_{2} \leq \lambda_{2}^{q(x)} g(x) b\left(\phi_{2}\right)+\mu_{2}^{q(x)} c(x) h\left(\phi_{1}\right), \quad \text { a.e. on } \Omega . \tag{8}
\end{equation*}
$$

From (7) and (8), we can see that $\left(\phi_{1}, \phi_{2}\right)$ is a subsolution of (P).
Step 2. We construct a supersolution of (P).
We consider

$$
\begin{cases}-\Delta_{p(x)} z_{1}=\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu & \text { in } \Omega \\ -\Delta_{q(x)} z_{2}=\left(\lambda_{2}^{q^{+}} A_{2}+\mu_{2}^{q^{+}} B_{2}\right) h\left(\beta\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]\right) & \text { in } \Omega \\ z_{1}=z_{2}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\beta=\beta\left(\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right)=\max _{x \in \bar{\Omega}} z_{1}(x)$. We shall prove that $\left(z_{1}, z_{2}\right)$ is a supersolution for (P).
From Lemma 2, we have

$$
\max _{x \in \bar{\Omega}} z_{1}(x) \leq C_{2}\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]^{\frac{1}{p^{-}-1}}
$$

and

$$
\max _{x \in \bar{\Omega}} z_{2}(x) \leq C_{2}\left(\lambda_{2}^{q^{+}} A_{2}+\mu_{2}^{q^{+}} B_{2}\right) h\left(\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]\right)^{\frac{1}{q^{-}-1}}
$$

For $\psi \in W_{0}^{1, q(x)}(\Omega)$ with $\psi \geq 0$, it is easy to see that
$\int_{\Omega}\left|\nabla z_{2}\right|^{q(x)-2} \nabla z_{2} \cdot \nabla \psi d x \geq \int_{\Omega} \lambda_{2}^{q^{+}} A_{2} h\left(\beta\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]\right) \psi d x+\int_{\Omega} \mu_{2}^{q^{+}} B_{2} h\left(z_{1}\right) \psi d x$.
Since $\lim _{u \rightarrow+\infty} \frac{f\left[M(h(u))^{\frac{1}{\left(p^{-}-1\right)}}\right]}{u^{p^{-}-1}}=0$, when μ is sufficiently large, combining Lemma 2 and $\left(\mathrm{H}_{6}\right)$, then we have

$$
\begin{equation*}
h\left(\beta\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]\right) \geq b\left(z_{2}\right) \tag{10}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\int_{\Omega}\left|\nabla z_{2}\right|^{q(x)-2} \nabla z_{2} \cdot \nabla \psi d x \geq \int_{\Omega} \lambda_{2}^{q^{+}} g(x) b\left(z_{2}\right) \psi d x+\int_{\Omega} \mu_{2}^{q^{+}} c(x) h\left(z_{1}\right) \psi d x \tag{11}
\end{equation*}
$$

Also

$$
\int_{\Omega}\left|\nabla z_{1}\right|^{p(x)-2} \nabla z_{1} \cdot \nabla \varphi d x=\int_{\Omega}\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu \varphi d x
$$

By $\left(H_{4}\right),\left(H_{6}\right)$, when μ is sufficiently large, combining Lemma 2 and $\left(\mathrm{H}_{6}\right)$, we have

$$
\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu \geq\left(\frac{1}{C_{2}} \beta\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]\right)^{p^{-}-1} \geq \lambda_{1}^{p^{+}} A_{2} a\left(z_{1}\right)+\mu_{1}^{p^{+}} B_{2} f\left(z_{2}\right)
$$

Then
$\int_{\Omega}\left|\nabla z_{1}\right|^{p(x)-2} \nabla z_{1} \cdot \nabla \varphi d x \geq \int_{\Omega} \lambda_{1}^{p^{+}} g(x) a\left(z_{1}\right) \varphi d x+\int_{\Omega} \mu_{1}^{p^{+}} c(x) f\left(z_{2}\right) \varphi d x$.
According to (11) and (12), we can conclude that $\left(z_{1}, z_{2}\right)$ is a supersolution for (P). It only remains to prove that $\phi_{1} \leq z_{1}$ and $\phi_{2} \leq z_{2}$. In the definition of $v_{1}(x)$, let $\gamma=\frac{2}{\delta}\left(\max _{x \in \bar{\Omega}} \phi(x)+\max _{x \in \bar{\Omega}}\left|\nabla_{1} \phi(x)\right|\right)$. We claim that $\phi_{1}(x) \leq v_{1}(x), \quad \forall x \in \Omega$.

From the definition of v_{1}, it is easy to see that

$$
\phi_{1}(x) \leq 2 \max _{x \in \Omega} \phi_{1}(x) \leq v_{1}(x), \quad \text { when } d(x)=\delta,
$$

and

$$
\phi_{1}(x) \leq 2 \max _{x \in \bar{\Omega}} \phi_{1}(x) \leq v_{1}(x), \quad \text { when } d(x) \geq \delta .
$$

It only remains to prove that

$$
\phi_{1}(x) \leq v_{1}(x), \quad \text { when } d(x)<\delta \text {. }
$$

Since $v_{1}-\phi_{1} \in C^{1}\left(\overline{\partial \Omega_{\delta}}\right)$, then there exists a point $x_{0} \in \overline{\partial \Omega_{\delta}}$ such that

$$
v_{1}\left(x_{0}\right)-\phi_{1}\left(x_{0}\right)=\min _{x_{0} \in \overline{\partial \Omega_{\delta}}}\left[v_{1}(x)-\phi_{1}(x)\right] .
$$

If $v_{1}\left(x_{0}\right)-\phi_{1}\left(x_{0}\right)<0$, it is easy to see that $0<d\left(x_{0}\right)<\delta$, and then

$$
\nabla v_{1}\left(x_{0}\right)-\nabla \phi_{1}\left(x_{0}\right)=0 .
$$

From the definition of v_{1}, we have

$$
\left|\nabla v_{1}\left(x_{0}\right)\right|=\gamma=\frac{2}{\delta}\left(\max _{x \in \bar{\Omega}} \phi_{1}(x)+\max _{x \in \bar{\Omega}}\left|\nabla \phi_{1}(x)\right|\right)>\left|\nabla \phi_{1}\left(x_{0}\right)\right| .
$$

It is a contradiction to $\nabla v_{1}\left(x_{0}\right)-\nabla \phi_{1}\left(x_{0}\right)=0$. Thus (13) is valid.
Obviously, there exists a positive constant C_{4} such that

$$
\gamma \leq C_{4}\left(\lambda_{1}+\mu_{1}\right) .
$$

Since $d(x) \in C^{2}\left(\overline{\partial \Omega_{3 \delta}}\right)$, according to the proof of Lemma 2, then there exist positive constant C_{5}, C_{6} such that

$$
-\Delta_{p(x)} v_{1}(x) \leq C_{*} \gamma^{p(x)-1+\theta} \leq C_{5} \lambda^{p(x)-1+\theta}+C_{6} \mu_{1}^{p(x)-1+\theta}, \quad \text { a.e. in } \Omega, \text { where } \theta \in(0,1)
$$

When $\eta \geq \lambda_{1}^{p^{+}}+\mu_{1}^{p^{+}}$is large enough, we have

$$
-\Delta_{p(x)} v_{1}(x) \leq \eta
$$

According to the comparison principle, we have
$v_{1}(x) \leq w(x), \quad \forall x \in \Omega$.
From (13) and (14), when $\eta \geq \lambda_{1}^{p^{+}}+\mu_{1}^{p^{+}}$is sufficiently large, we have
$\phi_{1}(x) \leq v_{1}(x) \leq w(x), \quad \forall x \in \Omega$.
According to the comparison principle, when μ is large enough, we have

$$
v_{1}(x) \leq w(x) \leq z_{1}(x), \quad \forall x \in \Omega
$$

Combining the definition of $v_{1}(x)$ and (15), it is easy to see that

$$
\phi_{1}(x) \leq v_{1}(x) \leq w(x) \leq z_{1}(x), \quad \forall x \in \Omega
$$

When $\mu \geq 1$ and $\lambda_{1}+\mu_{1}$ is large enough, from Lemma 2, we can see that $\beta\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]$ is large enough, then $\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) h\left(\beta\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]\right)$ is large enough. Similarly, we have $\phi_{2} \leq z_{2}$.
This completes the proof.

3 Asymptotic behavior of positive solutions

In this section, when parameters $\lambda_{1}, \mu_{1}, \lambda_{2}, \mu_{2} \rightarrow+\infty$, we will discuss the asymptotic behavior of maximum of solutions about parameters $\lambda_{1}, \mu_{1}, \lambda_{2}, \mu_{2}$ and the asymptotic behavior of solutions near boundary about parameters $\lambda_{1}, \mu_{1}, \lambda_{2}, \mu_{2}$.

Theorem 2. On the conditions of $\left(H_{1}\right)-\left(H_{6}\right)$, if (u, v) is a solution of (P) which has been given in Theorem 1, then
(i) There exist positive constants C_{1} and C_{2} such that

$$
\begin{align*}
& C_{1}\left(\lambda_{1}+\mu_{1}\right) \leq \max _{x \in \bar{\Omega}} u(x) \leq C_{2}\left(\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right)^{\frac{1}{p^{-}-1}} \tag{16}\\
& \left.C_{1}\left(\lambda_{1}+\mu_{1}\right) \leq \max _{x \in \bar{\Omega}} v(x) \leq C_{2}\left\{\left(\lambda_{2}^{q^{+}} A_{2}+\mu_{2}^{q^{+}} B_{2}\right) h\left(C_{2}\left[\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]^{\frac{1}{q^{--1}}}\right)\right\}^{\frac{1}{q^{--1}}} \tag{17}
\end{align*}
$$

(ii) for any $\theta \in(0,1)$, there exist positive constants C_{3} and C_{4} such that
$C_{3}\left(\lambda_{1}+\mu_{1}\right) d(x) \leq u(x) \leq C_{4}\left(\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right)^{\frac{1}{p^{--1}}}(d(x))^{\theta}, \quad$ as $d(x) \rightarrow 0$,
$C_{3}\left(\lambda_{1}+\mu_{1}\right) d(x) \leq v(x) \leq C_{4}\left\{\left(\lambda_{2}^{q^{+}} A_{2}+\mu_{2}^{q^{+}} B_{2}\right) h\left(C_{2}\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]^{\frac{1}{q^{--1}}}\right)\right\}^{\frac{1}{q^{--1}}}(d(x))^{\theta}$,
as $d(x) \rightarrow 0$,
where μ satisfies (10).
Proof: (i) Obvipusly, when $2 \delta \leq d(x)$, we have

$$
\begin{aligned}
& u(x) \geq \phi_{1}(x)=e^{k \sigma}-1+\int_{\sigma}^{2 \delta} k e^{k \sigma}\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{p^{--1}}} \geq \frac{\left(\lambda_{1} A_{1}+\mu_{1} B_{1}\right)}{\alpha} \int_{\sigma}^{2 \delta} M\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{p^{--1}}} d t \\
& v(x) \geq \phi_{2}(x)=e^{k \sigma}-1+\int_{\sigma}^{2 \delta} k e^{k \sigma}\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{q--1}} \geq \frac{\left(\lambda_{1} A_{1}+\mu_{1} B_{1}\right)}{\alpha} \int_{\sigma}^{2 \delta} M\left(\frac{2 \delta-t}{2 \delta-\sigma}\right)^{\frac{2}{q--1}} d t
\end{aligned}
$$

then there exists a positive constant C_{1} such that

$$
C_{1}\left(\lambda_{1}+\mu_{1}\right) \leq \max _{x \in \bar{\Omega}} u(x) \quad \text { and } \quad C_{1}\left(\lambda_{1}+\mu_{1}\right) \leq \max _{x \in \bar{\Omega}} v(x)
$$

It is easy to see

$$
u(x) \leq z_{1}(x) \leq \max _{x \in \bar{\Omega}} z_{1}(x) \leq C_{2}\left(\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right)^{\frac{1}{p^{-}-1}}
$$

then

$$
\max _{x \in \bar{\Omega}} u(x) \leq C_{2}\left(\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right)^{\frac{1}{p^{-}-1}}
$$

Similarly

$$
\max _{x \in \bar{\Omega}} v(x) \leq C_{2}\left\{\left(\lambda_{2}^{q^{+}} A_{2}+\mu_{2}^{q^{+}} B_{2}\right) h\left(C_{2}\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]^{\frac{1}{q^{--1}}}\right)\right\}^{\frac{1}{q^{--1}}}
$$

Thus (16) and (17) are valid.
(ii) Denote

$$
v_{3}(x)=\alpha(d(x))^{\theta}, \quad d(x) \leq \rho
$$

where $\theta \in(0,1)$ is a positive constant, $\rho \in(0, \delta)$ is small enough. Obviously, $v_{3}(x) \in C^{1}\left(\Omega_{\rho}\right)$. By computation

$$
-\Delta_{p(x)} v_{3}(x)=-(\alpha \theta)^{p(x)-1}(\theta-1)(p(x)-1)(d(x))^{(\theta-1)(p(x)-1)-1}(1+\Pi(x)), \quad d(x)<\rho
$$

where

$$
\Pi(x)=d \frac{(\nabla p \nabla d) \ln \alpha \theta}{(\theta-1)(p(x)-1)}+d \frac{(\nabla p \nabla d) \ln d}{(p(x)-1)}+d \frac{\Delta d}{(\theta-1)(p(x)-1)}
$$

Let $\alpha=\frac{1}{\rho} C_{2}\left(\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right)^{\frac{1}{p^{-}-1}}$, where $\rho>0$ is small enough, it is easy to see that

$$
(\alpha)^{p(x)-1} \geq\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu \quad \text { and } \quad|\Pi(x)| \leq \frac{1}{2}
$$

when $\rho>0$ is small enough, then we have

$$
-\Delta_{p(x)} v_{3}(x) \geq\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu
$$

Obviously $v_{3}(x) \geq z_{1}(x)$ on $\partial \Omega_{\rho}$. According to the comparison principle, we have $v_{3}(x) \geq z_{1}(x)$ on Ω_{ρ}. Thus

$$
u(x) \leq C_{4}\left(\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right)^{\frac{1}{p^{-}-1}}(d(x))^{\theta}, \quad \text { as } \quad d(x) \rightarrow 0
$$

Let $\alpha=\frac{1}{\rho} C_{2}\left\{\left(\lambda_{2}^{q^{+}} A_{2}+\mu_{2}^{q^{+}} B_{2}\right) h\left(C_{2}\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]^{\frac{1}{q^{-}-1}}\right)\right\}^{\frac{1}{q^{--1}}}$, when $\rho>0$ is small enough, it is easy to see that

$$
(\alpha)^{p(x)-1} \geq\left(\lambda_{2}^{q^{+}} A_{2}+\mu_{2}^{q^{+}} B_{2}\right) h\left(C_{2}\left[\left(\lambda_{1}^{p^{+}}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]^{\frac{1}{q^{-}-1}}\right)
$$

Similarly, when $\rho>0$ is small enough, we have

$$
v(x) \leq C_{4}\left\{\left(\lambda_{2}^{q^{+}} A_{2}+\mu_{2}^{q^{+}} B_{2}\right) h\left(C_{2}\left[\left(\lambda_{1}^{p^{+}} A_{2}+\mu_{1}^{p^{+}} B_{2}\right) \mu\right]^{\frac{1}{q^{-}-1}}\right)\right\}^{\frac{1}{q^{-}-1}} \quad \text { as } d(x) \rightarrow 0
$$

Obviously, when $d(x)<\sigma$, we have

$$
\begin{aligned}
& u(x) \geq \phi_{1}(x)=e^{k d(x)}-1 \geq C_{3}\left(\lambda_{1}+\mu_{1}\right) d(x) \\
& v(x) \geq \phi_{2}(x)=e^{k d(x)}-1 \geq C_{3}\left(\lambda_{1}+\mu_{1}\right) d(x)
\end{aligned}
$$

Thus (18) and (19) are valid. This completes the proof.

Acknowledgement. The authors would like to appreciate the referees for their helpful comments and suggestions.

References

[1] E. Acerbi, G.Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal. 156 (2001), 121-140.
[2] S. Ala, G. A, Afrouzi, Qihu Zhung, A. Niknam, Existence of positive solutions for variable exponent elliptic Systems, Boundary valuo problems 2012:37 (2012), 1-12.
[3] Y. Chen, S.Levine, M.Rao, Variable exponent, Linear growth functionals in image restoration, SIAM J. Appl. Math. 66(4) (2006), 1383-1406.
[4] M. Chen, On Positive weak solutions for a class of quasilinear elliptic systems, Nonlinear Anal. 62 (2005), 751-756.
[5] X. L. Fan, D.Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{1, p(x)}(\Omega)$, J.Math. Anal. Appl. 263 (2001), 424-446.
[6] X. L. Fan, Global $C^{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form, J.Differential Equations 235 (2007), 397-417.
[7] X. L. Fan, On the sub-supersolution method for $p(x)$-Laplacian equations, J.Math. Anal. Appl. 330 (2007), 665-682.
[8] X. L. Fan, Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.
[9] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl. 300 (2004), 30-42.
[10] M. Ruzicka, Electrorheological fluids: Modeling and mathematical theory, in: Lecture Notes in Math, vol.1784, Springer-Verlag, Berlin, 2000.
[11] S. G. Samko, Densness of $C_{0}^{\infty}\left(R^{N}\right)$ in the generalized Sobolev spaces $W^{m, p(x)}\left(R^{N}\right)$, Dokl. Ross.Akad. Nauk 369(4) (1999), 451-454.
[12] Q. H. Zhang, Existence and asymptotic behavior of positive solutions for variable exponent elliptic systems, Nonlinear Anal. 70 (2009), 305-316.
[13] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv 29 (1987), 33-36.

Received: 17.06.2012
Accepted: 25.10.2012
${ }^{1}$ Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU) Tehran, Iran E-mails: ala_samira@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran E-mail: afrouzi@umz.ac.ir
${ }^{3}$ Department of Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran E-mail: dassamankin@yahoo.co.uk

