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Some existence results for a system of operatorial equations

by
Ioan A. Rus and Marcel-Adrian Şerban

Abstract

In this paper we study a system of operatorial equations in terms of vector-valued
distances. The basic tools are some classical fixed point principles and data dependence of
the fixed points in the case of Perov fixed point theorem. Applications to some systems of
functional integral equations are also given.
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1 Introduction

Let Xi, i = 1, p, be some nonempty sets and f :
p∏

i=1

Xi →
p∏

i=1

Xi be an operator. In this case

the fixed point equation
x = f (x) , (1.1)

where x = (x1, . . . , xp) and f = (f1, . . . , fp), takes the following form
x1 = f1 (x1, . . . , xp)
...
xp = fp (x1, . . . , xp)

(1.2)

In this paper we study the system (1.2) using the following technique: we split the system

in two parts f =
(
f̃1, f̃2

)
, f : X × Y → X × Y , where X =

m∏
i=1

Xi and Y =
p∏

i=m+1

Xi, m < p.

We consider the case of (X, d) a metric space with a vector-valued distance, (d : X×X → Rm
+ ),

and (Y, τ) a Hausdorff topological space with the fixed point property. A topological space Y
has the fixed point property if any continuous operator g : Y → Y has a fixed point. A general
principle for the existence of the fixed point of operator f : X×Y → X×Y , can be formulated
combining the Perov fixed point principle, the continuous dependence of the fixed points and
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the the fixed point property of the space Y . For other fixed point results using the vectorial
distance and matrix convergent to zero technique, see [1], [11], [6], [8], [16], [3], [4], [5], [7], [9],
[13].

We begin our considerations with some notations, notions and Perov fixed point principle
which shall be useful in presentation of our results.

Let (X, d) be a metric space. We will use the following symbols:
If f : X → X is an operator then Ff := {x ∈ X| x = f (x)} denotes the fixed point set of the
operator f .

Definition 1.1. A matrix S ∈ Rm×m
+ is called a matrix convergent to zero iff Sk → 0 as

k → +∞.

Theorem 1.1. (see [1], [6], [8], [11], [14]) Let S ∈ Rm×m
+ . The following statements are

equivalent:

(i) S is a matrix convergent to zero;

(ii) Skx→ 0 as k → +∞, ∀x ∈ Rm;

(iii) Im − S is non-singular and

(Im − S)
−1

= Im + S + S2 + . . .

(iv) Im − S is non-singular and (Im − S)
−1

has nonnegative elements;

(v) λ ∈ C, det (S − λIm) = 0 imply |λ| < 1;

(vi) there exists at least one subordinate matrix norm such that ‖S‖ < 1.

The matrices convergent to zero were used by A. I. Perov [5] to generalize the contraction
principle in the case of metric spaces with a vector-valued distance.

Definition 1.2. (see [5], [11], [13]) Let (X, d) be a complete metric space with d : X×X → Rm
+

a vector-valued distance and f : X → X. The operator f is called an S-contraction if there
exists a matrix S ∈ Rm×m

+ such that:

(i) S is a matrix convergent to zero;

(ii) d (f (x) , f (y)) ≤ Sd (x, y), for all x, y ∈ X.

Theorem 1.2 (Perov). (see [13]) Let (X, d) be a complete metric space with d : X ×X → Rm
+

a vector-valued distance and f : X → X be an S-contraction. Then:

(i) Ff = Ffn = {x∗}, for all n ∈ N∗;

(ii) fn (x)
d→ x∗ as n→ +∞, for all x ∈ X;

(iii) d (fn (x) , x∗) ≤ (Im − S)
−1
Snd (x, f (x)), for all x ∈ X and n ∈ N∗;

(iv) d (x, x∗) ≤ (Im − S)
−1
d (x, f (x)), for all x ∈ X.
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2 Existence results via Perov’s fixed point theorem

Let (Xi, di), i = 1,m, be some complete metric spaces and let X :=
m∏
i=1

Xi their cartesian

product. Let d : X → Rm
+

d (x, y) :=

 d1 (x1, y1)
...
dm (xm, ym)


a vector-valued metric on X.

Let (Y, τ) be a Hausdorff topological space and f : X × Y → X × Y , f = (f1, f2), an
operator.

Theorem 2.1. We suppose that:

(i) f is continuous;

(ii) there exists a matrix S ∈ Rm×m
+ convergent to zero such that

d (f1 (u, y) , f1 (v, y)) ≤ Sd (u, v) ,

for all u, v ∈ X and y ∈ Y ;

(iii) (Y, τ) is a topological space with the fixed point property.

Then the operator f has at least a fixed point.

Proof: Let us consider the operator f1 (·, y) : X → X. By the Perov’s theorem (see [11], [13],
[6], ...) this operator has a unique fixed point x∗ (y) for all y ∈ Y . From the continuity of
f1 : X × Y → X it follows that the operator

x∗ : Y → X, y 7→ x∗ (y) ,

is continuous. Indeed, for y1, y2 ∈ Y we have

d (x∗ (y1) , x∗ (y2)) = d (f1 (x∗ (y1) , y1) , f1 (x∗ (y2) , y2)) ≤
≤ d (f1 (x∗ (y1) , y1) , f1 (x∗ (y2) , y1)) + d (f1 (x∗ (y2) , y1) , f1 (x∗ (y2) , y2)) ≤
≤ Sd (x∗ (y1) , x∗ (y2)) + d (f1 (x∗ (y2) , y1) , f1 (x∗ (y2) , y2))

So, we have

d (x∗ (y1) , x∗ (y2)) ≤ (Im − S)
−1
d (f1 (x∗ (y2) , y1) , f1 (x∗ (y2) , y2))→ 0 as y1 → y2.

We consider the operator h : Y → Y , defined by

h : Y → Y, y 7→ f2 (x∗ (y) , y) .

Since x∗ (·) and f2 are continuous then h is continuous and from (iii) we have that Fh 6= ∅. Let
y∗ ∈ Fh then it is easy to see that (x∗ (y∗) , y∗) ∈ Ff , therefore Ff 6= ∅.
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Remark 2.1. For examples of topological spaces with fixed point property see [10], [11], [13],
... .

From Theorem 2.1 we have for Y a compact convex subset of a Banach space:

Theorem 2.2. We suppose that:

(i) f is continuous;

(ii) there exists a matrix S ∈ Rm×m
+ convergent to zero such that

d (f1 (u, y) , f1 (v, y)) ≤ Sd (u, v) ,

for all u, v ∈ X and y ∈ Y .

Then the operator f has at least a fixed point.

Proof: Since Y a compact convex subset of a Banach space, hence Y has the fixed point
property, so the conditions from Theorem 2.1 are satisfied.

Remark 2.2. In the case of m = 1, from Theorem 2.2 we have a result given by C. Avramescu
in [2] and by I.A. Rus in [12].

Remark 2.3. For the fixed point theory on cartesian product see, for example, [14], [15] and
the references therein.

3 Applications

Example 3.1. Let us consider the following system of functional-integral equations
x (t) =

1∫
0

K (t, s, x (s) , y (s)) ds+ g (t) , t ∈ [0; 1]

y (t) =
1∫
0

H (t, s, x (s) , y (s) , y (y (s))) ds, t ∈ [0; 1]

(3.1)

where K ∈ C ([0; 1]× [0; 1]× Rm × [0; 1] ,Rm), g ∈ C ([0; 1] ,Rm),
H ∈ C ([0; 1]× [0; 1]× Rm × [0; 1]× [0; 1] ,R).

Let X1 = X2 = . . . = Xm := C [0; 1] with the Cebyshev norm

|x|∞ = max
t∈[0;1]

|x (t)| .

and X :=
m∏
i=1

Xi = C ([0; 1] ,Rm) with the vector-valued norm

‖x‖ =

 |x1|∞
...

|xm|∞

 .
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Let
Y := CL ([0; 1] , [0; 1]) = {y ∈ C [0; 1] | y (t) ∈ [0; 1] , ∀t ∈ [0; 1] and

|y (t1)− y (t2)| ≤ L |t1 − t2| , ∀t1, t2 ∈ [0; 1]} .

We remark that Y is a convex compact subset of the Banach space (C [0; 1] , |·|∞).

From the Theorem 2.2 we have:

Theorem 3.1. We suppose that:

(i) there exists a matrix S ∈ Rm×m
+ convergent to zero such that |K1 (t, s, u, w)−K1 (t, s, v, w)|

...
|Km (t, s, u, w)−Km (t, s, v, w)|

 ≤ S
 |u1 − v1|

...
|um − vm|

 ,

for all t, s, w ∈ [0; 1], u, v ∈ Rm;

(ii) 0 ≤ H (t, s, u, v, w) ≤ 1, for all t, s, v, w ∈ [0; 1], u ∈ Rm;

(iii) |H (t1, s, u, v, w)−H (t2, s, u, v, w)| ≤ L |t1 − t2|, for all t1, t2, s, v, w ∈ [0; 1], u ∈ Rm.

Then the system (3.1) has at least a solution in X × Y .

Proof: For (x, y) ∈ X × Y we consider the operators

f1 (x, y) (t) =

1∫
0

K (t, s, x (s) , y (s)) ds+ g (t) , t ∈ [0; 1] ,

f2 (x, y) (t) =

1∫
0

H (t, s, x (s) , y (s) , y (y (s))) ds, t ∈ [0; 1]

and f = (f1, f2). From the continuity of data, from conditions (ii) and (iii) it follows that
f : X × Y → X × Y and f is continuous.

From condition (i) and the remark that Y = CL ([0; 1] , [0; 1]) is a convex compact subset of
the Banach space (C [0; 1] , |·|∞) we are in the conditions of the Theorem 2.2.

As an application of the Theorem 2.1 we present the following example:

Example 3.2. Let us consider the following system of functional-integral equations
x (t) =

∫
Ω

K (t, s, x (s) , y (s)) ds+ g (t) , t ∈ Ω

y (t) =
∫
Ω

H (t, s, x (s) , y (s) , y (γ (s))) ds+ h (t) , t ∈ Ω
(3.2)
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where Ω ⊂ Rq is an open bounded domain, K ∈ C
(
Ω× Ω× Rm × Rp,Rm

)
, g ∈ C

(
Ω,Rm

)
,

H ∈ C(Ω× Ω× Rm × Rp × Rp,Rp), h ∈ C
(
Ω,Rp

)
, γ ∈ C

(
Ω,Ω

)
.

Let X1 = X2 = . . . = Xm := C
(
Ω
)

with the Cebyshev norm |·|∞ and X :=
m∏
i=1

Xi =

C
(
Ω,Rm

)
with the vector-valued norm

‖x‖X =

 |x1|∞
...

|xm|∞

 .

Let Y1 = Y2 = . . . = Yp := C
(
Ω
)

with the Cebyshev norm |·|∞ and Y :=
m∏
i=1

Yi = C
(
Ω,Rp

)
with the vector-valued norm

‖y‖Y =

 |y1|∞
...

|yp|∞

 .

From the Theorem 2.1 we have:

Theorem 3.2. We suppose that:

(i) there exists a matrix S ∈ Rm×m
+ with mes

(
Ω
)
· S convergent to zero such that |K1 (t, s, u, w)−K1 (t, s, v, w)|

...
|Km (t, s, u, w)−Km (t, s, v, w)|

 ≤ S
 |u1 − v1|

...
|um − vm|

 ,

for all t, s ∈ Ω, u, v ∈ Rm, w ∈ Rp;

(ii) there exists a matrix T ∈ Rp×p
+ with mes

(
Ω
)
· T convergent to zero and M ∈ Rp

+ such
that  |H1 (t, s, u, v, w)|

...
|Hp (t, s, u, v, w)|

 ≤ T
 max {|v1| , |w1|}

...
max {|vp| , |wp|}

+M,

for all t, s ∈ Ω, u ∈ Rm, v, w ∈ Rp.

Then the system (3.2) has at least a solution in X × Y .

Proof: For (x, y) ∈ X × Y we consider the operators

f1 (x, y) (t) =

∫
Ω

K (t, s, x (s) , y (s)) ds+ g (t) , t ∈ Ω,

f2 (x, y) (t) =

∫
Ω

H (t, s, x (s) , y (s) , y (γ (s))) ds+ h (t) , t ∈ Ω
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and f = (f1, f2). From the continuity of data we have that f : X × Y → X × Y and f is
continuous.

From condition (i) we get

‖f1 (x, y)− f1 (x̄, y)‖X ≤ mes
(
Ω
)
· S · ‖x− x̄‖X ,

for all x, x̄ ∈ X, y ∈ Y , so f1 (·, y) satisfies the Perov theorem for any y ∈ Y . We denote
by x∗ (y) the unique fixed point of f1 (·, y) and the application x∗ : Y → X, y 7→ x∗ (y) is
continuous (see the proof of Theorem 2.1). We define the operator h : Y → Y by

h (y) = f2 (x∗ (y) , y) .

Let R ∈ Rp
+, we denote by

DR := {y ∈ Y | ‖y‖Y ≤ R} .

Condition (ii) implies that there exists an R0 ∈ Rp
+ such that f2 (X,DR) ⊂ DR for all R ≥ R0.

Indeed, for x ∈ X, y ∈ DR we have

‖f2 (x, y)‖Y ≤ mes
(
Ω
)
· T ·R+mes

(
Ω
)
·M + ‖h‖Y ,

so, to have an R such that

mes
(
Ω
)
TR+mes

(
Ω
)
M + ‖h‖Y ≤ R⇔

(
Ip −mes

(
Ω
)
T
)−1 ·

(
mes

(
Ω
)
M + ‖h‖Y

)
≤ R.

thus, we can take R0 :=
(
Ip −mes

(
Ω
)
· T
)−1 ·

(
mes

(
Ω
)
·M + ‖h‖Y

)
. Since f2 (X,DR) ⊂ DR

for all R ≥ R0 then h (DR) ⊂ DR for all R ≥ R0. We remark that co h (DR) is a compact
convex subset and the subset X × co h (DR) is invariant for the operator f . Since the subset
co h (DR) is a topological space with the fixed point property then all the condition of Theorem
2.1 are satisfied and we get the conclusion.
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