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Abstract

We study a nonlinear parametric Neumann problem driven by a nonhomogeneous quasi-
linear elliptic differential operator div(a(x,∇u)), a special case of which is the p-Laplacian.
The reaction term is a nonlinearity function f which exhibits (p−1)-subcritical growth. By
using variational methods, we prove a multiplicity result on the existence of weak solutions
for such problems. An explicit example of an application is also presented.
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1 Introduction

In this paper we study the existence of multiple solutions for the following Neumann problem, −div(a(x,∇u)) + |u|p−2u = (λk(x) + µ)f(u) in Ω
∂u

∂na
= 0 on ∂Ω.

(Nλ,µ)

Here and in the sequel, Ω is a bounded, connected domain in (IRN , |·|) with smooth boundary
∂Ω, p > 1, a : Ω̄ × IRN → IRN is a suitable Carathéodory map which is strictly monotone in
the ξ ∈ IRN variable and ∂u/∂na := a(x,∇u) · n, where n is the outward unit normal vector
on ∂Ω. Further, λ and µ are positive real parameters, k ∈ L∞(Ω)+ and finally, f : IR → IR
is a continuous function which is (p − 1)-sublinear at infinity. We cite a recent monograph by
Kristály, Rădulescu and Varga [12] as a general reference on variational methods.

Recently, problems involving p-Laplacian-like operators have been studied by several authors
under different boundary conditions and by using different technical approaches.

For instance, Dirichlet problems involving a general operator in divergence form were studied
by De Nápoli and Mariani in [5] by imposing symmetry condition on the map ξ 7→ a(a, ξ). In the
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cited paper the existence of one weak solution was proved by exploiting the standard mountain
pass geometry and requiring, among other assumptions, that the nonlinearity f has a (p− 1)-
superlinear behaviour at infinity. The non-uniform case was successively considered by Duc
and Vu in [6] who extended the result of [5] under the key hypothesis that the map a fulfills a
suitable growth condition.

In [11], by using variational methods, Kristály, Lisei and Varga studied the analogue of the
above case for a uniform Dirichlet problem with parameter, obtaining the existence of three
weak solutions requiring that the nonlinearity f has a (p− 1)-sublinear growth at infinity.

Successively, Yang, Geng and Yan [25] proved the existence of three weak solutions for
singular p-Laplacian type equations. Finally, Papageorgiou, Rocha and Staicu in [20] considered
a nonsmooth p-Laplacian problem in divergence form, obtaining the existence of at least two
nontrivial weak solutions. See also the contributions obtained by Servadei in [22] for related
multiplicity results.

The study of the corresponding Neumann problem is in some sense lagging behind. Super-
linear Neumann problems were studied by Aizicovici, Papageorgiou and Staicu [1] and Gasiński-
Papageorgiou [9]. In [1] the differential operator is the p-Laplacian and the superlinear reaction
term satisfies the celebrated (AR)-condition. In [9] the differential operator is nonhomogeneous
incorporating the p-Laplacian, but for the superlinear case the authors prove only an existence
theorem and do not have multiplicity results. Related to this paper are also the nice works
[10, 19] and references therein.

Our goal in this paper is to prove a multiplicity result for Neumann problem (Nλ,µ) by
using a critical point result due to Ricceri (see Theorem 2.1). More precisely, for a suitable
µ = µ0 and λ sufficiently small, the existence of multiple solutions for problem (Nλ,µ0) will be
obtained requiring that the nonlinearity f has a (p− 1)-linear growth in addition to a suitable
oscillating behaviour of the associated potential (see condition (hµ0

m )). We also emphasize that
our hypotheses on a, following the approach given in [9], are considerably weaker than the
corresponding ones in [5, 11], where a(x, ξ) =: ∇ξA(x, ξ), with A ∈ C(Ω̄ × IRN ) and for every

x ∈ Ω̄, A(x, ·) ∈ C1(IRN ). Moreover, they assume that for every x ∈ Ω̄, the function ξ 7→ A(x, ξ)
is a strongly convex function.

This requirement, in the special case of the p-Laplacian operator div(|∇u|p−2∇u) implies
that p ≥ 2. In contrast, in our approach we only have that for every x ∈ Ω̄, the map ξ 7→ A(x, ξ)
is strictly convex. So, for p-Laplacian equations we allow any p > 1.

The plan of the paper is as follows. Section 2 is devoted to our abstract framework, while
Section 3 is dedicated to the main results. A concrete example of an application is then presented
(see Example 3.8).

2 Abstract framework

Let W 1,p(Ω) (p > 1) be the usual Sobolev space, equipped with the norm

‖u‖ :=
(∫

Ω

(|∇u(x)|p + |u(x)|p)dx
)1/p

.

Further, let (for semplicity of notation) W−1,p(Ω) be its topological dual and denote the duality
brackets for the pair (W−1,p(Ω),W 1,p(Ω)) by 〈·, ·〉. Indicate by p∗ the critical exponent of the
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Sobolev embedding W 1,p(Ω) ↪→ Lq(Ω).
Recall that if p < N then p∗ = Np/(N − p) and for every q ∈ [1, p∗] there exists a positive

constant cq such that

‖u‖Lq(Ω) ≤ cq‖u‖ , (1)

for every u ∈W 1,p(Ω). Moreover, when p ≥ N , this inequality holds for any q ∈ [1,+∞[, since
p∗ = +∞.

Our main tool will be the following abstract critical point theorem due to Ricceri [21].

Theorem 2.1. Let H be a separable and reflexive real Banach space and let N ,G : H → IR be
sequentially weakly lower semicontinuous and continuously Gâteaux differentiable functionals,
with N coercive.

Assume that the functional Jλ := N+λG satisfies the Palais-Smale condition for every λ > 0
small enough and that the set of all global minima of N has at least m connected components
in the weak topology, with m ≥ 2.

Then for every η > inf
u∈H
N (u), there exists λ̄ > 0 such that for every λ ∈ (0, λ̄), the functional

Jλ has at least m+ 1 critical points, m of which are lying in the set N−1((−∞, η)).

For the sake of completeness, we also recall that a C1-functional J : X → IR, where X is a
real Banach space with topological dual X∗, satisfies the Palais-Smale condition at level α ∈ IR,
(briefly (PS)α) when

(PS)α Every sequence {un} in X such that

J(un)→ α, and ‖J ′(un)‖X∗ → 0,

possesses a convergent subsequence.

Finally, we say that J satisfies the Palais-Smale condition (in short (PS)) if (PS)α holds for
every α ∈ IR.

3 The main result

In the sequel, let Ω ⊂ IRN be a bounded and connected Euclidean domain. Assume that there
exists a function A : Ω̄× IRN → IR, with gradient a(x, ξ) := ∇ξA(x, ξ) : Ω̄× IRN → IRN , such
that the following conditions hold:

(α1) For all ξ ∈ IRN , the function x 7→ A(x, ξ) is measurable;

(α2) For almost all x ∈ Ω̄, the function ξ 7→ A(x, ξ) is C1, strictly convex, and A(x, 0) = 0;

(α3) For almost all x ∈ Ω̄ and all ξ ∈ IRN , we assume

|a(x, ξ)| ≤ a0(x) + c0|ξ|p−1,

with a0 ∈ L∞(Ω)+, c0 > 0 and p > 1;
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(α4) For almost all x ∈ Ω̄ and all ξ ∈ IRN , we suppose

a(x, ξ) · ξ ≤ pA(x, ξ);

(α5) There exists κ > 0 such that for almost all x ∈ Ω̄ and every ξ ∈ IRN , we have κ|ξ|p ≤
pA(x, ξ).

Example 3.1. We present some examples of functions A(x, ξ) which correspond to the map
a(x, ξ) and satisfy the above hypotheses.

◦ A(x, ξ) :=
|ξ|p

p
with p > 1. Then

a(x, ξ) := ∇ξA(x, ξ) = |ξ|p−2ξ.

In this setting, the resulting differential operator is the usual p-Laplacian

∆pu := div(|∇u|p−2∇u);

◦ A(x, ξ) :=
a1(x)

p
|ξ|p +

a2(x)

p
|ξ|r, with a1, a2 ∈ L∞(Ω)+, a1(x) ≥ c0 > 0 for almost every

x ∈ Ω̄ and 1 < r < p;

◦ A(x, ξ) :=
a1(x)

p
|ξ|p+

1

r
log(1 + |ξ|r), with a1 ∈ L∞(Ω)+, a1(x) ≥ c0 > 0 for almost every

x ∈ Ω̄ and 1 < r ≤ p;

◦ A(x, ξ) :=
1

p
((1 + |ξ|2)p/2), with p > 1. Thus

a(x, ξ) = (1 + |ξ|2)(p−2)/2ξ.

The resulting differential operator is the generalized mean curvature operator

div((1 + |∇u|2)(p−2)/2∇u);

◦ A(x, ξ) :=
M(x)ξ · ξ

2
, with M ∈ L∞(Ω̄; IRN×N ) and M(x) ≥ c0IN for almost every x ∈ Ω̄,

with c0 > 0 and IN being the identity N -matrix.

Remark 3.2. The operator a(x, ξ) := ∇ξA(x, ξ) satisfies the (S+) property; see [9, Proposition
3.1]. This means that for every sequence {un} ⊂W 1,p(Ω) such that un ⇀ u (weakly) in W 1,p(Ω)
and

lim sup
n→∞

∫
Ω

a(x,∇un(x)) · ∇(un − u)(x)dx ≤ 0,

then un → u (strongly) in W 1,p(Ω).

From now on, let f : IR→ IR be a continuous function such that
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(h∞) lim
|t|→∞

f(t)

|t|p−1
= 0.

A typical case when (h∞) holds is

(hqρ) There exist q ∈ (0, p− 1) and ρ > 0 such that |f(t)| ≤ ρ|t|q for every t ∈ IR.

In order to obtain our multiplicity result, in addition to condition (h∞), we also require that:

(hµ0
m ) There exists µ0 ∈ (0,∞) such that the set of global minima of the function

s 7→ F̃µ0
(s) := Λsp − µ0F (s),

has at least m ≥ 2 connected components.

Note that (hµ0
m ) implies that the function s 7→ F̃µ0(s) has at least m− 1 local maxima.

We are interested in the existence of multiple weak solutions for the following Neumann
problem  −div(a(x,∇u)) + |u|p−2u = (λk(x) + µ0)f(u) in Ω

∂u

∂na
= 0 on ∂Ω.

(Nλ,µ0
)

For the sake of completeness we recall that, fixing λ > 0, a weak solution of problem (Nλ,µ0
)

is a function u ∈W 1,p(Ω) such that∫
Ω

a(x,∇u(x)) · ∇v(x) dx = −
∫

Ω

|u(x)|p−2u(x)v(x) dx

+ λ

∫
Ω

k(x)f(u(x))v(x) dx

+ µ0

∫
Ω

f(u(x))v(x) dx,

for every v ∈W 1,p(Ω).
Set Φ : W 1,p(Ω)→ IR given by

Φ(u) :=

∫
Ω

A(x,∇u(x))dx+
1

p

∫
Ω

|u(x)|pdx,

and

Nµ0
(u) := Φ(u)− µ0

∫
Ω

F (u(x))dx,

as well as

G(u) := −
∫

Ω

k(x)F (u(x))dx,

for every u ∈W 1,p(Ω). Here, as usual, we put

F (s) :=

∫ s

0

f(t)dt,
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for every s ∈ IR.
With the above notations and assumptions, it is easy to prove that Nµ0

and G are C1-
functionals with Gâteaux derivatives given by

〈N ′µ0
(u), v〉 =

∫
Ω

a(x,∇u(x)) · ∇v(x)dx +

∫
Ω

|u(x)|p−2u(x)v(x)dx

− µ0

∫
Ω

f(u(x))v(x)dx,

and

〈G′(u), v〉 = −
∫

Ω

k(x)f(u(x))v(x)dx,

for every v ∈W 1,p(Ω).
Thus, the critical points of Jλ := Nµ0

+ λG are exactly the weak solutions of problem (Pλ).
Finally, denote

Λ :=
min {κ, 1}

p
.

Standard arguments ensure the validity of the following preliminary regularity result on the
functionals Nµ0

and G.

Lemma 3.3. Let us assume that condition (h∞) holds. Then the above functionals Nµ0 and G
are sequentially weakly lower semicontinuous.

Proof: Due to condition (α2) the functional Φ is convex. Since Φ is strongly continuous it is
also weakly lower semicontinuous. On the other hand, since condition (h∞) holds, there exists
a positive constant c such that |f(t)| ≤ c(1 + |t|p−1), for every t ∈ IR. Finally, due to the fact
that the embedding X ↪→ Lp(Ω) is compact, we obtain that the functionals

u 7→ −
∫

Ω

F (u(x))dx, and u 7→ −
∫

Ω

k(x)F (u(x))dx,

are sequentially weakly lower semicontinuous by arguing in standard way.

Further, the C1-functional Jλ satisfies the (PS)-condition as proved in the next result.

Lemma 3.4. Assume that condition (h∞) holds. Then the functional Jλ is coercive and satisfies
the (PS)-condition for every real parameter λ.

Proof: Let us fix λ ∈ IR and consider

0 < β <
1

µ0 + |λ|‖k‖∞
.

By condition (h∞), there exists δλ such that

|f(t)| ≤ βpΛ

cpp
|t|p−1,
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for every |t| ≥ δλ. By integration we have

|F (s)| ≤ βΛ

cpp
|s|p + max

|t|≤δλ
|f(t)||s|,

for every s ∈ IR.
Thus, by using the above inequality and bearing in mind relation (1), one has

Jλ(u) ≥ Φ(u)− µ0

∣∣∣∣∫
Ω

F (u(x))dx

∣∣∣∣− |λ||G(u)|

≥ Λ(1− β(µ0 + |λ|‖k‖∞))‖u‖p

− c1(µ0 + |λ|‖k‖∞) max
|t|≤δλ

|f(t)|‖u‖.

Then the functional Jλ is bounded from below and, since p > 1, Jλ(u) → +∞ whenever
‖u‖ → +∞. Hence Jλ is coercive.

Now, fix α ∈ IR and let us prove that Jλ satisfies the condition (PS)α. For this goal, let
{un} ⊂W 1,p(Ω) be a Palais-Smale sequence, i.e.

Jλ(un)→ α, and ‖J ′λ(un)‖W−1,p → 0.

Taking into account the coercivity of Jλ, the sequence {un} is necessarily bounded in W 1,p(Ω).
Since W 1,p(Ω) is reflexive, we may extract a subsequence that for simplicity we call again {un},
such that un ⇀ u in W 1,p(Ω).

We will prove that un strongly converges to u ∈ W 1,p(Ω). Exploiting the derivative
J ′λ(un)(un − u), we obtain∫

Ω

a(x,∇un(x)) · ∇(un − u)(x)dx = 〈J ′λ(un), un − u〉

−
∫

Ω

|un(x)|p−2un(x)(un − u)(x)dx

+ µ0

∫
Ω

f(un(x))(un − u)(x)dx

+ λ

∫
Ω

k(x)f(un(x))(un − u)(x)dx.

Since ‖J ′λ(un)‖W−1,p → 0 and the sequence {un − u} is bounded in W 1,p(Ω), taking into
account that |〈J ′λ(un), un − u〉| ≤ ‖J ′λ(un)‖W−1,p‖un − u‖, one has

〈J ′λ(un), un − u〉 → 0.

Further, by the asymptotic condition (h∞), there exists a real positive constant c such that
|f(t)| ≤ c(1 + |t|p−1), for every t ∈ IR. Then∫

Ω

|f(un(x))||un(x)− u(x)|dx

≤ c
(∫

Ω

|un(x)− u(x)|dx+

∫
Ω

|un(x)|p−1|un(x)− u(x)|dx
)

≤ c((meas(Ω))1/p′ + ‖un‖p−1
Lp )‖un − u‖Lp(Ω).
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Now, the embedding W 1,p(Ω) ↪→ Lp(Ω) is compact, hence un → u strongly in Lp(Ω). So
we obtain ∫

Ω

|f(un(x))||un(x)− u(x)|dx→ 0.

Analogously, one has ∫
Ω

k(x)|f(un(x))||un(x)− u(x)|dx→ 0.

Moreover, considering the inequality∫
Ω

||un(x)|p−2un(x)(un(x)− u(x))|dx =

∫
Ω

|un(x)|p−1|un(x)− u(x)|dx

≤ ‖un‖p−1
Lp(Ω)‖un − u‖Lp(Ω),

and un → u strongly in Lp(Ω), we have∫
Ω

||un(x)|p−2un(x)(un(x)− u(x))|dx→ 0.

We can conclude that
lim sup
n→∞

〈a(x, un), un − u〉 ≤ 0,

where 〈a(x, un), un − u〉 denotes∫
Ω

a(x,∇un(x)) · ∇(un − u)(x)dx.

But as observed in Remark 3.2, the operator has the (S+) property. So, in conclusion,
un → u strongly in W 1,p(Ω).

Hence, Jλ is bounded from below and fulfills (PS), for every positive parameter λ.

Remark 3.5. We observe that by the above lemma, the functional

J0 = Nµ0
(u) := Φ(u)− µ0

∫
Ω

F (u(x))dx, (u ∈W 1,p(Ω))

is coercive.

Proposition 3.6. The set of all global minima of the functional Nµ0 has at least m connected
components in the weak topology on W 1,p(Ω).

Proof: First, for every u ∈W 1,p(Ω) we have

Nµ0
(u) = Φ(u)− µ0

∫
Ω

F (u(x))dx

≥ Λ

∫
Ω

|∇u(x)|pdx+

∫
Ω

F̃µ0(u(x))dx

≥
(

inf
s∈IR

F̃µ0(s)

)
meas(Ω).
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Moreover, if we consider u(x) = us̃(x) = s̃ for almost every x ∈ Ω, where s̃ ∈ IR is a minimum
point of the function s 7→ F̃µ0

(s), then we have the equality from the previous estimate (note
that Φ(0) = 0 by using the last part of condition (α2)). Thus,

inf
u∈W 1,p(Ω)

Nµ0
(u) =

(
inf
s∈IR

F̃µ0
(s)

)
meas(Ω).

Further, if u ∈W 1,p(Ω) is not a constant function, we have

Nµ0(u) ≥ Λ

∫
Ω

|∇u(x)|pdx+

∫
Ω

F̃µ0(u(x))dx

>

(
inf
s∈IR

F̃µ0
(s)

)
meas(Ω).

Consequently, between the sets

Min(Nµ0
) =

{
u ∈W 1,p(Ω) : Nµ0

(u) = inf
u∈W 1,p(Ω)

Nµ0
(u)

}
,

and

Min(F̃µ0) =

{
s ∈ IR : F̃µ0(s) = inf

s∈IR
F̃µ0(s)

}
,

there is a one-to-one correspondence.
Indeed, let θ be the function which associates to every number s ∈ IR the equivalence class

of those functions which are almost everywhere equal to s in Ω.
Then θ : Min(F̃µ0) → Min(Nµ0) is actually a homeomorphism between Min(F̃µ0) and

Min(Nµ0
), where the set Min(Nµ0

) is considered with the relativization of the weak topology
on W 1,p(Ω).

On account of the hypothesis (hµ0
m ), the set Min(F̃µ0

) contains at least m ≥ 2 connected
components. Therefore the same is true for the set Min(Nµ0), which completes the proof.

Our main result is as follows.

Theorem 3.7. Let f : IR→ IR be a continuous function such that conditions (h∞) and (hµ0
m )

hold. Then

a) For every η > 0, there exists a number λ̃η > 0 such that for every λ ∈ (0, λ̃η) problem

(Nλ) has at least m+ 1 weak solutions u1,η
λ , . . . , um+1,η

λ ∈W 1,p(Ω); and

b) If (hqρ) holds then for each λ ∈ (0, λ̃η) there is a set Iλ ⊂ {1, . . . ,m+1} with card(Iλ) = m
such that

‖ui,ηλ ‖ < tηqρ, (i ∈ Iλ)

where tηqρ > 0 is the greatest solution of the equation

Λtp − ρµ0
meas(Ω)((p−1)−q)/p

q + 1
tq+1 − η = 0, (t > 0).
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Proof: Let us choose H = W 1,p(Ω), and

N := Nµ0
= Φ(u)− µ0

∫
Ω

F (u(x))dx,

as well as

G(u) := −
∫

Ω

k(x)F (u(x))dx,

for every u ∈W 1,p(Ω), in Theorem 2.1.
Due to Proposition 3.6, Lemmas 3.3 and 3.4 all the hypotheses of Theorem 2.1 are satisfied.

Note that N (0) = 0, so infu∈H N (u) ≤ 0. Therefore, for every

η > 0 ≥ inf
u∈H
N (u),

there is a number λ̃η > 0 such that for every λ ∈ (0, λ̃η) the function Nµ0 + λG has at least

m+ 1 critical points; let us denote them by u1,η
λ , . . . , um+1,η

λ ∈ H. Clearly, they are solutions of
problem (Nλ), which proves the first claim.

We know in addition that m elements from u1,η
λ , . . . , um+1,η

λ belong to the set N−1
µ0

((−∞, η)).
Let ũ be such an element, i.e.,

Nµ0(ũ) = Φ(ũ)− µ0

∫
Ω

F (ũ(x))dx < η.

Hence, one has

Λ‖ũ‖p − µ0

∫
Ω

F (ũ(x))dx < η. (2)

Assume that (hqρ) holds. Then |F (t)| ≤ ρ

q + 1
|t|q+1 for every t ∈ IR.

By using the Hölder inequality, one has∫
Ω

|ũ(x)|q+1dx ≤ meas(Ω)((p−1)−q)/p‖ũ‖q+1. (3)

On account of (2) and (3) it follows that

Λ‖ũ‖p − ρµ0
meas(Ω)((p−1)−q)/p

q + 1
‖ũ‖q+1 < η. (4)

Now, observe that, since η > 0 and q ∈ (0, p−1), it is easy to see that the following algebraic
equation

Λtp − ρµ0
meas(Ω)((p−1)−q)/p

q + 1
tq+1 − η = 0, (5)

always has a positive solution.
Finally, bearing in mind (4), the number ‖ũ‖ is less than the greatest solution tηqρ > 0 of

the equation (5). The proof is complete.
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In conclusion we present a direct and easy application of Theorem 3.7 for an elliptic Neumann
problem involving the Laplace operator.

Example 3.8. Let k ∈ L∞(Ω)+ and f : IR → IR be the continuous function defined by
f(t) := min{t+ − sin(πt+), 2(m − 1)}, where m ≥ 2 is fixed and t+ = max{t, 0}. Consider the
following Neumann problem{ −∆u+ u = (λk(x) + 1)f(u) in Ω

∂u

∂n
= 0 on ∂Ω.

(Ñλ,1)

Owing to Theorem 3.7, for every η > 0, there exists a number λ̃η > 0 such that for every

λ ∈ (0, λ̃η) problem (Ñλ,1) has at least m + 1 weak solutions u1,η
λ , . . . , um+1,η

λ ∈ W 1,2(Ω).
Indeed, clearly, (h∞) holds, while for µ0 = 1, the assumption (h1

m) is also fulfilled. Indeed,
the function t 7→ F̃1(t) has precisely m global minima; they are 0, 2, . . . , 2(m − 1). Moreover,
mint∈IR F̃1(t) = 0.

Remark 3.9. We emphasize that there are several multiplicity results for nonlinear Neumann
problems driven by the p-Laplacian differential operator. We mention, among others, the works
[2, 4, 8, 18]. With exception of [4] and [18], in all the cited papers, it is assumed that p > N
and the authors exploit the fact that, in this context, the Sobolev space W 1,p(Ω) is compactly
embedded in C0(Ω̄).

Remark 3.10. For completeness we also cite a recent interesting paper of Colasuonno, Pucci,
and Varga [3] which contains some multiplicity results on elliptic problems with either Dirichlet
or Robin boundary conditions and involving a general operator in divergence form. Moreover,
some contributions for nonlinear problems involving a general operator not in divergence form
are contained in [16, 17, 23]. Finally, our abstract methods can be also used studying fractional
laplacian equations. See, for instance, the manuscript [24] and references therein for related
topics.
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[9] L. Gasiński and N.S. Papageorgiou, Existence and multiplicity of solutions for Neumann p-
Laplacian type equations, Adv. Nonlin. Studies, 8 (2008), 843-870.

[10] S. Hu and N.S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous
differential operator, Comm. Pure and Appl. Anal., Vol. 10 4 (2011), 1055-1078.
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