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Abstract

Let I ) J be two squarefree monomial ideals of a polynomial algebra over a field.
Suppose that I is generated by one squarefree monomial of degree d > 0, and other
squarefree monomials of degrees ≥ d + 1. If the Stanley depth of I/J is ≤ d + 1 then
almost always the usual depth of I/J is ≤ d + 1 too.
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Introduction

Let S = K[x1, . . . , xn] be the polynomial algebra in n variables over a field K and I ) J
two squarefree monomial ideals of S. Suppose that I is generated by squarefree monomials of
degrees ≥ d for some positive integer d. Modulo a multigraded isomorphism we may assume
either that J = 0, or J is generated in degrees ≥ d+1. Then depthS I/J ≥ d (see [1, Proposition
3.1], [3, Lemma 1.1]) and upper bounds are given by Stanley’s Conjecture if it holds. Finding
such upper bounds is the subject of several papers [2], [3], [4], [7], [5]. We remind below the
notion of Stanley depth.

Let PI\J be the poset of all squarefree monomials of I \ J with the order given by the
divisibility. Let P be a partition of PI\J in intervals [u, v] = {w ∈ PI\J : u|w,w|v}, let us say
PI\J = ∪i[ui, vi], the union being disjoint. Define sdepthP = mini deg vi and the Stanley depth
of I/J given by sdepthS I/J = maxP sdepthP, where P runs over the set of all partitions of
PI\J (see [1], [8]). Stanley’s Conjecture says that sdepthS I/J ≥ depthS I/J .

Let r be the number of squarefree monomials of degree d of I and B (resp. C) be the set
of squarefree monomials of degrees d + 1 (resp. d + 2) of I \ J . Set s = |B|, q = |C|. If either
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s > r + q, or r > q, or s < 2r then sdepthS I/J ≤ d + 1 and if Stanley’s Conjecture holds
then any of these numerical conditions would imply depthS I/J ≤ d + 1, independently of the
characteristic of K. In particular this was proved directly in [4] and [7].

Suppose that r = 1. If d = 1 we showed in [5, Theorem 1.10] that almost always Stanley’s
Conjecture holds. It is the purpose of this note to complete the result for d ≥ 1 in the next
form.

Theorem Suppose that I ⊂ S is minimally generated by a squarefree monomial f of degree
d, and a set E of squarefree monomials of degrees ≥ d + 1. Assume that s 6= q + 1 and
sdepthS I/J = d + 1. Then depthS I/J ≤ d + 1.

1 Proof of the Theorem

We may assume that s < q + 1 because if s > q + 1 then by [4] we get depthS I/J ≤ d + 1.
Also we may suppose that C ⊂ (f,B) by [5, Lemma 1.6]. Induct on |E|. Suppose that E = ∅.
If C = ∅, then depthS I/J ≤ d + 1 by [5, Lemma 1.5]. Otherwise, let c = fxn−1xn ∈ C and
I ′ = (B \ {fxn−1, fxn}). In the exact sequence

0→ I ′/J ∩ I ′ → I/J → I/J + I ′ → 0

the last term has sdepth d + 2 since c 6∈ I ′ + J and so the first one has sdepth ≤ d + 1 by
[6, Lemma 2.2] and even depth ≤ d + 1 by [3, Theorem 4.3]. Then the Depth Lemma gives
depthS I/J ≤ d + 1.

Set In = (B \ {fxn}), Jn = In ∩ J . In the following exact sequence

0→ In/Jn → I/J → I/(In + J)→ 0

the last term has sdepth depth d+ 1 since [f, fxn] is the whole poset of (f)/(f)∩ (In + J) and
xn 6∈ ((J + In) : f). If the first term has sdepth = d + 1 then by [[3], Theorem 4.3.] we get
depth = d+ 1 and applying Depth Lemma the conclusion follows. So we can assume that there
exists a partition Pn of In/Jn with sdepth d + 2. We may suppose that all intervals of Pbi (as
well as of other partitions which we will use) starting with a monomial v of degree ≥ d+ 2 have
the form [v, v]. In Pn we can’t have the interval [c, c], c = fxn−1xn, or the interval [fxn−1, c]
because otherwise we can switch it with [f, c] and get a partition of I/J with sdepth d + 2.
Thus we have in Pn the interval [b1, c], b1 ∈ E. Switching the interval [b1, c] with the interval
[fxn, c] we get a partition PBb1

for (Bb1)/Jb1 where Bb1 = B \ {b1} and Jb1 = (Bb1) ∩ J .
In PBb1

we have an interval [c̄, c̄] because s < q + 1. Thus there exists b2 ∈ E such that
c̄ ∈ (b2). Note that c̄ /∈ (b1) because otherwise we may replace in PBb1

the interval [c̄, c̄] with
the interval [b1, c̄] and get a partition PB for (B)/(B)∩ J with sdepth = d+ 2. This leads to a
contradiction because we may change in PB two intervals like [fxi, fxixj ], [fxj , c

′] for some c′

with [f, fxixj ], [c′, c′] and get a partition P for I/J with sdepth d + 2.
Let Ib2 = (f,E \ {b2}), Jb2 = Ib2 ∩ J . In the following exact sequence

0→ Ib2/Jb2 → I/J → I/(Ib2 + J)→ 0

the last term has depth ≥ d + 1 because it is isomorphic with (b2)/(b2) ∩ (Ib2 + J). If
sdepth Ib2/Jb2 ≤ d + 1 then the first term has depth ≤ d + 1 by the induction hypothesis,
so by the Depth Lemma we get depth I/J ≤ d + 1.
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Now assume that sdepth Ib2/Jb2 ≥ d + 2 and let Pb2 be a partition on Ib2/Jb2 with sdepth
d + 2. In Pb2 we have the interval [f, fxixj ], i, j ∈ [n] \ suppf . We have in Pb2 for all b ∈
B \ {b2, fxi, fxj} an interval [b, cb]. We define h2 : (B \ {b2}) → C by b → cb and h2(fxi) =
h2(fxj) = fxixj and let g2 : Imh2 → (B \ {b2}) defined by cb → b, g2(fxixj) = fxi. Similarly
we define h1, g1 for PBb1

, that is h1 is given by b′ → c′ if PBb1
has the interval [b′, c′].

We want to show that we can build a partition P with sdepth = d + 2 for I/J . Consider
a0 = b1 and ci−1 = h2(ai−1), ai = g1(ci−1), i > 0. The construction stops at step e if

1) ae = b2,
2) ce /∈ Imh1,
3)ae = fxj after au = fxi, u < e already appeared. Note that here we have fixed au = fxi.
In the first case we set ce = c̄ and we see that h1 gives a bijection between {a1, . . . , ae} and

{c0, . . . , ce−1}. But h1 also gives a bijection between B\{b1, a1, . . . , ae} and C\{c̄, c0, . . . , ce−1}.
Then the intervals [ap, cp], 0 ≤ p ≤ e and the intervals [g1(c̃), c̃], c̃ ∈ C \ {c̄, c0, . . . , ce−1} and
some other intervals starting with monomials of degree ≥ d + 2 give a partition PB of PB/B∩J
with sdepth ≥ d + 2. As before this is a contradiction with sdepth I/J = d + 1.

In the second case, as above we see that the intervals [ap, cp], 0 ≤ p ≤ e and the intervals
[g1(c̃), c̃], c̃ ∈ C \ {c̄, c0, . . . , ce−1} and some other intervals starting with monomials of degree
≥ d + 2 give a partition PB of PB/B∩J with sdepth ≥ d + 2. Contradiction.

In the last case we see as usual, that h1 gives a bijection between {a1, . . . , ae} and
{c0, . . . , ce−1}. But h1 also gives a bijection between B \ {b1, a1, . . . , ae} and C \ {c0, . . . , ce−1}.
Then the intervals [ap, cp], 0 ≤ p ≤ e − 1, p 6= u and the intervals [f, cu], [g1(c̃), c̃], c̃ ∈ C \
{c0, . . . , ce−1} and some other intervals starting with monomials of degree ≥ d + 2 give the
partition P of PI/J with sdepth ≥ d + 2. Contradiction.

Example 1.1 Let n = 5, I = (x1x2, x3x4x5) and J = (x1x2x3x5, x1x2x4x5). We see that we
have sdepth I/J = d + 1 = 3 and B = {x1x2x3, x1x2x4, x1x2x5, x3x4x5} and
C = {x1x2x3x4, x1x3x4x5, x2x3x4x5} so we are in the case s = q+1. We can get depth I/J ≤ 3
by using [5, Lemma 1.5] for u = x1x2x5.

Remark 1.2 If in the above example change just one monomial from the generators of J ,
namely take J = (x1x2x4x5, x2x3x4x5) then we have sdepthS I/J = 4 because the partition
induced by the intervals [x1x2, x1x2x3x4], [x3x4x5, x1x3x4x5], [x1x2x5, x1x2x3x5] has sdepth
d + 2 = 4. Also we have depthS I/J = 4.

A question is hinted by the following example.

Example 1.3 Let n = 5, I = (x1, x2x3, x2x4, x2x5, x3x4) and J the ideal generated by all
squarefree monomials of I of degrees 4. Then E = {x2x3, x2x4, x2x5, x3x4}, f = x1, B =
{x1x2, x1x3, x1x4, x1x5, E}, C = {x1x2x3, x1x2x4, x1x2x5, x1x3x4,
x2x3x4, x2x3x5, x2x4x5}. Thus s = 8 = q + 1. We see that sdepthS I/J = d + 2 = 3 but
depthS I/J = d + 1 = 2. Note that here

C ⊂ (∪a∈EC ∩ (f) ∩ (a)) ∪ (∪a,a′∈E,a6=a′C ∩ (a) ∩ (a′),
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a condition which might imply always depthS I/J ≤ d + 1, the inequality being not true for
sdepth.
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