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On totally disconnected generalised Sierpiński carpets
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Abstract

Generalised Sierpiński carpets are planar sets that generalise the well-known Sierpiński

carpet and are defined by means of sequences of patterns. We study the structure of the sets

at the kth iteration in the construction of the generalised carpet, for k ≥ 1. Subsequently,

we show that certain families of patterns provide total disconnectedness of the resulting

generalised carpets. Moreover, analogous results hold even in a more general setting.
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1 Introduction

Sierpiński carpets [3, 8] are self-similar fractals in the plane that originate from the Sierpiński
carpet [6, 7] and have been used, e.g., as models for porous materials [3, 8].

In a recent paper Cristea and Steinsky[2] presented necessary and sufficient conditions, under
which planar sets that generalise the Sierpiński carpets, called generalised Sierpiński carpets,
are connected.

In the present paper we use the construction, the definitions and notations from the men-
tioned paper [2]. We also refer to Hata[4] for connectedness properties of self similar fractals,
and to Cristea[1] for connectedness properties of fractals, that can be viewed as a special case
of the generalised Sierpiński carpets analysed here.

2 Definitions and construction

Let x, y, q ∈ [0, 1] such that Q = [x, x + q] × [y, y + q] ⊆ [0, 1] × [0, 1]. For any point (zx, zy) ∈
[0, 1]× [0, 1] we define the function PQ(zx, zy) = (qzx + x, qzy + y).

Let m ≥ 1. Sm
i,j = {(x, y) | i

m
≤ x ≤ i+1

m
and j

m
≤ y ≤ j+1

m
} and Sm = {Sm

i,j | 0 ≤ i ≤
m − 1 and 0 ≤ j ≤ m − 1}. We call any nonempty A ⊆ Sm an m-pattern. Let {Ak}

∞
k=1 be

a sequence of non-empty patterns and {mk}
∞
k=1 be the corresponding width-sequence, i.e., for

all k ≥ 1 we have Ak ⊆ Smk
. We let W1 = A1, and call it the set of white squares of level 1.
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Then we define B1 = Sm1
\ W1 as the set of black squares of level 1. For k ≥ 2 we define the

set of white squares of level k by Wk =
⋃

W∈Ak,Wk−1∈Wk−1
{PWk−1

(W )}.

For a sequence of patterns {Ak}
∞
k=1 with width sequence {mk}

∞
k=1 we introduce the notation

m(k) :=
∏k

l=1 ml. In all the considerations to follow we will assume mk ≥ 2, for all k ≥ 1. We
note that Wk ⊂ Sm(k), and we define the set of black squares of level k, Bk = Sm(k) \ Wk. For
k ≥ 1, we define Lk =

⋃

W∈Wk
W . Therefore, {Lk}

∞
k=1 is a monotonically decreasing sequence

of compact sets. We write L∞ =
⋂∞

k=1 Lk, for the limit set of the pattern sequence {Ak}
∞
k=1.

We call any such L∞ a generalised Sierpiński carpet and Ln the n-th approximation of L∞.

For any 0 ≤ i ≤ m(k) − 1 we call ∪
m(k)−1
j=0 {S

m(k)
i,j } a column of level k. Moreover,

we call ∪
m(k)−1
j=0 {S

m(k)
0,j } the left column of level k (in short the left column of Sm(k)), and

∪
m(k)−1
j=0 {S

m(k)
m(k)−1,j} the right column of level k (in short the right column of Sm(k)). Analo-

gously, for any 0 ≤ j ≤ m(k) − 1 we call ∪
m(k)−1
i=0 {S

m(k)
i,j } a row of level k. ∪

m(k)−1
i=0 {S

m(k)
i,0 } is

the bottom row of level k (in short the bottom row of Sm(k)) and ∪
m(k)−1
i=0 {S

m(k)
i,m(k)−1} is the top

row of level k (in short the top row of Sm(k)).
For W ⊆ Sm we define, G(W) to be the graph of W, as in the mentioned paper [2]. We call

any path in G(Bk) a black path of level k. If p = {Si}
r
i=1 is a path in G(Wk) or G(Bk) then we

call Γ(p) := ∪r
i=1Si the corridor of the path p.

3 Special families of m-patterns

For an m-pattern A we denote by Ac the set Sm \ A. For any A ⊆ Sm we define Gs(A) =
(V (Gs(A)), E(Gs(A))) to be the graph whose set of vertices V (Gs(A)) consists of the squares
Sm
i,j that are elements of A and whose set of edges consists of unordered pairs of distinct squares

that are elements of A and have a common side. Now, we introduce several particular types of
patterns.

An m-pattern A is of type V (“vertically cutting”), if G(Ac) contains a connected component
G(K) that corresponds to a subset K of Ac, connects the top and the bottom row of Sm, and
has the property that there exist indices i1, i2 such that i1 ∈ {i, Sm

i,m−1 ∈ K}, i2 ∈ {i, Sm
i,0 ∈ K}

and i2 ∈ {i1 − 1, i1, i1 + 1}. We also denote by V the family of all patterns of type V.
An m-pattern A is of type H (“horizontally cutting”), if G(Ac) contains a connected com-

ponent G(K) that corresponds to a subset K of Ac, connects the left and the right column
of Sm, and has the property that there exist indices j1, j2 such that j1 ∈ {j ∈ Sm

0,j ∈ K},
j2 ∈ {j, Sm

m−1,j ∈ K} and j2 ∈ {j1 − 1, j1, j1 + 1}. We also denote by H the family of all
patterns of type H.

Figure 1: Patterns of type V, H, and both V and H, respectively.
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An m-pattern A is of type D1 (“diagonally cutting parallel to the first diagonal”) in the
following two cases:

1. G(Ac) contains a connected component G(K) corresponding to a subset K of Ac, such
that {Sm

0,0, Sm
m−1,m−1} ⊆ K,

2. G(Ac) contains a connected component G(K1) that corresponds to a subset K1 of Ac and
connects the left column and the top row of Sm, and a connected component G(K2) that
corresponds to a subset K2 of Ac and connects the bottom row and the right column of
Sm, such that, on the one hand, there exist indices j1, j2 such that j1 ∈ {j, Sm

0,j ∈ K1}, j2 ∈
{j, Sm

m−1,j ∈ K2} and j2 ∈ {j1 − 1, j1, j1 + 1}, and, on the other hand, there exist indices
i1, i2 such that i1 ∈ {i, Sm

i,m−1 ∈ K1}, i2 ∈ {i, Sm
i,0 ∈ K2}, and i2 ∈ {i1 − 1, i1, i1 + 1}.

An m-pattern A is of type D2 (“diagonally cutting parallel to the second diagonal”) in the
following two cases:

1. G(Ac) contains a connected component G(K) corresponding to a subset K of Ac, such
that {Sm

0,m−1, Sm
m−1,0} ⊆ K,

2. G(Ac) contains a connected component G(K1) that corresponds to a subset K1 of Ac and
connects the left column and the bottom row of Sm, and a connected component G(K2)
that corresponds to a subset K2 of Ac and connects the top row and the right column of
Sm, such that, on the one hand, there exist indices j1, j2 such that j1 ∈ {j, Sm

0,j ∈ K1},
j2 ∈ {j, Sm

m−1,j ∈ K2} and j2 ∈ {j1 − 1, j1, j1 + 1}, and, on the other hand, there exist
indices i1, i2 such that i1 ∈ {i, Sm

i,0 ∈ K1}, i2 ∈ {i, Sm
i,m−1 ∈ K2} and i2 ∈ {i1−1, i1, i1+1}.

We also denote by D2 the family of all patterns of type D2.
An m-pattern A is of type C1, (“corner square on the first diagonal”) if {Sm

0,0, S
m
m−1,m−1} ∩

Ac 6= ∅, and of type C2, (“corner square on the second diagonal”) if {Sm
0,m−1, S

m
m−1,0}∩Ac 6= ∅.

We denote by C1 and C2 the family of all patterns of type C1 and C2, respectively. We also
denote by D1 the family of all patterns of type D1.

Figure 2: Patterns of type D1, D2, both D1 and D2, and of all types, respectively.

4 On the structure of generalised Sierpiński carpets given by the occurrence of

special patterns

Throughout this section, we assume, when dealing with sequences of patterns {Ak}
∞
k=1, that

these patterns define generalised Sierpiński carpets.
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Proposition 1. Let {Ak}
∞
k=1 be a sequence of patterns with width-sequence {mk}

∞
k=1. Let

1 < k1 < k2, k3, and Ak1
∈ V ∪H, Ak2

∈ C1 and Ak3
∈ C2.

1. If Ak1
∈ V, then there exist m(k1 − 1) distinct paths in Gs(Bk3

), each of them connecting
some square of Bk3

lying in the top row of Sm(k3) with some square of Bk3
lying in the

bottom row of Sm(k3). Each of these paths is contained in a column of level k1 − 1.

2. If Ak1
∈ H, the analogous statements hold for paths in Gs(Bk3

) that connect squares that
lie in the left column and in the right column of Sm(k3).

Proof: We just sketch the proof. We refer only to the case when Ak1
∈ V, since the case

Ak1
∈ H can be treated analogously. Let C be a column of level k1 − 1. Based on the

properties of the patterns of type V, one can construct a path p in G(Wk1
) that has the corridor

contained in C and that connects a square S1 ∈ V (G(Bk1
)) that lies in the top row of Sm(k1)

with a square S1 ∈ V (G(Bk1
)) that lies in the bottom row of Sm(k1) (such that S1 and S2 lie in

the same or in neighbouring columns of level k1). The squares that are elements of p correspond
to the vertices in a connected component G(Kk1

) of G(Bk1
). If Gs(Kk1

) is connected, let Kk3
be

the set of all squares of level k3 that are contained in some squares of level k1 of G(Kk1
). One

can then construct a path p′ in Gs(Kk3
) that consists of squares of Kk3

, such that Γ(p′) ⊆ Γ(p).
If Gs(Kk1

) is not connected, then we denote by Bk(p), for k = k2, k3, the set of all black squares
of level k that lie in the same column C and have a common side with some square of level k1
that belongs to the path p. Let now Kk3

be the set consisting of all black squares of level k3
that are subsets of the squares in the path p, together with all the black squares in Bk3

(p), and
all the black squares of level k3 that are contained in some black square of Bk2

(p) and share
a side with some black square of level k3 which is a subset of a black square occurring in p.
Then Kk3

contains a path p′ of level k3 in Gs(Bk3
), with Γ(p) ⊆ Γ(p′), that connects a square

of level k3 lying in the top row of Sm(k3) with some square of level k3 lying in the bottom row
of Sm(k3), and p′ is contained in C.

We call the paths occurring in Proposition 1 vertical paths of level k3 and horizontal paths
of level k3 in the unit square, respectively.
Remark. Under the assumptions of case 1. of Proposition 1, for each of the m(k1−1) columns
of level (k1 − 1) there exists an empty corridor of level k3 within that column. In case 2. the
analogous statement holds for each of the m(k1 − 1) rows of level (k1 − 1).
Proceeding analogously as above, one can prove the following result.

Proposition 2. Let {Ak}
∞
k=1 be a sequence of patterns with width-sequence {mk}

∞
k=1. Let

1 < k1 < k2, k3, and Ak1
∈ D1 ∪ D2, Ak2

∈ C1 and Ak3
∈ C2.

1. If Ak1
∈ D1, then the following statements hold. There exist m(k1 − 1) distinct paths in

Gs(Bk3
), each of them connecting some square of Bk3

lying in the left column of Sm(k3)

with some square of Bk3
lying in the top row of Sm(k3). There exist m(k1 − 1) distinct

paths in Gs(Bk3
), each of them connecting some square of Bk3

lying in the bottom row of
Sm(k3) with some square of Bk3

lying in the right column of Sm(k3).

2. The analogous statements hold for Ak1
∈ D2 and the corresponding paths in Gs(Bk3

).



On generalised Sierpiński carpets 31

We call the paths occurring in Proposition 2 diagonal paths of level k3 and type D1, or,
respectively, of type D2 in the unit square.

Remark. (The translation property.) Let P be the set of paths of level k3 constructed for
all columns of level k1 − 1 as in (the proof of) Proposition 1. The intersection of the black
squares of level k3 belonging to a black vertical path of level k3 in P with any square Q of level
k1 − 1 is the translated image of the intersection of the black squares of level k3 of any black
path of level k3 in P with any square Q′ of level k1 − 1. The translation vetor is parallel to the
Ox- or Oy- axis, and its length is α

m(k1−1) , α ∈ N.

One can show that under the assumptions of Proposition 2 there is a set P of diagonal
paths of level k3 (of type D1 or D2, depending on the type of the pattern Ak1

) with analogous
translation properties.

Proposition 3. (“Parallel” vertical curves for vertical patterns.) Under the assumptions of
Proposition 1 let Ak1

∈ V. Then there exists a set Ṽ(Ak1
) of curves that connect the top and

the bottom side of the unit square with the following properties:

1. If π ∈ Ṽ(Ak1
) and Q,Q′ ∈ Sm(k1−1) lie in the same column of level k1 − 1 such that

π ∩Q 6= ∅ and π ∩Q′ 6= ∅, then there exists a translation T by a vector of length α
m(k1−1) ,

α ∈ N, parallel to the Oy-axis, such that π ∩Q′ = T (π ∩Q).

2. If π, π′ ∈ Ṽ(Ak1
) and Q,Q′ ∈ Sm(k1−1) lie in the same row of level k1 − 1 such that

π ∩Q 6= ∅ and π ∩Q′ 6= ∅, then there exists a translation T by a vector of length α
m(k1−1) ,

α ∈ N, parallel to the Ox-axis, such that π ∩Q′ = T (π ∩Q).

3. If π, π′ ∈ Ṽ(Ak1
), then there exists a translation T by a vector of length α

m(k1−1) , α ∈ N,

parallel to the Ox-axis, such that π′ = T (π).

4. If π ∈ Ṽ(Ak1
), then it is contained in a column of level k1 − 1.

Proof: We give a sketch of the proof. For each path in Gs(Bk3
) constructed in the proof of

Proposition 1, there exists a minimal path pmin from the top row to the bottom row of Sm(k3),
such that the m(k1 − 1) minimal paths have the properties stated in the above remark about
the translation property of the paths. Let p be such a path and pmin the corresponding minimal
sub-path. We construct a curve that lies inside the corridor pmin by taking the union of the line
segments connecting, e.g., the midpoints of the top edge and the bottom edge in each square
in pmin.

The analogon of Proposition 3 holds for patterns of type H. With a construction idea analogous
to that of the curves in the proof of Proposition 3 one can prove the following result.

Proposition 4. (“Parallel diagonal curves for diagonal patterns”.) Under the assumptions of
Proposition 2 let Ak1

∈ D1. Then there exists a set D̃1(Ak1
) of curves that connect the left and

the top side or the bottom and the right side of the unit square with the following properties:
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1. If Q,Q′ ∈ Sm(k1−1) lie in the same row (column) of level k1−1, then there exists a trans-

lation T by a vector parallel to the Ox- (Oy)-axis, such that {Q′ ∩ π′ | π′ ∈ D̃1(Ak1
)} =

T
(

{Q ∩ π | π ∈ D̃1(Ak1
)}
)

.

2. If π, π′ ∈ D̃1(Ak1
), then there exists a translation T by a vector parallel to the Ox-axis,

such that either π′ ⊂ T (π) or T (π) ⊂ π′.

3. If π, π′ ∈ D̃1(Ak1
), then there exists a translation T by a vector parallel to the Oy-axis,

such that either π′ ⊂ T (π) or T (π) ⊂ π′.

In each case the length of the vector defining T is α
m(k1−1) , α ∈ N.

5 Totally disconnected generalised Sierpiński carpets

Lemma 1. Let L∞ be a generalised carpet defined by a sequence of patterns {Ak}
∞
k=1 with width-

sequence {mk}
∞
k=1. Let 1 < k1 < k2, k3, and k1 < k4 < k5, k6 such that Ak1

∈ V, Ak2
∈ C1,

Ak3
∈ C2, Ak4

∈ H, Ak5
∈ C1 and Ak6

∈ C2. Then, for any two points t = (t1, t2), z = (z1, z2)
lying in the same connected component of Lk6

, |t1 − z1| ≤
2

m(k1−1) and |t2 − z2| ≤
2

m(k4−1) .

Proof: Let Ωk6
(t, z) be the connected component in Lk6

that contains t and z. We give a proof
by contradiction. We assume that there is a column C of level k1 − 1 between t and z. As
Ωk6

(t, z) is a finite union of squares, it is path-connected. Thus, there is a curve c from t to
z in Ωk6

(t, z). Let C ′ denote the rectangle that is the union of all squares of level k1 − 1 that
belong to C. c ∩ C ′ is a curve from the left side of C ′ to the right side of C ′.

From Proposition 3 it follows that there exists a curve π ∈ Ṽ(Ak6
) such that π is in C ′ and

leads from the top side of C ′ to the bottom side of C ′. We have c ⊆ L∞ and π ⊆ [0, 1]×[0, 1]\L∞,
which is a contradiction to a known result, see e.g., Maehara[5, Lemma 2]. We obtain that t

and z must lie within two consecutive columns of level k1−1, and therefore |t1−z1| ≤
2

m(k1−1) .

Using an analogon of Proposition 3 for patterns of type H and the same arguments as before
we infer |t2 − z2| ≤

2
m(k4−1) .

The proofs of the following two lemmas are analogous to the above proof.

Lemma 2. Let L∞ be a generalised carpet defined by a sequence of patterns {Ak}
∞
k=1 with

width-sequence {mk}
∞
k=1. Let 1 < k1 < k2, k3, and k1 < k4 < k5, k6 such that Ak1

∈ D1 ∪ D2,
Ak2

∈ C1 and Ak3
∈ C2, Ak4

∈ H ∪ V,Ak5
∈ C1 and Ak6

∈ C2. Then, for any two points
t = (t1, t2), z = (z1, z2) lying in the same connected component of Lk6

, |t1 − z1| ≤
4

m(k1−1) and

|t2 − z2| ≤
2

m(k1−1) .

Lemma 3. Let L∞ be a generalised carpet defined by a sequence of patterns {Ak}
∞
k=1 with

width-sequence {mk}
∞
k=1. Let 1 < k1 < k2, k3 and k4 < k5, k6 such that Ak1

∈ D1 and
Ak4

∈ D2, Ak2
∈ C1 and Ak3

∈ C2, Ak5
∈ C1 and Ak6

∈ C2. Then, for any two points
t = (t1, t2), z = (z1, z2) lying in the same connected component of Lk6

, |t1 − z1| ≤
3

m(k−1) and

|t2 − z2| ≤
3

m(k−1) , where k = min(k1, k4).
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Theorem 1. Let L∞ be a generalised carpet defined by a sequence of patterns {Ak}
∞
k=1 with

width-sequence {mk}
∞
k=1. If

1. there exist two distinct types of patterns, T1, T2 ∈ {V,H,D1,D2} such that infinitely many
patterns occurring in the sequence {Ak}

∞
k=1 are of type T1 and infinitely many patterns

occurring in the sequence {Ak}
∞
k=1 are of type T2, and

2. infinitely many patterns occurring in the sequence {Ak}
∞
k=1 are of type C1 and infinitely

many patterns occurring in the sequence {Ak}
∞
k=1 are of type C2,

then L∞ is totally disconnected with respect to the Euclidean topology.

Proof: As the first case, we assume that T1 = V and T2 = H. Lemma 1 yields that any
connected component of L∞ consists of precisely one point. The second case is that T1 ∈
{D1,D2} and T2 ∈ {H,V}. Here, we use Lemma 2 to obtain that any connected component
of L∞ consists of one point. In the third and final case, we have T1 = D1 and T2 = D2. By
Lemma 3 we infer that any connected component of L∞ consists of one point.

The construction of generalised Sierpiński carpets, as it was given in Section 2, can be
generalised, by allowing, at each inductive step k of the construction, not just the application
of one pattern Ak ⊂ Smk

to all white squares that were created in the previous step, but, the

application of a set of n(k) distinct patterns {Ai
k}

n(k)
i=1 , n(k) ≥ 1, Ai

k ⊆ Smk
, with the possibility

to apply distinct patterns of {Ai
k}

n(k)
i=1 to distinct white squares of Wk−1. In this case we call

L∞ a non-uniform generalised Sierpiński carpet. Thus, a non-uniform generalised Sierpiński
carpet is defined by means of a sequence {Âk}

∞
k=1, and its width sequence {mk}

∞
k=1, where Âk

is a set of n(k) (with n(k) ≥ 1) mk-patterns, for all k ≥ 1. Based on the above proof, one can
show that Theorem 1 also holds in the case of non-uniform generalised Sierpiński carpets:

Theorem 2. Let L∞ be a non-uniform generalised carpet defined by a sequence of sets of
patterns {Âk}

∞
k=1 with width-sequence {mk}

∞
k=1. If

1. there exist two distinct types of patterns, T1, T2 ∈ {V,H,D1,D2} such that infinitely many
elements Âk occurring in the sequence {Âk}

∞
k=1 consist of only one pattern Âk = {Ak}

and Ak ∈ T1, and infinitely many elements occurring in the sequence {Âk}
∞
k=1 consist of

only one pattern Âk = {Ak} and Ak ∈ T2, and

2. infinitely many elements of the sequence {Âk}
∞
k=1 satisfy Âk = {Ai

k}
n(k)
i=1 , where n(k) ≥ 1,

Ai
k ∈ C1, and i = 1, . . . , n(k), and infinitely many elements of the sequence {Âk}

∞
k=1

satisfy Âk = {Ai
k}

n(k)
i=1 , where n(k) ≥ 1, Ai

k ∈ C2, and i = 1, . . . , n(k),

then L∞ is totally disconnected with respect to the Euclidean topology.

The results obtained here provide a method for constructing both self-similar and non-self-
similar generalised carpets that are totally disconnected. Moreover, the construction of the
generalised Sierpiński carpets described above makes it possible to obtain totally disconnected
carpets of box-counting dimension less than or equal to 2.
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