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Abstract

A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges
of G with labels from the set {1, 2, . . . , k} in such a way that for any two different vertices
x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G
is the sum of the label of x and the labels of all edges incident with the vertex x. The
minimum k for which the graph G has a vertex irregular total k-labeling is called the total
vertex irregularity strength of G.

We have determined an exact value of the total vertex irregularity strength of certain
classes of unicyclic graphs.
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1 Introduction

Let us consider a simple (without loops and multiple edges) undirected graph G = (V,E). For
a graph G we define a labeling φ : V ∪E → {1, 2, . . . , k} to be a total vertex irregular k-labeling
of the graph G if for every two different vertices x and y of G one has wt(x) 6= wt(y) where the
weight of a vertex x in the labeling φ is wt(x) = φ(x) +

∑
y∈N(x)

φ(xy), where N(x) is the set of

neighbors of x. Bača et al. [2] defined a new graph invariant, called the total vertex irregularity
strength of G, tvs(G), that is the minimum k for which the graph G has a vertex irregular total
k-labeling.
The original motivation for the definition of the total vertex irregularity strength came from
irregular assignments and the irregularity strength of graphs introduced by Chartrand et al.
[4], and studied by numerous authors e.g. [3, 5, 6].
In [2] several bounds and exact values of tvs(G) were determined for different types of graphs
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(in particular for stars, cliques and prisms). Among others, the authors proved the following
theorem

Theorem 1. Let G be a (p, q)-graph with minimum degree δ = δ(G) and maximum degree
∆ = ∆(G). Then

d(p+ δ)/(∆ + 1)e ≤ tvs(G) ≤ p+ ∆− 2δ + 1. (1)

These results were then improved by Przybylo in [7] for sparse graphs and for graphs with
large minimum degree. In the latter case the bounds tvs(G) < 32 p

δ +8 in general and tvs(G) <
8 p
r + 3 for r-regular (p, q)-graphs were proved to hold. In [1] Anholcer et al. established a new

upper bound of the form

tvs(G) ≤ 3
p

δ
+ 1. (2)

The main aim of this paper is to find an exact value of the total vertex irregularity strength of
certain classes of unicyclic graphs which is much closer to the lower bound in (1) than to the
upper bound in (2).

2 Main Result

Let Cn be a cycle with vertices v1, v2, . . . , vn and Smi
, i = 1, 2, . . . , n, be a star with the central

vertex ui and leaves uij , 1 ≤ j ≤ mi.
If the star Smi

is adjoined to each vertex vi, i = 1, 2, . . . , n, by identifying vi and ui for
i = 1, 2, . . . , n, we obtained a unicyclic graph denoted by Cn4Smi

.
Let V (Cn4Smi

) = {vi : 1 ≤ i ≤ n} ∪ {uij : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} and E(Cn4Smi
) =

{vivi+1 : 1 ≤ i ≤ n − 1} ∪ {vnv1} ∪ {viuij : 1 ≤ i ≤ n, 1 ≤ j ≤ mi} be the vertex set and the
edge set, respectively.

From Theorem 1 it follows that

tvs(Cn4Smi
) ≥

⌈
(
n∑
i=1

mi + n+ 1)/(3 + max{m1, . . . ,mn})
⌉

.

Next theorem gives a new lower bound for Cn4Smi .

Theorem 2. Let n ≥ 3 and Cn4Smi
be the unicyclic graph with 2 ≤ m1 ≤ m2 ≤ · · · ≤ mn.

Then tvs(Cn4Smi) ≥
⌈(

1 +
n∑
i=1

mi

)
/2

⌉
.

Proof. The unicyclic graph Cn4Smi has
n∑
i=1

mi vertives of degree 1 and vertices of degree

mi + 2, 1 ≤ i ≤ n.
To prove the lower bound we consider the weights of the vertices. The smallest weight

among all vertices of Cn4Smi is at least 2, so the largest weight of a vertex of degree 1 is at

least 1 +
n∑
r=1

mr. Since the weight of any vertex of degree 1 is the sum of two positive integers,

so at least one label is at least

⌈(
1 +

n∑
r=1

mr

)
/2

⌉
.
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Moreover, the largest value among the weights of vertices of degree 1 and mi + 2, 1 ≤
i ≤ n, is at least 1 + i +

n∑
r=1

mr, 1 ≤ i ≤ n, and this weight for fix i is the sum of at

most mi + 3 integers. Hence the largest label contributing to this weight must be at least⌈(
1 + i+

n∑
r=1

mr

)
/(mi + 3)

⌉
.

Consequently, the largest label of a vertex or an edge of Cn4Smi
is at least

max

{⌈(
1 +

n∑
r=1

mr

)
/2

⌉
,

⌈(
2 +

n∑
r=1

mr

)
/(m1 + 3)

⌉
,

⌈(
3 +

n∑
r=1

mr

)
/(m2 + 3)

⌉
,

. . . ,

⌈(
n+ 1 +

n∑
r=1

mr

)
/(mn + 3)

⌉}
=

⌈(
1 +

n∑
r=1

mr

)
/2

⌉
for n ≥ 3.

Thus tvs(G) ≥
⌈(

1 +
n∑
r=1

mr

)
/2

⌉
. 2

The following theorem determines the exact value of the total vertex irregularity strength
of Cn4Smi .

Theorem 3. Let n ≥ 3 and 2 ≤ m1 ≤ m2 ≤ · · · ≤ mn. Then

tvs(Cn4Smi
) =

⌈(
1 +

n∑
i=1

mi

)
/2

⌉
.

Proof. Suppose that n ≥ 3, 2 ≤ m1 ≤ m2 ≤ · · · ≤ mn and k =

⌈(
1 +

n∑
r=1

mr

)
/2

⌉
.

According to Theorem 2 it is sufficient to prove the existence of a vertex irregular total k-
labeling for the Cn4Smi .

We define a labeling φ : V (Cn4Smi
) ∪ E(Cn4Smi

)→ {1, 2, . . . , k} in the following way

φ(vi) = k for 1 ≤ i ≤ n,

φ(vivi+1) = k for 1 ≤ i ≤ n− 1,

φ(vnv1) = k,

φ(uij) =

⌈(
j +

i−1∑
r=1

mr

)
/2

⌉
for 1 ≤ i ≤ n and 1 ≤ j ≤ mi,

φ(viu
i
j) =

⌈(
1 + j +

i−1∑
r=1

mr

)
/2

⌉
for 1 ≤ i ≤ n and 1 ≤ j ≤ mi.

The weights of vertices of Cn4Smi
are as follows:

wt(uij) = 1 + j +
i−1∑
r=1

mr for 1 ≤ i ≤ n and 1 ≤ j ≤ mi,

wt(vi) = 3k +
mi∑
j=1

⌈(
1 + j +

i−1∑
r=1

mr

)
/2

⌉
for 1 ≤ i ≤ n. Thus, the weights of vertices uij , 1 ≤

i ≤ n, 1 ≤ j ≤ mi, successively attain values 2, 3, . . . , 1 +
n∑
r=1

mr and the weights of vertices vi,

1 ≤ i ≤ n, receive distinct values from 3k+
m1∑
j=1

d(1 + j)/2e up to 3k+
mn∑
j=1

⌈(
1 + j +

n−1∑
r=1

mr

)
/2

⌉
.
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The labeling φ is the desired vertex irregular total k-labeling and provides the upper bound
on tvs(Cn4Smi

). This concludes the proof. 2

An (n, t)−kite is a cycle of length n with a t-edge path (the tail) attached to one vertex. The
following theorem gives the exact value of the total vertex irregularity strength for (n, t)-kites.

Theorem 4. Every (n, t)-kite with n ≥ 3 and t ≥ 1 satisfies

tvs((n, t)− kite) = d(n+ t)/3e .

Proof. Let v1, v2, . . . , vn be the vertices of a cycle and u1, u2, . . . , ut be the vertices on
a path. Let E((n, t) − kite) = {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {vnv1} ∪ {ujuj+1 : 1 ≤ j ≤
t− 1} ∪ {utvs : s ∈ {1, . . . , n}} be the edge set of (n, t)-kite. Thus the (n, t)-kite has the vertex
u1 of degree 1, n+ t− 2 vertices of degree 2 and the vertex vs of degree 3. The smallest weight
among all vertices of (n, t)-kite is at least 2. The largest weight of vertices of degree 1 and 2
is at least n + t and this weight is the sum of at most three integers. Hence the largest label
contributing to this weight must be at least d(n+ t)/3e. Moreover, the largest value among the
weights of vertices of degree 2 and 3 is at least n+ t+ 1 and this weight is the sum of at most
four integers, so at least one label is at least d(n+ t+ 1)/4e. Consequently, the largest label of
one of vertex or edge of (n, t)-kite is at least max {1, d(n+ t)/3e , d(n+ t+ 1)/4e} = d(n+ t)/3e
for n ≥ 3 and t ≥ 1. Thus tvs((n, t)− kite) ≥ d(n+ t)/3e .

Put k = d(n+ t)/3e. To show that k is an upper bound for total vertex irregularity strength
of (n, t)-kite we describe a total k-labeling ψ : V ((n, t)− kite)∪E((n, t)− kite)→ {1, 2, . . . , k}
as follows

ψ(uj) =

{
1 if j = 1

d(j − 1)/3e if 2 ≤ j ≤ t

ψ(ujuj+1) = d(j + 1)/3e for 1 ≤ j ≤ t− 1.

For t ≡ 0 (mod 3)

ψ(vi) =

{
d(t− 1)/3e − 1 + d(i+ 1)/2e if 1 ≤ i ≤ n+ 1− k + d(t− 1)/3e

n+ 2 + d(t− 1)/3e − i if n+ 2− k + d(t− 1)/3e ≤ i ≤ n

ψ(vivi+1) =



d(t− 1)/3e+ di/2e if 1 ≤ i ≤ n− k + d(t− 1)/3e

d(t− 1)/3e+ di/2e − 1 if i = n+ 1− k + d(t− 1)/3e

and n+ t ≡ 0 (mod 3)

d(t− 1)/3e+ di/2e if i = n+ 1− k + d(t− 1)/3e

and n+ t ≡ 1, 2 (mod 3)

n+ 1 + d(t− 1)/3e − i if n+ 2− k + d(t− 1)/3e ≤ i ≤ n− 1

ψ(vnv1) = 1 + d(t− 1)/3e

ψ(utvs) = d(t+ 1)/3e for s =

{
n− k + 2 + d(t− 1)/3e if n ≡ 1 (mod 3)

n− k + 1 + d(t− 1)/3e otherwise.
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For t ≡ 1 (mod 3)

ψ(vi) =

{
d(t− 1)/3e+ di/2e if 1 ≤ i ≤ n+ 1− k + d(t− 1)/3e

n+ 2 + d(t− 1)/3e − i if n+ 2− k + d(t− 1)/3e ≤ i ≤ n

ψ(vivi+1) =



d(t− 1)/3e+ d(i+ 1)/2e if 1 ≤ i ≤ n− k + d(t− 1)/3e

d(t− 1)/3e+ d(i+ 1)/2e − 1 if i = n+ 1− k + d(t− 1)/3e

and n+ t ≡ 0 (mod 3)

d(t− 1)/3e+ d(i+ 1)/2e if i = n+ 1− k + d(t− 1)/3e

and n+ t ≡ 1, 2 (mod 3)

n+ 1 + d(t− 1)/3e − i if n+ 2− k + d(t− 1)/3e ≤ i ≤ n− 1

ψ(vnv1) = 1 + d(t− 1)/3e

ψ(utvs) = d(t+ 1)/3e for s =

{
n− k + 2 + d(t− 1)/3e if n ≡ 0 (mod 3)

n− k + 1 + d(t− 1)/3e otherwise.

For t ≡ 2 (mod 3)

ψ(vi) =



d(t− 1)/3e − 1 + d(i+ 1)/2e if 1 ≤ i ≤ n− k − 1 + d(t− 1)/3e

d(t− 1)/3e+ di/2e − 1 if i = n− k + d(t− 1)/3e

and n+ t ≡ 0 (mod 3)

d(t− 1)/3e − 1 + d(i+ 1)/2e if i = n− k + d(t− 1)/3e

and n+ t ≡ 1, 2 (mod 3)

n+ 1 + d(t− 1)/3e − i if n+ 1− k + d(t− 1)/3e ≤ i ≤ n

ψ(vivi+1) =

{
d(t− 1)/3e+ di/2e if 1 ≤ i ≤ n− 1− k + d(t− 1)/3e

n+ d(t− 1)/3e − i if n− k + d(t− 1)/3e ≤ i ≤ n− 1

ψ(vnv1) = d(t− 1)/3e

ψ(utvs) = d(t+ 1)/3e for s =

{
n− k + 1 + d(t− 1)/3e if n ≡ 2 (mod 3)

n− k + d(t− 1)/3e otherwise.

Observe that under the labeling ψ the weights of the vertices of (n, t)-kite are:

{wt(uj) : 1 ≤ j ≤ t} = {2, 3, . . . , t+ 1}

{wt(vi) : 1 ≤ i ≤ n, i 6= s} = {t+ 2, t+ 3, . . . , t+ n}

and

wt(vs) =

{
t+ n+ d(t+ 1)/3e for n+ t ≡ 0 (mod 3)

t+ n+ 1 + d(t+ 1)/3e for n+ t ≡ 1, 2 (mod 3).
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Thus the labeling ψ is the desired vertex irregular total k-labeling and the proof is complete.
2
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