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A note on the Diophantine equation (xp − 1)/(x− 1) = peyq

by
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Abstract

Let p, q be odd primes, and let e ∈ {0, 1}. In this paper, using a lower bound for
two logarithms in the complex case, we prove that if p ≡ 3 (mod4) and q > 220p(log p)2,
then the equation (xp − 1)/(x − 1) = peyq has no positive integer solution (x, y) with
min{x, y} > 1.
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1 Introduction

Let Z,N,Q be the sets of all integers, positive integers and rational numbers respectively. Let
p, q be distinct odd primes, and let e ∈ {0, 1}. The equation

xp − 1

x− 1
= peyq, x, y ∈ N,min{x, y} > 1 (1.1)

is usually called the Nagell-Ljunggren equation. It is conjectured that (1.1) has no solution
(x, y). This conjecture was proved for some special cases (see Problem D10 of [3] and its
references). But, in general, the problem is far from solved.

In [2], Y. Bugeaud, G. Hanrot and M. Mignotte proved that if p 6≡ 1 (mod 8) and q >
64000p(log p)2, then (1.1) has no solution (x, y). In this paper, we give a substantial improve-
ment of the constant for p ≡ 3 (mod4). More precisely, we prove the following result:

Theorem. If p ≡ 3 (mod4) and q > 220p(log p)2, then (1.1) has no solution (x, y).

2 Preliminaries

Let p be an odd prime. Further let ζ = e2π
√
−1/p, m = (p− 1)/2 and

S =

{
r |r ∈ N, 1 ≤ r ≤ p− 1,

(
r

p

)
= 1

}
,
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(2.1)

S =

{
r |r ∈ N, 1 ≤ r ≤ p− 1,

(
r

p

)
= −1

}
,

where
(
∗
p

)
is the Legendre symbol.

Lemma 2.1. ([1]). Let a be a positive integer with a > 1. If a 6≡ 1 (modp) , then every prime
divisor l of (ap−1)/(a−1) satisfies l ≡ 1 (mod2p). If a ≡ 1 (modp), then p ‖ (ap−1)/(a−1)
and every prime divisor l of (ap − 1) /p(a− 1) satisfies l ≡ 1 (mod2p).

Lemma 2.2. ([4, Proposition 6.3.1 and Theorem 6.4.1 ]). For any integer k with p - k, let

G(k, p) =

p−1∑
i=0

ζki
2

. (2.2)

Then we have

G(k, p) =

(
k

p

)√
(−1)mp.

Lemma 2.3. If p > 3 and p ≡ 3 (mod 4), then we have

Xp − 1

X − 1
= A2(X) + pB2(X), (2.3)

where

A(X) =

m∑
i=0

ai
2
Xm−i ∈ 1

2
Z[X], B(X) =

m∑
i=0

bi
2
Xm−i ∈ 1

2
Z[X] (2.4)

satisfy

A(X) +B(X)
√
−p =

∏
r∈S

(X − ζr) , A(X)−B(X)
√
−p =

∏
r∈S

(
X − ζr

)
(2.5)

and

a0 = 2, am = −2, b0 = bm = 0, aj = −am−j , bj = bm−j , j = 1, 2, · · · ,m− 1. (2.6)

Proof: This is the special case of Lemma 2 of [7] for Y = 1.

Lemma 2.4. If p > 3, p ≡ 3 (mod4) and X is an integer, then A(X) and B(X) are coprime
integers.

Proof: Since p > 3 and p ≡ 3 (mod4), m is an odd integer with m > 1. By Lemma 2.3, we
see from (2.4) that

A(X) = (Xm − 1) +

(m−1)/2∑
j=1

aj
2

(Xm−2j − 1)Xj ,
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(2.7)

B(X) =

(m−1)/2∑
j=1

bj
2

(Xm−2j + 1)Xj ,

where aj and bj are integers for j = 1, · · · , (m− 1)/2. Since (Xm−2j ± 1)Xj is an even integer
for any integer X, we see from (2.7) that A(X) and B(X) are integers.

Let d = gcd(A(X), B(X)). Since d2|(Xp − 1)/(X − 1) by (2.3), using Lemma 2.1, we have

gcd(d, 2pX) = 1. (2.8)

On the other hand, by (2.5), we get X ≡ ζr (mod d) and X ≡ ζ r̄ (mod d), where r ∈ S and
r̄ ∈ S̄. Since r 6= r̄, it implies that the discriminant of Q(ζ) is divisible by d, namely, d| − pp−2.
Therefore, by (2.8), we get d = 1. Thus, A(X) and B(X) are coprime integers. The lemma is
proved.

Lemma 2.5. If p > 3, p ≡ 3 (mod4) and X > 2p, then |B(X)| < Xm−1.

Proof: Let ∏
r∈S

(X − ζr) = Xm + δ1X
m−1 + · · ·+ δm. (2.9)

By (2.4), (2.5) and (2.9), we have δm = −1 and

δk =
1

2
(ak + bk

√
−p), k = 1, · · · ,m− 1. (2.10)

Let
sk =

∑
r∈S

ζrk, k = 1, · · · ,m− 1. (2.11)

By Lemma 2.2, we see from (2.1), (2.2) and (2.11) that 1 + 2sk = G(k, p) and

sk =
1

2

(
−1 +

(
k

p

)√
−p
)
, k = 1, · · · ,m− 1. (2.12)

By the Newton formula between coefficients and roots of a polynomial, we get from (2.9) and
(2.11) that

δk = −1

k
(sk + δ1sk−1 + · · ·+ δk−1s1), k = 1, · · · ,m− 1. (2.13)

For k = 1, we have δ1 = −s1 = (1−
√
−p)/2, and hence, a1 = 1 and b1 = −1 by (2.10). For

k > 1, we now assume that

max{|aj |, |bj |} ≤ pj−1, j = 1, · · · , k − 1. (2.14)

By (2.10) and (2.12), we have

δisk−i = 1
4 (ai + bi

√
−p)

(
−1 +

(
k−i
p

)√
−p
)

= 1
4

((
−ai −

(
k−i
p

)
bip
)

+
((

k−i
p

)
ai − bi

)√
−p
)
,

(2.15)
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i = 1, · · · , k − 1.
Therefore, by (2.10), (2.13) and (2.15), we get

2kak = 1 +

k−1∑
i=1

(
−ai −

(
k − i
p

)
bip

)
, 2kbk =

k−1∑
i=1

((
k − i
p

)
ai − bi

)
. (2.16)

Further, since | ((k − j)/p) | = 1 for j = 1, · · · , k − 1, we obtain from (2.14) and (2.16) that

|ak| ≤ 1
2k

(
1 +

k−1∑
i=1

(|ai|+ |bi|p)
)

≤ 1
2k

(
1 +

(
1 + p+ · · ·+ pk−2

)
+
(
p+ p2 + · · ·+ pk−1

))
< pk−1,

(2.17)

|bk| ≤ 1
2k

(
1 +

k−1∑
i=1

(|ai|+ |bi|)
)

≤ 1
2k

(
1 + 2

(
1 + p+ · · ·+ pk−2

))
< pk−1.

By the inductive method, we find from (2.14) and (2.17) that

max {|ak|, |bk|} ≤ pk−1, k = 1, · · · ,m− 1. (2.18)

Thus, by (2.4), (2.6) and (2.18), if X > 2p, then

|B(X)| ≤
m−1∑
k=1

|bk|
2
Xm−k = Xm−1

m−1∑
k=1

|bk|
2Xk−1

≤ Xm−1
m−1∑
k=1

pk−1

2(2p)k−1
= Xm−1

m−1∑
k=1

1

2k
< Xm−1.

The lemma is proved.

Lemma 2.6. ([6, Theorem 3]) Let D, k be positive integers such that D > 3, k > 1 and
gcd(k, 2D) = 1. Let h(−4D) denote the class number of binary quadratic primitive forms
of discriminant −4D. If (X,Y, Z) is a solution of the equation

X2 +DY 2 = kZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0, (2.19)

then we have
Z = Z1t, t ∈ N, (2.20)

X + Y
√
−D = λ1(X1 + λ2Y1

√
−D)t, λ1, λ2 ∈ {±1}, (2.21)

where X1, Y1, Z1 are positive integers satisfying

X2
1 +DY 2

1 = kZ1 , gcd(X1, Y1) = 1, Z1 | h(−4D). (2.22)
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Lemma 2.7. For any odd prime p, we have h(−4p) < p.

Proof: We can verify that the lemma holds for p ≤ 17. By Lemma 2 of [8], if h(−4p) ≥ p, then

p ≤ h(−4p) <
4

π

√
p log(2e

√
p). (2.23)

But, (2.23) is false for p > 17. Thus, the lemma is proved.

Lemma 2.8. ([5, Théorème 3]) Let α be a complex algebraic number such that |α| = 1 and α
is not a root of unity. Further let h(α) and logα denote the absolute logarithmic height and the
principal value of the logarithm of α respectively. Let Λ = b1 logα − b2π

√
−1, where b1, b2 are

positive integers. Then we have
log |Λ| ≥ −8.87AH2, (2.24)

where

d =
1

2
[Q(α) : Q], A = max{20, 10.98| logα|+ dh(α)},

H = max{17,

√
d

10
, d log

(
b1

68.9
+

b2
2A

)
+ 2.35d+ 5.03}. (2.25)

Lemma 2.9. ([9, Theorem 1]) If q ≥ (p− 1)2, then (1.1) has no solution (x, y).

3 Proof of Theorem

Let p, q be odd primes such that p ≡ 3 (mod4) and

q > 220p(log p)2. (3.1)

Since 100p(log p)2 > (p − 1)2 if p < 8000, by Lemma 2.9, the theorem holds for p < 8000.
Therefore, it suffices to prove the theorem for

p > 8000. (3.2)

We now assume that (1.1) has a solution (x, y). Then, by Lemma 2.1, we have y ≡ 1 (mod
2p) and

y ≥ 2p+ 1. (3.3)

Further, since q > p by (3.1), we get from (1.1) and (3.3) that xp > (xp − 1)/(x− 1) = peyq ≥
yq > yp ≥ (2p+ 1)p. It implies that

x > 2p+ 1. (3.4)

We first consider the case that e = 0. Then, (1.1) can be written as

xp − 1

x− 1
= yq. (3.5)
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Since p > 3 and p ≡ 3 (mod4), by Lemmas 2.3 and 2.4, we see from (3.5) that the equation

X2 + pY 2 = yZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0 (3.6)

has the solution

(X,Y, Z) = (A(x), B(x), q). (3.7)

Since e = 0, by Lemma 2.1, we have gcd(y, 2p) = 1. Therefore, applying Lemma 2.6 to (3.7),
we get

q = Z1t, t ∈ N, (3.8)

A(x) +B(x)
√
−p = λ1(X1 + λ2Y1

√
−p)t, λ1, λ2 ∈ {±1}, (3.9)

where X1, Y1, Z1 are positive integers satisfying

X2
1 + pY 2

1 = yZ1 , gcd(X1, Y1) = 1 (3.10)

and

Z1 | h(−4p). (3.11)

Since q is an odd prime with q > p, by Lemma 2.7, we see from (3.8) and (3.11) that Z1 = 1
and t = q. Therefore, by (3.9) and (3.10), we have

A(x) +B(x)
√
−p = λ1(X1 + λ2Y1

√
−p)q, λ1, λ2 ∈ {±1}, (3.12)

and

X2
1 + pY 2

1 = y, gcd(X1, Y1) = 1 (3.13)

Let

θ = X1 + Y1

√
−p , θ = X1 − Y1

√
−p. (3.14)

By (3.12) and (3.14), we get

B(x) = ±θ
q − θq

2
√
−p

. (3.15)

Further let α = θ/θ. By (3.13) and (3.14), we have

|θ| = |θ| = √y (3.16)

and

yα2 − 2(X2
1 − pY 2

1 )α+ y = 0. (3.17)

Therefore, we see from (3.3), (3.16) and (3.17) that α is a complex algebraic number such that
|α| = 1, [Q(α) : Q] = 2 and α is not a root of unity.

By (3.15) and (3.16), we have

|B(x)| = |θq|
2
√
p
|αq − 1| = yq/2

2
√
p
|αq − 1|. (3.18)
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Using Lemma 2.5, by (3.4), we have

|B(x)| < x(p−3)/2 . (3.19)

On the other hand, by (3.5), we get yq/2 > x(p−1)/2. Therefore, by (3.18) and (3.19), we obtain

2
√
p

x
> |αq − 1|. (3.20)

Using the maximum modulus principle, for any complex number z, we have either |ez−1| ≥
1/2 or |ez − 1| > 2|z − kπ

√
−1|/π for some integers k. Therefore, by (3.20), we have either

2
√
p

x
>

1

2
(3.21)

or
π
√
p

x
> |q logα− kπ

√
−1|, k ∈ Z, |k| ≤ q. (3.22)

However, by (3.4), (3.21) is impossible. Thus, by (3.22), we get

log(π
√
p) > log x+ log |Λ|, (3.23)

where
Λ = q logα− kπ

√
−1. (3.24)

Applying Lemma 2.8 to (3.24), Λ satisfies (2.24), where

A = max{20, 10.89| logα|+ h(α)}, (3.25)

H = max{17, log
( q

68.9
+

q

2A

)
+ 7.38}, (3.26)

By (3.1), (3.2), (3.3), (3.16) and (3.17), we have 0 < | logα| ≤ π, h(α) = log
√
y, 40.69 <

10.98π + log
√
y and 17 < 7.38 + log(q/68.9). Hence, by (3.25) and (3.26), we get

6.20 < log
√

2p+ 1 ≤ log
√
y < A ≤ 10.98π + log

√
y (3.27)

and

H ≤ 7.38 + log
( q

68.9
+

q

2A

)
< 7.38 + log

( q

68.9
+

q

81.38

)
< 3.77 + log q, (3.28)

Since xp > (xp− 1)/(x− 1) = yq, we have p log x > q log y. Substitute (2.24) into (3.23), we
get

log(π
√
p) + 8.87AH2 > log x >

q

p
log y > 220(log p)2(log y). (3.29)

By (3.27), (3.28) and (3.29), we have

log π + 1
2 log p

(log p)2(log y)
+ 8.87

(
10.98π + 1

2 log y

log y

)(
3.77 + log q

log p

)2

> 220. (3.30)
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By (3.2) and (3.3), we have

log π + 1
2 log p

(log p)2(log y)
<

1

(log p)2
<

1

(log 8000)2
< 0.02,

(3.31)

10.98π + 1
2 log y

log y
=

10.98π

log y
+

1

2
<

10.98π

log 16000
+

1

2
< 4.07.

Using Lemma 2.9, we have q < (p− 1)2. It implies that

3.77 + log q

log p
<

3.77 + 2 log p

log p
<

3.77

log 8000
+ 2 < 2.42. (3.32)

Thus, by (3.30), (3.31) and (3.32), we get 220 > 0.02 + 8.87 × 4.07 × (2.42)2 > 220, a contra-
diction.

We final consider the case that e = 1. Then, by Lemmas 2.3 and 2.4, we see from (1.1) and
(2.3) that p|A(x) and (3.6) has the solution.

(X,Y, Z) =

(
B(x),

A(x)

p
, q

)
. (3.33)

Therefore, by Lemmas 2.6 and 2.7, we get from (3.33)

|B(x)| = 1

2
|θq + θ

q| = |θ
q|
2
|βq − 1| = yq/2

2
|βq − 1|, (3.34)

where β = −θ/θ, θ and θ are defined as in (3.14). Thus, using the same method as in the proof
of the case that e = 0, we can deduce from (3.34) that (1.1) has no solution (x, y) for e = 1.
The theorem is proved.

Acknowledgments

The authors would like to thank the referee for carefully examining this paper and providing
a number of important comments.

References

[1] G. D. Birhoff, H. S. Vandiver, On the integral divisors of an − bn, Ann. of Math. (2),
5 (1904), 173-180.

[2] Y. Bugeaud, G. Hanrot and M. Mignotte, Sur l
′
équation diophantienne (xn−1)/(x−

1) = yq III, Proc. London Math. Soc. 84 (2002), 59-78.



A note on a Diophantine equation 43

[3] R. K. Guy, Unsolved problems in number theory, 3rd ed., Springer Verlag, New York,
2004.

[4] K. Lreland and M. Rosen, A classical in introduction to modern number theory,
Springer Verlag, New York, 1982.

[5] M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deux logarithmes
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