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A note on the Diophantine equation (z? —1)/(x — 1) = py?

by
HaN D1 AND GUAN WENIJI

Abstract

Let p,q be odd primes, and let e € {0,1}. In this paper, using a lower bound for
two logarithms in the complex case, we prove that if p = 3 (mod4) and ¢ > 220p(log p)?,
then the equation (zP — 1)/(z — 1) = p°y? has no positive integer solution (z,y) with
min{z,y} > 1.
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1 Introduction
Let Z,N,Q be the sets of all integers, positive integers and rational numbers respectively. Let
p,q be distinct odd primes, and let e € {0,1}. The equation

P —1
z—1

=p®y?, z,y € Nymin{z,y} > 1 (1.1)

is usually called the Nagell-Ljunggren equation. It is conjectured that (1.1) has no solution
(z,y). This conjecture was proved for some special cases (see Problem D10 of [3] and its
references). But, in general, the problem is far from solved.

In [2], Y. Bugeaud, G. Hanrot and M. Mignotte proved that if p # 1 (mod 8) and ¢ >
64000p(log p)?, then (1.1) has no solution (z,y). In this paper, we give a substantial improve-
ment of the constant for p = 3 (mod4). More precisely, we prove the following result:

Theorem. If p =3 (mod4) and ¢ > 220p(log p)?, then (1.1) has no solution (x,y).

2  Preliminaries

Let p be an odd prime. Further let ¢ = e2™V=1/? m = (p —1)/2 and

Sz{r |r€N,1<r<p—17(r>:1},
p
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(2.1)

S:{T|T€N,1§r§p—1,<r> :—1},
p

where (%) is the Legendre symbol.

Lemma 2.1. ([1]). Let a be a positive integer with a > 1. If a # 1 (modp) , then every prime
divisor | of (a? —1)/(a—1) satisfies I =1 (mod2p). If a =1 (modp), thenp| (a? —1)/(a—1)
and every prime divisor | of (a? — 1) /p(a — 1) satisfies | =1 (mod2p).

Lemma 2.2. ([4, Proposition 6.3.1 and Theorem 6.4.11]). For any integer k with p1k, let

p—1

Gk,p) =Y ¢ (2.2)

i=0
Then we have

6hp) = () VT

Lemma 2.3. Ifp >3 and p =3 (mod 4), then we have

Xr-1 = A%(X) + pB*(X) (2.3)
X _1 p ) .
where
A(X) = o i emi Laix), Bx) = zm: Viym-i ¢ Lyix] (2.4)
= 2 2 ’ = 2 2
satisfy
A+ BX)WV=p =] (X =), AX) -BX)v=p=[[(X-C) 29
res €S
and
a0:2, am:—2, b():bm:O, aj = —Qm—j, bj:bm,j, jZl, 2,-~-,m—1. (26)
Proof: This is the special case of Lemma 2 of [7] for Y = 1. 0

Lemma 2.4. If p > 3, p =3 (mod4) and X is an integer, then A(X) and B(X) are coprime
integers.

Proof: Since p > 3 and p = 3 (mod4), m is an odd integer with m > 1. By Lemma 2.3, we
see from (2.4) that

(m—1)/2

a; . .
AX)=(X™ -1 ZL(xm™=2 )X
() = ( >+j§:12 7 ( X7,
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(2.7)
B(X) = (mi)/z E(X’”*Qj +1)X7
=2 ’
where a; and b; are integers for j =1,---,(m —1)/2. Since (X™ % +1)X7 is an even integer

for any integer X, we see from (2.7) that A(X) and B(X) are integers.
Let d = ged(A(X), B(X)). Since d?|(X? —1)/(X — 1) by (2.3), using Lemma 2.1, we have
ged(d, 2pX) = 1. (2.8)

On the other hand, by (2.5), we get X = ¢" (mod d) and X = ¢" (mod d), where r € S and
7 € S. Since r # 7, it implies that the discriminant of Q(¢) is divisible by d, namely, d| — pP~2.
Therefore, by (2.8), we get d = 1. Thus, A(X) and B(X) are coprime integers. The lemma is
proved. 0

Lemma 2.5. Ifp >3, p=3 (mod4) and X > 2p, then |B(X)| < X™~ 1.

Proof: Let
H(X—CT):Xm+51Xm71+"‘+5m‘ (2.9)
res
By (2.4), (2.5) and (2.9), we have J,, = —1 and
1
6k=§(ak+kajp)7 k=1,---,m—1. (2.10)
Let
Sk:ZC’rkak:]".‘.’mil. (211)
res
By Lemma 2.2, we see from (2.1), (2.2) and (2.11) that 1+ 2s; = G(k, p) and
1 k
Sk:§ _]."V_ - \/jp ak:]-v“.’m_]" (212)
p

By the Newton formula between coefficients and roots of a polynomial, we get from (2.9) and
(2.11) that

1
0 = —%(Sk + 018p—1+ - +5k—151)7 k=1,---,m—1. (2.13)

For k = 1, we have §; = —s; = (1 — /=—p)/2, and hence, a; = 1 and b; = —1 by (2.10). For
k > 1, we now assume that

maX{‘aj‘,|bj|}§pj71a Jj=1- k-1 (214)
By (2.10) and (2.12), we have
0iSk—i = % (ai + bz\/jp) (—1 + (k;Z) —p)
L » 5 (2.15)
G )+ (5T ).
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i=1,- k—1.
Therefore, by (2.10), (2.13) and (2.15), we get

2kay = 1 +k§ (—ai - (k;> bip> , 2kby, = ki ((’t’) a; — bi) : (2.16)

i=1 i=1

Further, since | (k—j)/p)| =1for j=1,--- ,k — 1, we obtain from (2.14) and (2.16) that

INA

8=

= e
+

= =
+

i

+

g phe 2)+(p+p2+_..+pk71))<pk717

(2.17)
i< % (14 Sl + )
(1+2(1+p—|— c+phT2)) < phh
By the inductive method, we find from (2.14) and (2.17) that
max {|ax|, |bx]} <P E=1,-- ,m— 1. (2.18)
Thus, by (2.4), (2.6) and (2.18), if X > 2p, then
m—1 m—
bk mo1 |k |
BEOL < 3 AT =X)L e
k=1
m—1 p -1
< Xm 1 o Xm 1 - Xm 1
= 2(2p)k1 Z <
k=1
The lemma is proved. |

Lemma 2.6. ([6, Theorem 3|) Let D,k be positive integers such that D > 3,k > 1 and
ged(k,2D) = 1. Let h(—4D) denote the class number of binary quadratic primitive forms
of discriminant —4D. If (X,Y,Z) is a solution of the equation

X2+ DY?=k? XY, Z€Z, ged(X,Y)=1,Z>0, (2.19)

then we have
Z=27it, teN, (2.20)
X +YV=D =\ (X1 + MYiIV—D), A\, \y € {£1}, (2.21)

where X1,Y1, Z1 are positive integers satisfying

X2+ DY? = k% ged(X1,Y1) =1, Z; | h(—4D). (2.22)
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Lemma 2.7. For any odd prime p, we have h(—4p) < p.

Proof: We can verify that the lemma holds for p < 17. By Lemma 2 of [8], if h(—4p) > p, then

p < h(—4p) < %\/ﬁlog(%\/ﬁ). (2.23)

But, (2.23) is false for p > 17. Thus, the lemma is proved. |

Lemma 2.8. ([5, Théoréme 3]) Let o be a complex algebraic number such that || =1 and o
is not a root of unity. Further let h(«) and log o denote the absolute logarithmic height and the
principal value of the logarithm of o respectively. Let A = by loga — bamy/—1, where by, by are
positive integers. Then we have

log|A| > —8.8TAH?, (2.24)
where )
d= 5[@(0[) :Q], A =max{20,10.98|loga| + dh(a)},
Vd by ba
H = max{17, 10 dlog (689 + 2A> +2.35d + 5.03}. (2.25)

Lemma 2.9. ([9, Theorem 1]) If ¢ > (p — 1)?, then (1.1) has no solution (z,vy).

3  Proof of Theorem
Let p,q be odd primes such that p = 3 (mod4) and
q > 220p(log p)*. (3.1)

Since 100p(logp)? > (p — 1)? if p < 8000, by Lemma 2.9, the theorem holds for p < 8000.
Therefore, it suffices to prove the theorem for

p > 8000. (3.2)

We now assume that (1.1) has a solution (x,y). Then, by Lemma 2.1, we have y =1 (mod
2p) and
y>2p+1. (3.3)

Further, since ¢ > p by (3.1), we get from (1.1) and (3.3) that a? > (2P —1)/(z — 1) = p°y9 >
y? > yP > (2p+ 1)P. It implies that
x>2p+ 1. (3.4)

We first consider the case that e = 0. Then, (1.1) can be written as

P_1
i) (3.5)

r—1



40 Han Di and Guan Wenji

Since p > 3 and p = 3 (mod4), by Lemmas 2.3 and 2.4, we see from (3.5) that the equation
X241 pY2=y? XY, Z €7, ged(X,Y)=1,Z>0 (3.6)

has the solution
(X,Y,2) = (A(x), B(x),q). (3.7)

Since ¢ = 0, by Lemma 2.1, we have ged(y, 2p) = 1. Therefore, applying Lemma 2.6 to (3.7),
we get
q:th> t€N7 (38)

A(a?) + B(!E)\/ —-p= )\1(X1 + A Y]/ —p)t7 A1, Ao € {:tl}, (39)
where X1,Y7, Z; are positive integers satisfying
X7 +pY? =y?, ged(X1, V1) =1 (3.10)

and
Z1 | h(—4p). (3.11)

Since ¢ is an odd prime with ¢ > p, by Lemma 2.7, we see from (3.8) and (3.11) that Z; =1
and t = g. Therefore, by (3.9) and (3.10), we have

A(IE) + B(SL’)\/ —p = )\1(X1 + AoYiv/ _p)q’ A1, Ag € {:l:].}, (312)
and
XP+pYP =y, ged(Xy, V1) =1 (3.13)
Let
0:X1+Y1\/—p,6:X1—Y1\/—p. (314)
By (3.12) and (3.14), we get
B(z) A L (3.15)
x) = . .
2/=p
Further let o = 6/6. By (3.13) and (3.14), we have
0] =101 = vy (3.16)
and
yo? —2(X? —pYP)a+y=0. (3.17)

Therefore, we see from (3.3), (3.16) and (3.17) that « is a complex algebraic number such that
la] = 1,[Q(c) : Q] = 2 and « is not a root of unity.
By (3.15) and (3.16), we have

¢ a/2
B = 2 ljas 1=

=% 2\/]3|aq 1. (3.18)
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Using Lemma 2.5, by (3.4), we have
|B(z)| < 2®P=3/2 (3.19)

On the other hand, by (3.5), we get y%/? > x(P=1)/2_ Therefore, by (3.18) and (3.19), we obtain
2
2P e ), (3.20)
T

Using the maximum modulus principle, for any complex number z, we have either |e* — 1| >
1/2 or |e* — 1| > 2|z — kmy/—1|/7 for some integers k. Therefore, by (3.20), we have either

25 1
— > 21
- 3 (3.21)
or
Wxﬂ > |qloga — knv—1|, k€ Z, k| <q. (3.22)
However, by (3.4), (3.21) is impossible. Thus, by (3.22), we get
log(my/p) > logz + log |A|, (3.23)

where
A =qloga —krnv—1. (3.24)

Applying Lemma 2.8 to (3.24), A satisfies (2.24), where

A = max{20,10.89| log a| + h(a)}, (3.25)
_ a 9
H = max{17, log (68_9 + 2A) +7.38}, (3.26)

By (3.1), (3.2), (3.3), (3.16) and (3.17), we have 0 < |loga| < 7, h(a) = log,/y, 40.69 <
10.987 + log /y and 17 < 7.38 4 log(¢/68.9). Hence, by (3.25) and (3.26), we get

6.20 < log+/2p+1 <log+/y < A <10.987 + log \/y (3.27)
and
H < 7.38+1log (i n i) < 7.38 4 log (i n L) <377 +loggq (3.28)
- 68.9 24 68.9 = 81.38 ’

Since z? > (2P —1)/(x — 1) = y9, we have plogz > qlogy. Substitute (2.24) into (3.23), we
get
log(m/p) + 8.87TAH? > logz > %logy > 220(log p)?(log ). (3.29)

By (3.27), (3.28) and (3.29), we have

logm + % log p
(log p)*(log y)

10.987 + élogy) (3.77 + logq>2 - 990 (3.30)

+ 8.87
logy logp
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By (3.2) and (3.3), we have

logm + % log p 1 - 1
(logp)?(logy) ~ (logp)? ~ (log8000)?

<0.02,

(3.31)
10.987 + 3logy  10.98r 1 10.987 1

- < ———— 4+ - <4.07.
logy logy + 2 < log 16000 + 2 <

Using Lemma 2.9, we have ¢ < (p — 1). It implies that

3.77+ logq < 3.77+ 2logp 3.77
log p logp log 8000

+2 <242 (3.32)

Thus, by (3.30), (3.31) and (3.32), we get 220 > 0.02 + 8.87 x 4.07 x (2.42)? > 220, a contra-
diction.

We final consider the case that e = 1. Then, by Lemmas 2.3 and 2.4, we see from (1.1) and
(2.3) that p|A(x) and (3.6) has the solution.

A
(x.v.2) = (B, 22.0) (3.33)
Therefore, by Lemmas 2.6 and 2.7, we get from (3.33)
1 —q, 6" a/2
B@) = 31047 = ZLjgs = Ljpe ) (3.3

where 3 = —0/0,0 and 0 are defined as in (3.14). Thus, using the same method as in the proof
of the case that e = 0, we can deduce from (3.34) that (1.1) has no solution (z,y) for e = 1.
The theorem is proved.
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