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Abstract

In this paper, a practical and computational numerical method based on Bernstein
polynomials for solving nonlinear stochastic integral equations is presented. Stochastic
operational matrix of Bernstein polynomials is determined. The main idea is that it reduces
the stochastic integral equation to a system of algebraic equations. Thus we can solve the
problem by iteration methods. Numerical example illustrates the efficiency and accuracy
of the method.
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1 Introduction

Mathematical modeling of real life problems usually causes functional equations, like ordinary or
partial differential equations, stochastic differential equations, stochastic integral and stochastic
integro-differential equations. They play a prominent role in range of application areas including
biology, chemistry, epidemiology, mechanics, economics and finance([1]-[4]).
Stochastic differential equations arise naturally in various engineering problems([5]), where the
effects of random ’noise’ perturbations to a system are being considered. For example in the
problem of tracking satelite, we know that it’s motion will obey Newton’s law to a very high
degree of accuracy, so in theory we can integrate the trajectories from the initial point. However
in practice there are other random effects which perturb the motion.
Consider the ordinary differential equation as

x′(t) = λb(t, x(t)), x(t0) = x0. (1)

The stochastic version of (1) can be written in differential form as([4])

dx(t) = λ1b(t, x(t))dt+ λ2σ(t, x(t))dB(t), x(t0) = x0, (2)
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where, λ1, λ2 are parameters and x(t), b(t, x(t)), σ(t, x(t)) for t ∈ [0, T ) are stochastic processes
defined on the some probability space (Ω, F, P ). Also x(t) is unknown function and B(t) is
Brownian motion. Due to the irregularity of the Brownian motion one can only interpert the
stochastic differential equation in terms of the stochastic integral equations as

x(t) = x0 + λ1

∫ t

0

b(s, x(s))ds+ λ2

∫ t

0

σ(s, x(s))dB(s). (3)

The main problem is to calculate the third term of right hand side in equation (3) that is called
Itô integral. Numerous papers have been focusing on the existence solution of equation (3) ([6]-
[8]). Also some papers have been presented numerical methods to solve stochastic differential
equations and stochastic integral equations ([9]-[16]), but the nonlinear stochastic differential
equations are still difficult to solve either numerically or theoretically.
Bernstein polynomials and their operational matrix have been frequently used in the solution of
integral equations, differential equations and approximation theory ([17]-[23]). In this work, we
derived stochastic operational matrix based on Bernstein polynomials for solving Itô integral in
Eq.(3). Furthermore, we find numerical solution of nonlinear stochastic integral equation(NSIE)
(3).
This paper is organized as follows.
In Section 2 we review some of the basic theory of the stochastic calculus and Bernstein polyno-
mials. In Section 3 we introduce stochastic operational matrix. In Section 4 we apply Bernstein
polynomial approximation, their operational matrix and stochastic operational matrix with col-
location method to reduce the NSIE to a system of algebraic equations that can be solved by
Newton’s method. Section 5 shows convergence of the method. In Section 6 the presented
method is tested with an example. Finally, Section 7 gives some brief conclusions.

2 Preliminaries and notations

2.1 Stochastic calculus

Consider random variable X with distribution fx, so

E[Xp] =

∫ ∞
−∞

xpfxdx <∞.

Suppose p ≥ 2 and denote Lp(Ω, H) the collection of all strongly measurable, p-th integrable
H-valued random variables. It is routine to check that Lp(Ω, H) is a Banach space with

‖V ‖Lp(Ω,H) := [E‖V ‖p]
1
p ,

for each V ∈ Lp(Ω, H). Here we consider L2(Ω, H).

Definition 2.1. The sequence {Xn} converge to X in L2 if for each n, E(|Xn|2) <∞ and
E(‖Xn −X‖)2 → 0 as n→∞ [3].

Suppose 0 ≤ s ≤ T, let υ = υ(s, T ) be the class of functions that f(t, ω) : [0,∞]×Ω→ Rn,
satisfy
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(i) the function (t, ω)→ f(t, ω) is β ×z measurable, where β is the Borel algebra.
(ii) f is adapted to zt.

(iii) E
[ ∫ T

s
f(t, ω)2dt

]
<∞.

Definition 2.2. (The Itô integral[4]). Let f ∈ υ(s, T ), then the Itô integral of f is defined by∫ T

s

f(t, ω)dB(t)(w) = lim
n→∞

∫ T

s

ϕn(t, ω)dB(t)(ω),

where {ϕn} is the sequence of elementary functions such that,

E
[ ∫ T

s

(f − ϕn)2dt
]
→ 0 a.s, n→∞.

Theorem 2.3. (The Itô isometry[4]) Let f ∈ ν(S, T ), then

E
[
(

∫ T

S

f(t, ω)dB(t)(ω))2
]

= E
[ ∫ T

S

f2(t, ω)dt
]
.

2.2 Bernstein polynomials

The Bernstein polynomials of nth-degree are defined as

βi,n(t) =

(
n

i

)
ti(1− t)n−i =

n−i∑
k=0

(−1)k
(
n

i

)(
n− i
k

)
ti+k, t ∈ [0, 1],

for i = 0, 1, ..., n. Now consider

Φ(t) = [β0,n(t), β1,n(t), ..., βn,n(t)]T ,

we can write
Φ(t) = ATn(t), (4)

where, Tn(t) =
[

1 t . . . tn
]T

and A is an (n+ 1)× (n+ 1) upper triangular matrix with

Ai+1 =
[ i times︷ ︸︸ ︷

0, 0, ..., 0, (−1)0
(
n
i

)(
n−i

0

)
, (−1)1

(
n
i

)(
n−i

1

)
, ..., (−1)n−i

(
n
i

)(
n−i
n−i
)]
.

Since, L2[0, 1] is a Hilbert space with the inner product (f, g) =
∫ 1

0
f(x)g(x)dx, any function

f(x) ∈ L2[0, 1] can be expanded in Bernstein basis ([19]) as

f(t) ' Bn(f(t)) = CT Φ(t), (5)

where, CT = (f(t),Φ(t))D−1, (f(t),Φ(t)) =
∫ 1

0
f(t)Φ(t)dt. D = (Φ(t),Φ(t)) is an (n + 1) ×

(n+ 1) matrix and is called dual matrix of Φ(t). The elements of D are specified in([17]). The
integration of Φ(t) is approximated as∫ t

0

Φ(s)ds ' PΦ(t), (6)

where, P is an (n+ 1)× (n+ 1) operational matrix([17]).
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3 Stochastic operational matrix based on Bernstein polynomials

Let ∫ t

0

Φ(s)dB(s) =

∫ t

0

ATn(s)dB(s) = A
[ ∫ t

0

dB(s),

∫ t

0

sdB(s), ...,

∫ t

0

sndB(s)
]T
. (7)

We can write
∫ t

0
dB(s)∫ t

0
sdB(s)

...∫ t

0
sndB(s)

 = B(t)Tn(t)−


0∫ t

0
B(s)ds

...

n
∫ t

0
sn−1B(s)ds

 = Mn(t) =
(
mi

)
i=0,1,...,n

,

where

mi = tiB(t)− i
∫ t

0

si−1B(s)ds, i = 0, ..., n.

By using composite trapezium rule we get

mi ' tiB(t)− it

4

(
2(
t

2
)i−1B(

t

2
) + ti−1B(t)

)
=
[
(1− i

4
)B(t)− i

2i
B(

t

2
)
]
ti, i = 0, ..., n.

Also we approximate B(t) and B( t
2 ) , for 0 ≤ t ≤ 1, by B(.5) and B(.25). After replacing these

approximations in (7) , we obtain

AMn(t) = A


B(.5) 0 . . . 0

0 3
4B(.5)− 1

2B(.25) . . . 0
...

...
. . .

...
0 0 . . . (1− n

4 )B(.5)− n
2nB(.25)




1
t
...
tn

 .
Put

Ds =


B(.5) 0 . . . 0

0 3
4B(.5)− 1

2B(.25) . . . 0
...

...
. . .

...
0 0 . . . (1− n

4 )B(.5)− n
2nB(.25)

 ,
then

AMn(t) = ADsTn(t) = ADsA
−1Φ(t) = PsΦ(t),

where Ps = ADsA
−1 is (n+ 1)× (n+ 1) stochastic operational matrix. Therefore∫ t

0

Φ(s)dB(s) ' PsΦ(t). (8)
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4 Implementation of Bernstein operational matrices for solving NSIE

Consider the nonlinear stochastic integral equation (3) and let

z1(t) = b(t, x(t)), z2(t) = σ(t, x(t)). (9)

First, we find the collocation approximation for z1(t) and z2(t) . By substituting Eqs.(9) in
Eq.(3) we get {

z1(t) = b(t, λ1

∫ t

0
z1(s)ds+ λ2

∫ t

0
z2(s)dB(s) + x0),

z2(t) = σ(t, λ1

∫ t

0
z1(s)ds+ λ2

∫ t

0
z2(s)dB(s) + x0).

(10)

The Bernstein polynomials approximation of z1(t) and z2(t) can be written as

z1(t) ' Bn(z1(t)) = ZT
1 Φ(t), z2(t) ' Bn(z2(t)) = ZT

2 Φ(t), (11)

which Z1 and Z2 are defined by (5). By using (11),(6)and(8) we have∫ t

0

z1(s)ds ' ZT
1

∫ t

0

Φ(s)ds = ZT
1 PΦ(t), (12)

and ∫ t

0

z2(s)dB(s) ' ZT
2

∫ t

0

Φ(s)dB(s) = ZT
2 PsΦ(t). (13)

After substituting the approximate equations (11),(12) and (13) in (10), we get{
ZT

1 Φ(t) = b(t, λ1Z
T
1 PΦ(t) + λ2Z

T
2 PsΦ(t) + x0),

ZT
2 Φ(t) = σ(t, λ1Z

T
1 PΦ(t) + λ2Z

T
2 PsΦ(t) + x0).

(14)

Now, we collocate Eqs.(14) in n + 1 Newton-cotes nodes , ti = (2i−1)
2(n+1) , i = 1, 2, ..., n + 1, then

we rewrite Eqs.(14) as{
ZT

1 Φ(ti) = b(ti, λ1Z
T
1 PΦ(ti) + λ2Z

T
2 PsΦ(ti) + x0),

ZT
2 Φ(ti) = σ(ti, λ1Z

T
1 PΦ(ti) + λ2Z

T
2 PsΦ(ti) + x0),

i = 1, 2, ..., n+ 1. (15)

After solving nonlinear system (15) with Newton’s method, we obtain ZT
1 and ZT

2 . Finally, we
can approximate Eq. (3) as follows

xn(t) = λ1Z
T
1 PΦ(t) + λ2Z

T
2 PsΦ(t) + x0.

5 Convergence analysis

Theorem 5.1. For all function f in C[0, 1], the sequence {Bn(f);n = 1, 2, ...} converges
uniformly to f .

Proof. see[24].
Theorem 5.1 shows that for any f ∈ [0, 1] and for any ε, there exists n such that inequality

‖Bn(f)− f‖ < ε,
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holds.
We suppose ‖.‖ be the L2 norm on [0, 1]. Let us en(t) = x(t) − xn(t) be an error function of
approximate solution xn(t) to the exact solution x(t),

x(t)− xn(t) = λ1

∫ t

0

(
z1(s)− ẑ1(s)

)
ds+ λ2

∫ t

0

(
z2(s)− ẑ2(s)

)
dB(s), (16)

where zi(t), i = 1, 2 are defined in (9), also ẑi(t), i = 1, 2 is approximated form of zi(t) by
Bernstein approximation

ẑ1(s) = Bn(b(s, xn(s))), ẑ2(s) = Bn(σ(s, xn(s))),

and
zn1 (s) = b(s, xn(s)), zn2 (s) = σ(s, xn(s)),

Theorem 5.2. Let x(t) be exact solution and xn(t) be the Bernstein approximate solution of
(3). Also assume that
(i) For every T and N, there is a constant D depending only on T and N such that for all
|x|, |y| ≤ N and all 0 ≤ t ≤ T ,

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|.

(ii) Coefficients satisfy the linear growth condition

|b(t, x)|+ |σ(t, x)| ≤ D(1 + |x|).

(iii) E(|x|2) <∞.
Then xn(t) converges to x(t) in L2.

Proof.

en(t) = λ1

∫ t

0

(z1(s)− ẑ1(s))ds+ λ2

∫ t

0

(z2(s)− ẑ2(s))dB(s),

E‖en(t)‖2 ≤ 2
(
|λ1|2E‖

∫ t

0

(z1(s)− ẑ1(s))ds‖2 + |λ2|2E‖
∫ t

0

(z2(s)− ẑ2(s))dB(s)‖2
)
,

by the Itô isometry, we get

E‖en(t)‖2 ≤ 2
[
|λ1|2

∫ t

0

E‖(z1(s)− ẑ1(s))‖2ds+ |λ2|2
∫ t

0

E‖(z2(s)− ẑ2(s))‖2ds
]

≤ 8
[
|λ1|2

∫ t

0

E‖(z1(s)− zn1 (s))‖2ds+ |λ1|2
∫ t

0

E‖(zn1 (s)− ẑ1(s))‖2ds
]

+|λ2|2
∫ t

0

E‖(z2(s)− zn2 (s))‖2ds+ |λ2|2
∫ t

0

E‖(zn2 (s)− ẑ2(s))‖2ds
]
.

By Theorem 5.1, there exists n > 0 such that for any ε,

E‖znj (s)− ẑj(s)‖2 ≤ ε =
ε1

16|λj |2
, j = 1, 2,
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so,

E‖en(t)‖2 ≤ ε1 + 8
[
|λ1|2

∫ t

0

E‖z1(s)− zn1 (s)‖2ds+ |λ2|2
∫ t

0

E‖z2(s))− zn2 (s)‖2ds
]
,

by using Lipschitz condition

E‖en(t)‖2 ≤ ε1 + 8(|λ1|2 + |λ2|2)D2

∫ t

0

E‖en(s)‖2ds). (17)

Hence from (17) and Gronwall inequality we get

E‖en(t)‖2 −→ 0,

so, xn(t) −→ x(t) in L2.

6 Numerical example

Let x(t) be the exact solution and y(t) be the Bernstein approximation solution, then we define
the error for some points in the interval [0, 1) as

‖E(ti)‖∞ = Max|x(ti)− y(ti)|, 0 ≤ ti < 1.

Example. Consider the nonlinear stochastic Volterra integral equation as follows (population
growth problem)([16])

x(t) = 0.5 +

∫ t

0

x(s)(1− x(s))ds+

∫ t

0

x(s)dB(s), t ∈ [0, 1], (18)

with the exact solution

x(t) =
e0.5t+B(t)

2 +
∫ t

0
e0.5s+B(s)ds

,

where x(t) is an unknown stochastic process defined on the probability space (Ω,z, P ) and
B(t) is a Brownian motion process. The numerical results are shown in Tables 1 and 2. xE is
the errors mean and sE is the standard deviation of errors in k iteration.

Table 1: Mean, standard deviation and Confidence Interval for error mean. n = 8, k = 500.

ti xE sE 0.95 Confidence Interval
Lowerbound Upperbound

0 0.000144 0.000264 0.000120 0.000167
0.1 0.021256 0.004160 0.020891 0.021620
0.2 0.044276 0.006677 0.043690 0.044861
0.3 0.070860 0.009800 0.070001 0.071719
0.4 0.096359 0.007710 0.095683 0.097034
0.5 0.117920 0.012309 0.116841 0.118999
0.6 0.141850 0.012924 0.140717 0.142983
0.7 0.162259 0.015772 0.160877 0.163641
0.8 0.188730 0.020347 0.186947 0.190513
0.9 0.209053 0.022928 0.207043 0.211063
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Table 2: Mean, standard deviation and Confidence Interval for error mean. n = 13, k = 500.

ti xE sE 0.95 Confidence Interval
Lowerbound Upperbound

0 0.000415 0.000772 0.000347 0.000482
0.1 0.006726 0.025251 0.004512 0.008939
0.2 0.014065 0.041921 0.010390 0.017739
0.3 0.001199 0.069176 0.004864 0.007262
0.4 0.028622 0.094439 0.020344 0.036899
0.5 0.055273 0.117777 0.044949 0.065596
0.6 0.087075 0.131612 0.075538 0.098611
0.7 0.123044 0.144593 0.110370 0.135718
0.8 0.152556 0.150813 0.139337 0.165775
0.9 0.177911 0.153433 0.164462 0.191360

7 Conclusion

This paper suggested a numerical method to solve NSIE by using Bernstein polynomials and
their operational matrices that introduced in ([20]), also we derived and used the stochastic
operational matrix of Bernstein polynomials to transform our NSIE to a nonlinear system of
algebraic equations that can be solved by Newton’s method. The main advantage of this method
is its efficiency and simple applicability. The accuracy is comparatively good in comparison with
methods that are applied directly to solve nonlinear stochastic differential equation.
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