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Abstract

In this paper, for a second order differential equation with a middle term, we will
establish some new criteria for disconjuagcy on an interval I, i.e., any nontrivial solution
of the equation has at most one zero on this interval. We, also establish some sufficient
conditions for disfocality and obtain a lower bound for an eigenvalue of a boundary value
problem. Some examples are considered to illustrate the main results.
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1 Introduction

In this paper, we will consider the second order differential equation with a middle term

(r(t)x
′
(t))

′
+ p(t)x

′
(t) + q(t)x(t) = 0, for t ∈ I, (1.1)

where I is an interval of reals and p, q and r are real valued functions defined on I such that
r(t) > 0. The main aim in this paper is to establish some criteria for disconjugcy and disfocality
in an interval I = [a, b] ⊂ R. We also find an explicit formula for the lower bound of the first
eigenvalue of the eigenvalue problem

−
(
x
′
(t)
)′
− p(t)x

′
(t) + q(t)x(t) = λx(t), x(a) = x(b) = 0. (1.2)

Equation (1.1) is said to be a disconjugate on the interval [a, b], if there is no nontrivial solution
of (1.1) has two zeros on [a, b]. Equation (1.1) is said to be a nonoscillatory on [t0, ∞) if there
exists c ∈ [t0, ∞) such that this equation is disconjugate on [c, d] for every d > c.

If a nontrivial solution of (1.1) has a zero at a, then the first zero of x to the right of a is
called the right conjugate point of a. Successive zeros are isolated and hence yield a counting



110 Samir H. Saker

of conjugate points. If x(t) satisfies x
′
(a) = 0, then the first zero b of x(t) (say x(b) = 0) to

the right of a is called the first right focal point of a. On other words, we say that (1.1) is right
disfocal (left disfocal) on [a, b] if the solution x(t) of (1.1) which satisfies x

′
(a) = 0 (x

′
(b) = 0)

has no zeros in [a, b]. The best known existence result in the literature for disconjugacy has
been proved by Lyapunov [14]. He proved that if q(t) is a positive continuous on the closed
interval [a, b] and if

(b− a)

∫ b

a

q(t)dt ≤ 4, (1.3)

then x
′′
(t) + q(t)x(t) = 0 is disconjugate. Since the appearance of the inequality (1.3) various

proofs and generalizations or improvements have appeared in the literature for different types
of differential equations, we refer to the papers [2, 5, 6, 7, 8, 9, 10, 12, 15, 16, 17, 18, 19, 21] and
the references cited therein. Most of the sufficient conditions for disconjugacy that has been
obtained in these mentioned papers are formulated for differential equations without midle
terms and few results, we refer to [7, 8], has been obtained for a special case of equation (1.1)
with a middle term of the form

x
′′
(t) + p(t)x

′
(t) + q(t)x(t) = 0. (1.4)

2 Main Results

In this section we state and prove the main results and give some examples to illustrate the
main results. The main results will be proved by making use of Hardy’s inequality, Hölder’s
inequality and some Opial and Wirtinger type inequalities. The Hardy inequality [13] of the
differential form that we will need in this paper states that: If x is absolutely continuous on (a,
b) with x(a) = 0 or x(b) = 0, then the following inequality holds(∫ b

a

q(t) |x(t)|n dt

) 1
n

≤ C

(∫ b

a

r(t)
∣∣∣x′(t)∣∣∣m dt) 1

m

, (2.1)

where q, r, the weighted functions, are measurable in the interval (a, b) and m, n are real
parameters satisfy 0 < n ≤ ∞ and 1 ≤ m ≤ ∞. The constant C satisfies C ≤ k(m,n)A(a, b),
for 1 < m ≤ n, where

A(a, b) : = sup
a<t<b

(∫ b

t

q(t)dt

) 1
n (∫ t

a

r1−m
∗
(s)ds

)1/m∗

, if x(a) = 0,

A(a, b) : = sup
a<t<b

(∫ t

a

q(t)dt

) 1
n

(∫ b

t

r1−m
∗
(s)ds

)1/m∗

, if x(b) = 0,

and m∗ = m/(m− 1). The constant k(m,n) appears in various forms. For example,

k(m,n) := m1/m(m∗)1/m
∗
, k(m,n) := n1/n(n∗)1/n

∗
.
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Note that the inequality (2.1) has immediate application to the case where x(a) = x(b) = 0. In
this case, we see that (2.1) is satisfied if and only if

A(a, b) = sup
(c,d)⊂(a,b)

(

∫ d

c

q(t)dt)
1
n min((

∫ c

a

r1−m
∗
(s)ds)1/m

∗
, (

∫ b

d

r1−m
∗
(s)ds)1/m

∗
), (2.2)

exists and finite. The Opial inequality that we will need in order to prove the main results
in this paper is due to Bessack and Das [3]. This inequality states that: If x is absolutely
continuous on [a, b] with x(a) = 0, then the following inequality holds∫ b

a

B(t) |x(t)|m
∣∣∣x′(t)∣∣∣n dt ≤ K1(m,n)

∫ b

a

A(t)
∣∣∣x′(t)∣∣∣m+n

dt, (2.3)

where m, n are real numbers such that mn > 0 and m + n > 1, A and B are nonnegative,

measurable functions on (a, b) such that
∫ t
a
(A

−1
(m+n−1) (s)ds <∞, and

K1(m,n) :=

(
n

n+m

) n
n+m

[∫ b

a

B
n+m
m (t)

A
n
m (t)

(∫ t

a

(A
−1

(m+n−1) (s)ds

)m+n−1

dt

] m
m+n

. (2.4)

If we replace x(a) = 0 by x(b) = 0, then (2.3) holds where K1(m,n) is replaced by

K2(m,n) :=

(
n

n+m

) n
n+m

∫ b

a

B
n+m
m (t)

A
n
m (t)

(∫ b

t

(A
−1

(m+n−1) (s)ds

)m+n−1

dt

 m
m+n

. (2.5)

Note that the inequality (2.3) has an immediate application to the case where x(a) = x(b) = 0.
In this case we will assume that there exists τ ∈ (a, b) such that∫ b

τ

(A
−1

(m+n−1) (s)ds =

∫ τ

a

(A
−1

(m+n−1) (s)ds. (2.6)

Then the inequality (2.3) holds with a new constant K(m,n) which is given from the equation
K(m,n) = K1(m,n) = K2(m,n), when (2.6) is satisfied. For more details of different types of
Opial inequalities, we refer the reader to the book [1].

Now, we are ready to state and prove the main results for equation (1.1). We will assume
that there exists τ ∈ (a, b) such that∫ τ

a

1

r(t)
dt =

∫ b

τ

1

r(t)
dt, (2.7)

and denote by R(a, b). We introduce the following notations:

C(q, r) :=
1

4π
A(a, b), and K(p, r) :=

√
1

2
R(a, b)

[∫ b

a

|p(t)|2

r(t)
dt

] 1
2

, (2.8)
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where A(a, b) is defined as in (2.2).
Theorem 2.1. Assume that r, p, q are real valued functions defined on [a, b] such that

r(t) > 0 and
∫ t
a
r−1(s)ds <∞. If C(q, r) +K(p, r) < 1. Then (1.1) is disconjugate on [a, b].

Proof. Suppose that (1.1) is not disconjugate on [a, b]. Then there is a nontrivial solution
x(t) vanishes twice on [a, b]. Without loss of generality we may assume that there exists a
solution of (1.1) such that x(a) = x(b) = 0. Multiplying (1.1) by x(t) and integrating by parts
from a to b and using the boundary conditions, we have∫ b

a

r(t)
(
x
′
(t)
)2
dt ≤

∫ b

a

|q(t)|x2(t)dt+

∫ b

a

|p(t)|
∣∣∣x′(t)∣∣∣ |x(t)| dt. (2.9)

Applying the Hardy inequality (2.1) on the term
∫ b
a
|q(t)|x2(t)dt, with m = n = 2, we see that∫ b

a

|q(t)|x2(t)dt < C(q, r)

∫ b

a

r(t)
(
x
′
(t)
)2
dt, (2.10)

where C(q, r) is defined as in (2.8). Applying the inequality (2.3) on the term
∫ b
a
|p(t)|x′(t)x(t)dt,

with B(t) = |p(t)| , A(t) = r(t), m = n = 1, we have that∫ b

a

|p(t)|
∣∣∣x′(t)∣∣∣ |x(t)| dt ≤ K(p, r)

∫ b

a

r(t)
(
x
′
(t)
)2
dt, (2.11)

where K(p, r) is defined as in (2.8). Substituting (2.10) and (2.11) into (2.9), we have that
1 ≤ C(q, r) + K(p, r), which is a contradiction with the assumption of theorem. The proof is
complete.

Instead of the Hardy inequality, one can apply the inequality of Lin (see [1, Page 72])∫ b

a

q(t)xγ(t)dt <
1

2

(
b− a

2

)γ−1(∫ b

a

q(t)dt

)∫ b

a

(
x
′
(t)
)γ
dt, (2.12)

with γ = 2, where x(t) is absolutely continuous function and satisfies x(a) = x(b) = 0 on the

term
∫ b
a
|q(t)|x2(t)dt, to get that∫ b

a

|q(t)|x2(t)dt <

(
b− a

4

)(∫ b

a

|q(t)| dt

)∫ b

a

(
x
′
(t)
)2
dt.

Using this inequality, we have the following result.
Theorem 2.2. Assume that p, q are real valued functions defined on [a, b]. If

(b− a)

∫ b

a

|q(t)| dt+ 2

[
(b− a)

∫ b

a

|p(t)|2 dt

] 1
2

< 4, (2.13)

then the equation (1.4) is disconjugate on [a, b].
In Theorem 2.2 if we assume that sup |p(t)| = A and sup |q(t)| ≤ B, then we have the

following result of disconjugacy.
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Corollary 2.1. Assume that p, q are real valued functions defined on [a, b] and supt∈[a,b] |p(t)| =
A and supt∈[a,b] |q(t)| = B. If B (b− a)

2
+2A(b−a) < 4, then the equation (1.4) is disconjugate

on [a, b].

Theorem 2.3. Assume that r, p, q are real valued functions defined on [a, b] such that

r(t) > 0, and there exists a differentiable function Q such that Q
′
(t) = q(t), and

∫ t
a
r−1(s)ds <

∞. If

R(a, b)

∫ b

a

|2Q(t)− p(t)|2

r(t)
dt < 2, (2.14)

Then (1.1) is disconjugate on [a, b].

Proof. We proceed as in the proof of Theorem 2.1 to get (2.9). Integrating by parts (2.9)
and the assumption Q

′
(t) = q(t), and using the boundary conditions x(a) = x(b) = 0, we get

that ∫ b

a

r(t)
(
x
′
(t)
)2
dt ≤

∫ b

a

|2Q(t)− p(t)|
∣∣∣x′(t)∣∣∣ |x(t)| dt. (2.15)

Applying the inequality (2.3) on the term
∫ b
a
|2Q(t)− p(t)|x′(t)x(t)dt, withB(t) = |2Q(t)− p(t)| ,

A(t) = r(t), m = n = 1 and substituting into (2.15), we get a contradiction with (2.14). The
proof is complete.

In the following, we will establish a new condition for disconjugacy depends on the sign of
the quadratic functional formula associated with (1.1).

Theorem 2.4. Assume that r, p, q are real valued functions defined on [a, b] such that

r(t) > 0 and
∫ t
a
r−1(s)ds <∞. If

F (p, q, r) :=

∫ b

a

[
r(t)(x

′
(t))2 − λ1 |q(t)|x2(t)

]
dt > 0, (2.16)

where λ1 =

[
1−

(
R(a,b)

2

∫ b
a
|p(t)|2
r(t) dt

) 1
2

]−1
6= 0, then (1.1) is disconjugate on [a, b].

Proof. Suppose that (1.1) is not disconjugate on [a, b]. Then there is a nontrivial solution
x(t) vanishes twice on [a, b]. Without loss of generality, we may assume that there exists a
solution of (1.1) such that x(a) = x(b) = 0. Multiplying (1.1) by x(t) and integrating by parts
from a to b, and using the boundary conditions x(a) = x(b) = 0, we have∫ b

a

r(t)
(
x
′
(t)
)2
dt ≤

∫ b

a

|q(t)|x2(t)dt+

∫ b

a

|p(t)|
∣∣∣x′(t)∣∣∣ |x(t)| dt. (2.17)

Applying the inequality (2.3) on the term
∫ b
a
|p(t)|x′(t)x(t)dt, with B(t) = |p(t)| , A(t) = r(t),

m = n = 1, we have that

∫ b

a

|p(t)|
∣∣∣x′(t)∣∣∣ |x(t)| dt ≤

[
R(a, b)

2

∫ b

a

|p(t)|2

r(t)
dt

] 1
2 ∫ b

a

r(t)
(
x
′
(t)
)2
dt. (2.18)
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Substituting (2.18) into (2.17), we have that1−

[
R(a, b)

2

∫ b

a

|p(t)|2

r(t)
dt

] 1
2

∫ b

a

r(t)
(
x
′
(t)
)2
dt−

∫ b

a

|q(t)|x2(t)dt ≤ 0,

so that
∫ b
a

[
r(t)

(
x
′
(t)
)2
dt− λ1 |q(t)|x2(t)

]
dt ≤ 0, which is a contradiction with (2.16). This

completes the proof.
From Theorem 2.4, we can obtain the following result.
Corollary 2.2. Assume that p, q are real valued functions defined on [a, b]. If

(b− a)

∫ b

a

|p(t)|2 dt > 4, (2.19)

then (1.4) is disconjugate on [a, b].
Now, we apply the Yang inequality [20] to obtain a new form of the quadratic functional

F (p, q, r). The Yang inequality states that: If p(t) is a positive bounded function and y is an
absolutely continuous on [a, b] with y(a) = y(b) = 0, m ≥ 0, n ≥ 1, then∫ b

a

p(t) |y(t)|m
∣∣∣y′(t)∣∣∣n dt ≤ n

m+ n
(
b− a

2
)m
∫ b

a

p(t)
∣∣∣y′(t)∣∣∣m+n

dt. (2.20)

Applying this inequality on the term
∫ b
a
|p(t)|x′(t)x(t)dt, with m = n = 1, and using in (2.17),

and proceeding as in the proof of Theorem 2.4, we have the following result.
Theorem 2.5. Assume that r, p, q are real valued functions defined on [a, b] such that

r(t) > 0 and |p(t)| is bounded and R(t) =
[
r(t)− b−a

4 |p(t)|
]
> 0. If

F (p, q, r) :=

∫ b

a

[
R(t)(x

′
(t))2 − |q(t)|x2(t)

]
dt > 0, (2.21)

then (1.1) is disconjugate on [a, b].
In the following, we will establish some new sufficient conditions for disfocality of the equa-

tion (1.1), i.e., sufficient conditions so that there does not exist a nontrivial solution x of (1.1)
satisfying x(a) = x

′
(b) = 0 or x

′
(a) = x(b) = 0. We introduce the following notations:

K1(p,Q, r) :=

√
1

2

[∫ b

a

(2 |Q(t)|+ |p(t)|)2

r(t)

(∫ t

a

ds

r(s)

)
dt

] 1
2

,

where Q(t) =
∫ b
t
|q(s)| ds, and

K2(p,Q, r) :=

√
1

2

[∫ b

a

(2 |Q(t)|+ |p(t)|)2

r(t)

(∫ b

t

ds

r(s)

)
dt

] 1
2

,

where Q(t) =
∫ t
a
|q(s)| ds.
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Theorem 2.6. Assume that r, p, q are real valued functions defined on [a, b] such that r(t) >

0 and
∫ t
a
r−1(s)ds < ∞. Suppose that x is a nontrivial solution of (1.1). If x(a) = x

′
(b) = 0,

then K1(p,Q, r) ≥ 1, where Q(t) =
∫ b
t
|q(s)| ds. If x

′
(a) = x(b) = 0, then K2(p,Q, r) ≥ 1,

where Q(t) =
∫ t
a
|q(s)| ds.

Proof. We prove that K1(p,Q, r) ≥ 1. Multiplying (1.1) by x and integrating by parts and

using the boundary conditions x(a) = x
′
(b) = 0 and Q(t) =

∫ b
t
|q(s)| ds, we get that∫ b

a

r(t)
∣∣∣x′(t)∣∣∣2 dt ≤ ∫ b

a

(2 |Q(t)|+ |p(t)|) |x(t)|
∣∣∣x′(t)∣∣∣ dt. (2.22)

Applying the inequality (2.3) with B(t) = (2 |Q(t)|+ |p(t)|), A(t) = r(t), m = 1 and n = 1, we
have that ∫ b

a

r(t)
∣∣∣x′(t)∣∣∣2 dt ≤ K1(p,Q, r)

∫ b

a

r(t)
∣∣∣x′(t)∣∣∣2 dt.

Dividing both sides by
∫ b
a
r(t)

∣∣∣x′(t)∣∣∣2 dt, we have that K1(p,Q, r) ≥ 1, which is the first desired

inequality. The proof of K2(p,Q, r) ≥ 1 is similar using the integration by parts and (2.5)
instead of (2.4). The proof is complete.

Note that the term rxx
′

in Theorem 2.4 vanishes if x(a) = x
′
(b) = 0 and x

′
(a) = x(b) = 0.

So that we have the following results for disfocality.
Theorem 2.7. Assume that r, p, q are real valued functions defined on [a, b] such that

r(t) > 0 and
∫ t
a
r−1(s)ds <∞. If

∫ b
a

[
r(t)(x

′
(t))2 − λ∗ |q(t)|x2(t)

]
dt > 0, where

λ∗ =

1−

(
1

2

∫ b

a

|p(t)|2

r(t)

(∫ t

a

ds

r(s)

)
dt

) 1
2

−1 ,
then there does not exist a solution x(t) of (1.1) satisfies x(a) = x

′
(b) = 0. If∫ b

a

[
r(t)(x

′
(t))2 − λ∗∗ |q(t)|x2(t)

]
dt > 0,

where

λ∗∗ =

1−

(
1

2

∫ b

a

|p(t)|2

r(t)

(∫ b

t

ds

r(s)

)
dt

) 1
2

−1 ,
then there does not exist a solution x(t) of (1.1) satisfies x

′
(a) = x(b) = 0.

One can apply an inequality due to Boyd [4] and the Hölder inequality to obtain some
results about the spacing between conjugate points of the solution. The Boyd inequality states
that: If x ∈ C1[a, b] with x(a) = x(b) = 0, then

∫ b

a

|x(t)|ν
∣∣∣x′(t)∣∣∣η dt ≤ L(ν, η)(

b− a
2

)ν

(∫ b

a

∣∣∣x′(t)∣∣∣η dt)
ν+η
η

, (2.23)
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where L(ν, η) is defined by L(ν, η) := ηνη

ν+η

(
ν
ν+η

) ν
η

(
Γ(
(
η + 1)/η + 1

ν

)
Γ ((η + 1) /η) Γ

(
1
ν

))ν , and Γ is the

Gamma function. Applying the inequality (2.23) on the term

(∫ b
a
|x(t)|

2
∣∣∣x′(t)∣∣∣2 dt) 1

2

, with

ν = 2, and η = 2, we see that(∫ b

a

|x(t)|
2
∣∣∣x′(t)∣∣∣2 dt) 1

2

≤ 4

π2
(
b− a

2
)2

(∫ b

a

∣∣∣x′(t)∣∣∣2 dt)2

. (2.24)

Theorem 2.8. Assume that r(t) is a nonincreasing function and Q
′
(t) = q(t) on [a, b].

Suppose that x is a nontrivial solution of (1.1). If x(a) = x(b) = 0, then

2

(∫ b

a

Q2(t)dt

) 1
2

+

(∫ b

a

|p(t)|2 dt

)1/2

≥ πr(b)

2 (b− a)
. (2.25)

Proof. As in the proof of Theorem 2.6, we have that∫ b

a

r(t)
∣∣∣x′(t)∣∣∣2 dt ≤ 2

∫ b

a

Q(t) |x(t)|
∣∣∣x′(t)∣∣∣ dt+

∫ β

α

|p(t)|
∣∣∣x′(t)∣∣∣ |x(t)| dt. (2.26)

Applying the Hölder inequality with m = n = 2, and using the fact that r(t) is a nonincreasing
and using (2.24), we have

∫ b

a

|Q(t)| |x(t)|
∣∣∣x′(t)∣∣∣ dt ≤ ( 4

π2

) 1
2

r(b)
(
b− a

2
)

(∫ b

a

Q2(t)dt

) 1
2

×

(∫ b

a

r(t)
∣∣∣x′(t)∣∣∣2 dt) . (2.27)

Applying the Hölder inequality and using the fact that r(t) is a nonincreasing, we have also
that

∫ b

a

p(t) |x(t)|
∣∣∣x′(t)∣∣∣ dt ≤ ( 4

π2

) 1
2

r(b)
(
b− a

2
)

(∫ b

a

|p(t)|2 dt

)1/2

×

(∫ b

a

r(t)
∣∣∣x′(t)∣∣∣2 dt) . (2.28)

Substituting (2.27) and (2.28) into (2.26) and cancelling the term
∫ b
a
r(t)

∣∣∣x′(t)∣∣∣2 dt, we get the

desired inequality (2.25). The proof is complete.

As a special case, we have the following result for the equation (1.4).

Corollary 2.3. Assume that Q
′
(t) = q(t) on [a, b]. Suppose that x is a nontrivial solution

of (1.4). If x(a) = x(b) = 0, then

2

(∫ b

a

Q2(t)dt

) 1
2

+

(∫ b

a

|p(t)|2 dt

) 1
2

≥ π

2(b− a)
. (2.29)
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In the following, we will show how Opial and Wirtinger type inequalities may be used to
find the lower bound for the eigenvalue of a boundary value problem. In particular, we will
apply the Wirtinger inequality∫ π

0

(x
′
(t))k+1dt ≥ 2Γ (k + 2)

πk+1Γ2 ((k + 2) /2)

∫ π

0

xk+1(t)dt, for k ≥ 1, (2.30)

where x(t) ∈ C1[0, π] and x(0) = x(π) = 0, due to Agarwal and Pang and the Wirtinger type
inequality (see [1])∫ b

a

λ(t) |x(t)|γ+1
dt ≤ 1

2

(∫ b

a

(t(b− t))
γ
2 λ(t)dt

)∫ b

a

∣∣∣x′(t)∣∣∣γ+1

dt, γ ≥ 1, (2.31)

where x(a) = x(b) = 0 and λ(t) > 0 is a continuous function on [a, b], x(t) is an absolutely
continuous function on [a, b] to establish a new explicit formula for the lower bounds of the
eigenvalue of the eigenvalue problem

−
(
x
′
(t)
)′
− p(t)x

′
(t) + q(t)x(t) = λx(t), x(0) = x(π) = 0, (2.32)

and assume that λ0 is first eigenvalue of (2.32). The main aim now is to find the lower bound
for λ0.

Theorem 2.9. Assume that λ0 is the first positive eigenvalue of (2.32) and Q
′
(t) = q(t)+µ,

where 0 < µ < λ0. Then

π3

4
(λ0 − µ) ≥ 1−

√
2

(∫ π

0

(t(π − t)) 1
2Q2(t)dt

) 1
2

−
√

1

2

(∫ π

0

(t(π − t)) 1
2 |p(t)|2 dt

) 1
2

. (2.33)

Proof. Let x(t) be the eigenfunction of (2.32) corresponding to λ0. Multiplying (2.32) by
x(t) and proceeding as in the proof of Theorem 2.3 to get that

−
∫ π

0

p(t)x
′
(t)x(t)dt+

∫ π

0

q(t)x2(t)dt = λ0

∫ π

0

x2(t)dt+

∫ π

0

(
x
′
(t)
)′
x(t)dt.

This implies, after integrating by parts and using the fact that x(0) = x(π) = 0, that

(λ0 − µ)

∫ π

0

x2(t)dt =

∫ π

0

(
x
′
(t)
)2
dt+

∫ π

0

Q
′
(t)x2(t)dt−

∫ π

0

p(t)x
′
(t)x(t)dt

≥
∫ π

0

∣∣∣x′(t)∣∣∣2 dt− 2

∫ π

0

Q(t) |x(t)|
∣∣∣x′(t)∣∣∣ dt− ∫ π

0

|p(t)|
∣∣∣x′(t)∣∣∣x(t)dt.

Proceeding as in the proof of Theorem 2.6 by applying the inequality (2.31), with γ = 1, and
the Wirtinger inequality (2.30), we get that

(λ0 − µ)
π3

4
≥ 1−

√
2

(∫ π

0

(t(π − t)) 1
2Q2(t)dt

) 1
2

−
√

1

2

(∫ π

0

(t(π − t)) 1
2 |p(t)|2 dt

) 1
2

.

From this we obtain the lower bound of λ0 as given in (2.33). The proof is complete.
In the following, we give some examples to illustrate the main results. we begin with an

example to illustrate the result in Theorem 2.2.
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Example 1. Consider the differential equation

x
′′
(t) +

2

t
x
′
(t) +

1

4t2
x(t) = 0, t ∈ [1, 2]. (2.34)

The condition (2.13) now reads

(
b− a

4

)∫ b

a

|q(t)| dt+
1

2

[
(b− a)

∫ b

a

|p(t)|2 dt

] 1
2

=

(
1

16

)∫ 2

1

1

t2
dt+

1

2

[∫ 2

1

1

t2
dt

] 1
2

= 0.3848 < 1.

Then by Theorem 2.2, we see that the equation (2.34) is disconjugate on [1, 2]. Note that the
solution of the equation (2.34) is x(t) = 1/

√
t, which is nowhere equal to zero on [1, 2].

Example 2. Consider the differential equation

x
′′
(t) +A cos(αt)x

′
(t) +B cos(βt)x(t) = 0, t ∈ [0, b], (2.35)

where A and B are positive constants. Then by Corollary 2.1, we see that (2.35) is disconjugate
on [0, b] if

b2B + 2Ab < 4. (2.36)

Note that the condition (2.36), which does not depend on the frequencies α and β, is different
from the condition

Ab+ 2b (B/β) < 2, (2.37)

that has been obtained by Clark and Hinton [8] which depends on the frequency β and does not
contain the frequency α.

Example 3. Consider the equation

x
′′
(t) + tx

′
(t) + (

t2

4
+

1

2
)x(t) = 0, t ∈ [1, 3]. (2.38)

The condition (2.19) of Corollary 2.2 on the interval [1, 3] reads (b− a)
∫ b
a
|p(t)|2 dt/4 = 2

4

∫ 3

1
t2dt =

4.333 3 > 1. Then the equation (2.38) is disconjugate on the interval [1, 3]. One such solution

of (2.38) is x(t) = e
−t2
4 , which is disconjugate on the interval [1, 3]. Also one can consider

x
′′
(t) +

1

t
x′(t) +

1

t2
x(t) = 0, t ∈ [1, 4]. (2.39)

and see that the condition (2.19) on the interval [1, 4] reads (b− a)
∫ b
a
|p(t)|2 dt/4 = 3

4

∫ 4

1
1
t2 dt =

0.562 5 < 1. This means that the condition (2.19) is not satisfied. One such solution of (2.39)
is x(t) = sin(ln t) which is not disconjugate.

The following example illustrates the result in Corollary 2.3.
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Example 4. Consider the equation

x
′′
(t) + µ sin2(kt)x

′
(t) + λ cos (kt)x(t) = 0, t ∈ I, (2.40)

where p(t) =
(
µ sin2(kt)

)
, q(t) = λ cos (kt) and λ, µ, k are positive constants. Let x(t) be a

solution of (2.40) with x(a) = x(b) = 0 where [a, b] ⊆ I. The condition (2.29) in Corollary 2.3
reads

π

2(b− a)
≤ 2λ

k

(∫ b

a

sin2(kt)dt

) 1
2

+ µ

(∫ b

a

sin2(kt)dt

) 1
2

. (2.41)

This implies that (b− a) ≥
(

π2k2

4(2λ+µk)2

) 1
3

.
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