Calabi-Yau algebras and their deformations

by

Ji-Wei He, Fred Van Oystaeyen and Yinhuo Zhang

Dedicated to Professors Toma Albu and Constantin Năstăsescu
on the occasion of their 70th birthdays

Abstract

This is a survey of our joint works on graded Calabi-Yau algebras, Calabi-Yau Hopf algebras and their PBW-deformations.

Key Words: Calabi-Yau algebra, Artin-Schelter regular algebra, Hopf algebra, PBW-deformation.

2010 Mathematics Subject Classification: Primary: 16E65; Secondary: 16S38.

Introduction

Calabi-Yau algebras appeared naturally in theoretic physics [KS, Gin1]. They seek wide applications in many branches of mathematics, say, noncommutative geometry [Gin2, Bo1, Bo2, Br, VdB2, BP], and representation theory [Ke1, Ke2, Ke3, ES, BS, IR, CZ, KR, IR]. In this survey, we focus on our works on Koszul Calabi-Yau algebras, Calabi-Yau Hopf algebras and their deformations.

Let k be an algebraically closed field with characteristic zero, and let A be a k-algebra. A is called a Calabi-Yau algebra of dimension d [Gin1] if

(i) A is homologically smooth; that is, A has a finite resolution of finitely generated projective A-bimodules;

(ii) $\text{Ext}^i_A(A, A \otimes A) = 0$ if $i \neq d$ and $\text{Ext}^d_A(A, A \otimes A) \cong A$ as A-bimodules, where $A^e = A \otimes A^{op}$ is the enveloping algebra of A.

Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a \mathbb{Z}-graded algebra, and $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a graded A-bimodule. For any integer l, $M(l)$ is a graded A-bimodule whose degree i component is $M(l)_i = M_{i+l}$. A graded algebra A is called a graded Calabi-Yau algebra of dimension d if (i) A has a finite resolution of finitely generated graded projective A-bimodules, and (ii) $\text{Ext}^i_A(A, A \otimes A) = 0$ when $i \neq d$ and $\text{Ext}^d_A(A, A \otimes A) \cong A(l)$ as graded A-bimodules for some integer l.
The survey is organized as follows. In Section 1, we discuss the Calabi-Yau property of N-Koszul algebras. It is well known that a positively graded Calabi-Yau algebra A with $A_0 = k$ is Artin-Schelter regular. We summarize some criteria for an N-Koszul Artin-Schelter regular algebra to be graded Calabi-Yau, and provide a method to construct graded Calabi-Yau algebras from known Artin-Schelter regular algebras.

In Section 2, we mainly discuss the Calabi-Yau property of pointed Hopf algebras. We give a necessary and sufficient condition for an Artin-Schelter regular Hopf algebra to be Calabi-Yau. It is relatively easy to determine the Calabi-Yau property of cocommutative Hopf algebras since a cocommutative pointed Hopf algebra is isomorphic to a skew group algebra of a universal enveloping algebra with a group algebra. When the pointed Hopf algebra under consideration is noncocommutative, we are only able to determine the Calabi-Yau property of pointed Hopf algebras of finite Cartan type.

In Section 3, we discuss the PBW-deformations of Koszul Calabi-Yau algebras. We summarize some criterion theorems for a PBW-deformation of a Koszul Calabi-Yau algebra to be again Calabi-Yau. In particularly, a PBW-deformation of a polynomial algebra is exactly a Sridharan enveloping algebra of a finite Lie algebra. We provide some equivalent conditions for a Sridharan enveloping algebra to be Calabi-Yau, and we are able to classify all the Calabi-Yau Sridharan enveloping algebras of dimension 3.

1 Koszul Calabi-Yau algebras

In this section, we always assume that $A = \oplus_{n \in \mathbb{Z}} A_n$ is a positively graded algebra with $A_0 = k$ and $\dim A_n < \infty$ for all $n > 0$. Let $E(A) = \oplus_{i \geq 0} \text{Ext}^i_A(Ak, Ak)$ be the space of extensions of the trivial graded module Ak. Endowed with the Yoneda product, $E(A)$ is a positively graded algebra, and is usually called the Yoneda Ext-algebra of A.

Recall that A is called an Artin-Schelter regular algebra $[AS]$ if A has finite global dimension d, $\text{Ext}^i_A(kA, A) = 0$ for all $i \neq d$ and $\text{Ext}^d_A(kA, A) = k$. It is well known that a graded Calabi-Yau algebra A is Artin-Schelter regular $[BM]$. It is an interesting question to find graded Calabi-Yau algebras amongst known Artin-Schelter regular algebras. We do this in the view of Koszul algebras. Given an integer $N \geq 2$, a positively graded algebra A is called an N-Koszul algebra $[Be1, YZ]$ if the trivial graded module Ak has a graded projective resolution

$$\cdots \rightarrow P^{-i} \rightarrow P^{-i+1} \rightarrow \cdots \rightarrow P^0 \rightarrow Ak \rightarrow 0,$$

such that the graded projective module P^{-i} is generated in degree $\delta(i)$, where

$$\delta(i) = \begin{cases} \frac{N}{2}, & \text{if } i \text{ is even;} \\ \frac{i-1}{2}N + 1, & \text{if } i \text{ is odd.} \end{cases}$$

In the case that $N = 2$, an N-Koszul algebra is usually called a Koszul algebra which was introduced by Priddy about forty years ago in $[Pr]$. An N-Koszul algebra is generated in degree 1. So, we may write A as a quotient algebra of a tensor algebra, say $A = T(V)/(R)$ where V is a finitely dimensional vector space, $T(V)$ is the tensor algebra of V, $R \subseteq V^\otimes N$ is a subspace and (R) is the two-sided ideal of $T(V)$ generated by R. Associated to A, there is a homogeneous dual algebra $A' = T(V^*)/(R^*)$ where V^* is the dual space of V and $R^* \subseteq (V^*)^\otimes N$.
Calabi-Yau algebras and their deformations

is the orthogonal complement of \(R \) in \((V^*)^\otimes N\). Clearly, \((A^!)^1 \cong A\). As a graded vector space, the Yoneda Ext-algebra \(E(A) = \oplus_{i \geq 0} A^i \) [BM, HL]. If \(A \) is a Koszul algebra, then \(E(A) \cong A^1 \) as graded algebras [BGS], and in this case \(A^1 \) is also a Koszul algebra.

If an \(N \)-Koszul algebra \(A \) is Artin-Schelter regular, then its Yoneda Ext-algebra \(E(A) \) is a graded Frobenius algebra [Sm1, BM]. Recall that a finitely dimensional positively graded \(\langle \cdot,\cdot \rangle \) is the Yoneda Ext-algebra of \(E \rightarrow \) degenerate bilinear form \(A \) as graded algebras [BGS], and in this case \(A \) is the orthogonal complement of \(R \). For a graded Frobenius algebra \(E \) there is a unique graded algebra automorphism \(\varphi : E \to E \), called the Calabi-Yau automorphism of \(E \), such that \(\langle a,b \rangle = \langle \varphi(b),a \rangle \) for all homogeneous elements \(a,b \in E \). A graded Frobenius algebra \(E \) is called a graded symmetric algebra if \(\langle a,b \rangle = (\psi^{-1}(b,a)) = (\varphi(a)) = (\varphi(a)) \) for all homogeneous elements \(a,b \in E \), where \(|a| \) and \(|b| \) are the degree of \(a \) and \(b \) respectively.

The Calabi-Yau property of an \(N \)-Koszul algebra is equivalent to certain symmetric property on its Yoneda Ext-algebra.

Proposition 1. [HVZ2] An \(N \)-Koszul algebra \(A \) is a graded Calabi-Yau algebra if and only if its Yoneda Ext-algebra \(E(A) \) is a graded symmetric algebra.

In view of this property of \(N \)-Koszul Calabi-Yau algebras, we may construct new graded Calabi-Yau algebras from known Artin-Schelter regular algebras by the traditional methods, say skew polynomial algebras or more generally Ore extensions.

For an Artin-Schelter regular algebra, we have the following result, which was proved by Van den Bergh in [VdB1] for Koszul algebras and by Berger and Marconnet in [BM, Proof of Theorem 6.3] for general \(N \)-Koszul algebras.

Theorem 1. Let \(A \) be an \(N \)-Koszul Artin-Schelter regular algebra of global dimension \(d \). Let \(\varphi \) be the Nakayama automorphism of \(E(A) \), and \(\psi \) the automorphism of \(A \) induced by \(\varphi \). Then \(\text{Ext}^{i}_{A_{\varphi}}(A, A \otimes A) = 0 \) for \(i \neq d \), and \(\text{Ext}^{d}_{A_{\varphi}}(A, A \otimes A) \cong 1 A_{\xi}(\delta(d)), \)

where \(\xi \) is the automorphism of \(A \) defined by \(\xi(a) = (-1)^{|a|(d+1)} \varphi^{-1}(a) \) for all homogeneous element \(a \in A \), and \(1 A_{\xi} \) is the \(A \)-bimodule with the regular \(A \)-action on the left side and the right \(A \)-action defined by \(x \cdot a = x \xi(a) \) for all \(x,a \in A \).

The automorphism \(\xi \) in the theorem above is usually called the Calabi-Yau automorphism of \(A \).

Let \(A \) be a Koszul algebra, and \(\sigma \) a graded automorphism of \(A \). Let \(B = A[z;\sigma] \) be the graded skew polynomial algebra with coefficients in \(A \). Clearly, \(B \) is also a Koszul algebra. The Yoneda Ext-algebra of \(B \) can be presented as follows. Let \(E = k \oplus E_1 \oplus E_2 \oplus \cdots \) be a positively graded algebra, and \(M \) a graded \(E \)-bimodule. The trivial extension of \(E \) by \(M \) is defined to be the graded algebra \(\Gamma(E,M) = E \oplus M \) with the product \((x_1,m_1) \ast (x_2,m_2) = (x_1 x_2, x_1 \cdot m_2 + m_1 \cdot x_2) \) for \(x_i \in E \) and \(m_i \in M \). If \(\psi \) and \(\tau \) are two automorphisms of \(E \), then the notion \(\psi E \psi \) is the \(E \)-bimodule defined by \(a \cdot x \cdot b = \psi(a) x \tau(b) \) for \(a,x,b \in E \).

Proposition 2. [HVZ3] Let \(A \) be a Koszul algebra, \(\sigma \) a graded algebra automorphism of \(A \) and \(B = A[z;\sigma] \). Then \(E(B) \cong \Gamma(A^1, A^1 \psi(-1)) \), where \(\psi = (\sigma^{-1})^1 \) is the automorphism of \(A^1 \).
induced by σ^{-1} and ϵ is the automorphism of A^1 defined by $\epsilon(x) = (-1)^{|x|}x$ for all homogeneous element $x \in A^1$.

From Propositions 1 and 2 and Theorem 1, we obtain the following result.

Theorem 2. [HVZ5] Let A be a Koszul Artin-Schelter regular algebra of global dimension d with the Nakayama automorphism ξ. Then the skew polynomial algebra $B = A[z; \xi]$ is a Calabi-Yau algebra of dimension $d + 1$.

We next consider graded Calabi-Yau algebras of lower global dimensions. Let A be a positively graded algebra which is generated in degree 1. If A is an Artin-Schelter regular algebra of global dimension 2, then $A \cong k\langle x_1, \ldots, x_n \rangle/(f)$, where $k\langle x_1, \ldots, x_n \rangle$ is the free algebra generated by x_1, \ldots, x_n, and (f) is the two-sided ideal generated by the element f. The element f is presented as follows: $f = (x_1, \ldots, x_n)M(x_1, \ldots, x_n)^t$, where M is an $n \times n$ invertible invertible matrix with entries in k.

Proposition 3. [HVZ3] Let $A = k\langle x_1, \ldots, x_n \rangle/(f)$ and let M be an $n \times n$ invertible matrix. Then we have $\text{Ext}^i_{A^e}(A, A \otimes A) = 0$ for $i \neq 2$, and

$$\text{Ext}_A^2(A, A^e) \cong A_1 \xi(-2),$$

where ξ is an automorphism defined by $\xi(y) = -(x_1, \ldots, x_n)M^tM^{-1}k^t$ in which $y = k_1x_1 + \cdots + k_nx_n$ and $k = (k_1, \ldots, k_n)$.

As a corollary, we have

Corollary 1. [Zh, Be2, Bo1] Let $A = k\langle x_1, \ldots, x_n \rangle/(f)$ where $f = (x_1, \ldots, x_n)M(x_1, \ldots, x_n)^t$ and M is an $n \times n$ matrix. Then A is Calabi-Yau of dimension 2 if and only if M is invertible and anti-symmetric.

If A is an Artin-Schelter regular algebra of global dimension 3, then A is an N-Koszul algebra. A is isomorphic to a quotient algebra $k\langle x_1, \ldots, x_n \rangle/(r_1, \ldots, r_n)$ generated by x_1, \ldots, x_n subject to the relations $r_1, \ldots, r_n \in k\langle x_1, \ldots, x_n \rangle$ of degree N. Let V be the vector space spanned by x_1, \ldots, x_n, and R be the vector space spanned by r_1, \ldots, r_n. That A is of global dimension 3 implies $\dim(V \otimes R \cap R \otimes V) = 1$. Fix a basis z of $V \otimes R \cap R \otimes V$. As originally suggested in [AS], the element $z \in R \otimes V$ can be written as

$$z = rQ^{(1)}x^t,$$

where $Q^{(1)}$ is an $n \times n$ matrix, $x = (x_1, \ldots, x_n)$ and $r = (r_1, \ldots, r_n)$. On the other hand, since $z \in V \otimes R$, there is an $n \times n$ matrix $Q^{(2)}$ with

$$z = xQ^{(2)}r^t.$$

Proposition 4. [HVZ3] With the notions as above. We have

(i) the matrices $Q^{(1)}$ and $Q^{(2)}$ are invertible;
Calabi-Yau algebras and their deformations

(ii) \(\text{Ext}^3_A(A, A \otimes A) \cong \text{Ext}_1^A(N + 1) \), where \(\xi \) acts on generators of \(A \) by

\[
\xi(x_1, \ldots, x_1) = (x_1, \ldots, x_n)Q^{(1)}Q^{(2)}^{-1}.
\]

(iii) \(A \) is Calabi-Yau if and only if \(Q^{(1)} = Q^{(2)} \).

Part of graded Calabi-Yau algebras of dimension 3 can be obtained by Ore extensions from Calabi-Yau algebras of dimension 2. Now let \(A \) be a graded Calabi-Yau algebra of dimension 2. By Corollary 1, \(A \cong k\langle x_1, \ldots, x_n \rangle / (f) \) for some \(n \geq 2 \) and \(f = (x_1, \ldots, x_n)M(x_1, \ldots, x_n)^t \), where \(M \) is an \(n \times n \) invertible anti-symmetric matrix. Note that any invertible anti-symmetric matrix is cogredient to a standard form:

\[
\Omega = \begin{pmatrix}
0 & \cdots & 0 & 1 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \cdots & 1 & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots & \vdots \\
1 & \cdots & 0 & 0 & \cdots & 0
\end{pmatrix}.
\]

Since the algebra defined by the relation \(f = (x_1, \ldots, x_n)M(x_1, \ldots, x_n)^t \) is isomorphic to the algebra defined by the relation \(r = (x_1, \ldots, x_n)\Omega(x_1, \ldots, x_n)^t \), we may assume that \(M \) itself is standard. Let \(\delta \) be a graded derivation of the free algebra \(k\langle x_1, \ldots, x_n \rangle \) of degree 1. If \(\delta(f) = 0 \), then \(\delta \) induces a graded derivation \(\overline{\delta} \) on \(A \). Let \(B = A[z; \overline{\delta}] \) be the Ore extension of \(A \) defined by the graded derivation \(\overline{\delta} \).

Theorem 3. [HVZ4] Let \(M \) be an \(n \times n \) standard anti-symmetric matrix for some \(n \geq 2 \). Put \(f = (x_1, \ldots, x_n)M(x_1, \ldots, x_n)^t \) and \(A = k\langle x_1, \ldots, x_n \rangle / (f) \). With the notions as above.

(i) \(B \) is a graded Calabi-Yau algebra of dimension 3;

(ii) Write \(\delta(x_i) = \sum_{s,t=1}^n k^i_{st}x_i \otimes x_j \) for all \(i = 1, \ldots, n \). Assume that there is an integer \(j \) such that \(k^i_{jj} = 0 \) for all \(i = 1, \ldots, n \). Then \(B \) is a graded coherent algebra.

The class of algebras obtained in the theorem above includes the graded Calabi-Yau algebras studied by Smith in [Sm2], which were constructed from the octonions. The theorem above can be viewed as a generalization of [Sm2, Theorem 5.7 and Prop. 9.2].

2 Calabi-Yau pointed Hopf algebras

Let \(H \) be a Noetherian Hopf algebra. Similar to the graded case, one can introduce the Artin-Schelter regularity for Hopf algebras. \(H \) is said to be Artin-Schelter regular [BZ] if (i) the global dimension of \(H \) is finite, say, \(d \), (ii) \(\dim \text{Ext}^d_H(Hk, H) = 1 \) and \(\text{Ext}^i_H(Hk, H) = 0 \) for all \(i \neq d \), where \(Hk \) is the trivial \(H \)-module defined by the counit of \(H \), and (iii) the right version
of (ii) is satisfied. For an Artin-Schelter regular Hopf algebra, a nonzero element in the one-dimensional right H-module $\text{Ext}^d_H(Hk, HH)$ is called a right homological integral of H, and a nonzero element in the one-dimensional left H-module $\text{Ext}^d_H(k_H, H)$ is called a left homological integral of H [LWZ]. The homological integral was proved to be a powerful tool to study infinite dimensional Hopf algebras [LWZ, BZ]. If the left one-dimensional H-module $\text{Ext}^d_H(Hk, HH)$ is isomorphic to the trivial module Hk (or equivalently, the right H-module $\text{Ext}^d_H(Hk, H)$ is isomorphic to the trivial module k_H), then H is said to be unimodular [LWZ].

For a Noetherian Hopf algebra, we have the following result.

Theorem 4. [HVZ1] Let H be a Noetherian Hopf algebra with antipode S. Then H is Calabi-Yau of dimension d if and only if

(i) H is Artin-Schelter regular of global dimension d and unimodular,

(ii) S^2 is an inner automorphism of H.

With the help of the above theorem, we may find out Calabi-Yau Hopf algebras from Noetherian pointed Hopf algebras.

Let us firstly consider the cocommutative pointed Hopf algebras. It is well known that a cocommutative Hopf algebra (note that k is algebraically closed) is isomorphic to a smash product of a universal enveloping algebra of a Lie algebra with a group algebra. We have the following result for cocommutative pointed Hopf algebra.

Theorem 5. [HVZ1] Let g be a finite dimensional Lie algebra, and $G \subseteq \text{Aut}_{\text{Lie}}(g)$ a finite group. Then the skew group algebra $U(g)\#kG$ is a Calabi-Yau Hopf algebra if and only if $G \subseteq \text{SL}(g)$ and the Lie algebra g is unimodular, that is, for any $x \in g$, $\text{tr}(\text{ad}_g(x)) = 0$.

For the cocommutative Calabi-Yau Hopf algebra of lower dimensions, we have the following results.

Theorem 6. [HVZ1] Let H be a cocommutative Hopf algebra such that it has finite group-like elements and the subspace of its primitive elements is finite dimensional. Then

(i) H is Calabi-Yau of dimension 2 if and only if there is a finite group G and a group map $\nu : G \to \text{SL}(2, k)$ such that $H \cong k[x, y]\#kG$, where the G-action on $k[x, y]$ is given by ν.

(ii) H is Calabi-Yau of dimension 3 if and only if $H \cong U(g)\#kG$, where g is one of the 3-dimensional Lie algebras listed below and G is a finite group with a group morphism $\nu : G \to \text{Aut}_{\text{Lie}}(g)$ such that $\text{im}(\nu)$ is also a subgroup of $\text{SL}(g)$:

(a) The 3-dimensional simple Lie algebra $\mathfrak{sl}(2, k)$;

(b) g has a basis $\{x, y, z\}$ such that $[x, y] = y, [x, z] = -z$ and $[y, z] = 0$.

(c) The Heisenberg algebra, that is; g has a basis $\{x, y, z\}$ such that $[x, y] = z$ and $[x, z] = [y, z] = 0$;

(d) The 3-dimensional abelian Lie algebra.
We next consider the Calabi-Yau property of the noncocommutative pointed Hopf algebras. We restrain ourselves to pointed Hopf algebras of finite Cartan type. We recall some notions and terminology from [AnS].

- \(\Gamma \) is a free abelian group of finite rank \(s \);
- \((a_{ij}) \in \mathbb{Z}^{n \times n} \) is a Cartan matrix of finite type. \(\text{diag}(d_1, \cdots, d_n) \) is a diagonal matrix of positive integers such that \(d_ia_{ij} = d_ja_{ji}, \) which is minimal with this property;
- \(\mathcal{X} \) is the set of connected components of the Dynkin diagram corresponding to the Cartan matrix \((a_{ij})\). If \(1 \leq i, j \leq n \), then \(i \sim j \) means that they belong to the same connected component;
- \((q_I)_{I \in \mathcal{X}}\) is a family of elements in \(k \) which are not roots of \(1 \);
- Choose elements \(g_1, \cdots, g_n \in \Gamma \) and characters \(\chi_1, \cdots, \chi_n \in \hat{\Gamma} \) such that
 \[
 \langle \chi_j, g_i \rangle \langle \chi_i, g_j \rangle = q_i^{d_{ij}}, \langle \chi_i, g_i \rangle = q_i^1,
 \]
 for all \(1 \leq i < j \leq n, i \in I \).

Set \(\mathcal{D} = \mathcal{D}(\Gamma, (a_{ij})_{1 \leq i, j \leq n}, (g_i)_{1 \leq i \leq n}, (\chi_i)_{1 \leq i \leq n}) \). A linking datum \(\lambda = (\lambda_{ij}) \) for \(\mathcal{D} \) is a collection \((\lambda_{ij})_{1 \leq i < j \leq n, i \sim j \in \{0, 1\}}\) such that \(\lambda_{ij} = 0 \) if \(g_ig_j = 1 \) or \(\chi_i\chi_j \neq \varepsilon \). Write the datum \(\lambda = 0 \), if \(\lambda_{ij} = 0 \) for all \(1 \leq i < j \leq n \).

The datum \((\mathcal{D}, \lambda) = (\Gamma, (a_{ij}), (g_i), (\chi_i), (\lambda_{ij}))\) is called a generic datum of finite Cartan type for the group \(\Gamma \).

Given a generic datum \((\mathcal{D}, \lambda)\) of finite Cartan type. Denote by \(U(\mathcal{D}, \lambda) \) the algebra with generators \(x_1, \cdots, x_n; z_1^{\pm 1}, \cdots, z_s^{\pm 1} \) and relations
\[
 z_k^{\pm 1} z_i^{\pm 1} = z_i^{\pm 1} z_k^{\pm 1}, \quad z_k^{\pm 1} z_i = 1, \quad 1 \leq k, l \leq s,
\]
\[
 z_k x_i = \chi_i(z_k) x_i z_k, \quad 1 \leq i \leq n, 1 \leq k \leq s,
\]
\[
 (\text{ad}_x(x)^{-1} a_i)(x_j) = 0, \quad 1 \leq i \neq j \leq n, i \sim j,
\]
\[
 x_i x_j - \chi_j(g_i) x_j x_i = \lambda_{ij}(1 - g_i g_j), \quad 1 \leq i < j \leq n, i \sim j.
\]
where \(\text{ad}_x \) is the braided adjoint representation (for details, see [AnS, Sect. 1]).

Theorem 7. [AnS] Let \((\mathcal{D}, \lambda) = (\Gamma, (a_{ij}), (g_i), (\chi_i), (\lambda_{ij}))\) be a generic datum of finite Cartan type. The algebra \(U(\mathcal{D}, \lambda) \) defined as above is a pointed Hopf algebra with comultiplication defined by
\[
 \Delta(g_k) = g_k \otimes g_k, \quad \Delta(x_i) = x_i \otimes 1 + g_i \otimes x_i, \quad 1 \leq k \leq s, 1 \leq i \leq n.
\]

The Hopf algebra \(U(\mathcal{D}, \lambda) \) is Noetherian [YZ], and the Calabi-Yau property of \(U(\mathcal{D}, \lambda) \) is shown in the following theorem.

Theorem 8. [YZ] Let \((\mathcal{D}, \lambda)\) be a generic datum of finite Cartan type. The pointed Hopf algebra \(U(\mathcal{D}, \lambda) \) is Calabi-Yau if and only if \(\prod_{i=1}^p \chi_i = \varepsilon \) and \(S^2 \) is inner, where \(p \) is the number of the positive roots of the Cartan matrix, \(\chi_i \)'s are the positive roots and \(S \) is the antipode of \(U(\mathcal{D}, \lambda) \).

Remark. (i) The Calabi-Yau property of a quantum enveloping algebra was already shown in [Ch].

(ii) Calabi-Yau pointed Hopf algebras of finite Cartan type of dimensions less than 5 were classified in [YZ].
3 PBW deformations

Let $A = \oplus_{i \geq 0} A_i$ be a graded algebra with $A_0 = k$. A PBW-deformation of A is a filtered algebra U with an ascending filtration $0 \subseteq F_0 U \subseteq F_1 U \subseteq F_2 U \subseteq \cdots$ such that the associated graded algebra $gr(U)$ is isomorphic to A.

In this section, we only consider PBW-deformations of Koszul algebras. Let $A = T(V)/(R)$ be a Koszul algebra. A PBW-deformation U of A is determined by two linear maps $\nu : R \to V$ and $\theta : R \to k$ in sense that $U \cong T(V)/(r - \nu(r) - \theta(r) : r \in R)$, where the linear maps ν and θ satisfy Jacobian type conditions (see [BG, PP]):

\[
\begin{align*}
(\nu \otimes 1 - 1 \otimes \nu)(R \otimes V \cap V \otimes R) & \subseteq R \\
[\nu(\nu \otimes 1 - 1 \otimes \nu) - (\theta \otimes 1 - 1 \otimes \theta)](R \otimes V \cap V \otimes R) & = 0 \\
\theta(\nu \otimes 1 - 1 \otimes \nu)(R \otimes V \cap V \otimes R) & = 0.
\end{align*}
\]

If $\theta = 0$, then U is called an augmented PBW-deformation of A.

Since A is a Koszul algebra, the Yoneda Ext-algebra of A is also a Koszul algebra. Moreover, $E(A) \cong A^!$. Henceforth, we identify $E(A)$ with $A^!$. Recall $A^! = T(V^*)/(R^\perp)$. Hence $A^! = V^*$ and $A_{\nu}^! = R^\perp$. So, we may view θ as an element in $A_{\nu}^!$. By the Jacobian type conditions above, the dual map $\nu^* : V^* \to R^\perp$ induces a graded derivation ∂ on $A^!$, so that the triple $(A^!,\partial,\theta)$ is a curved differential graded (DG) algebra [PP], that is, the identity $\partial^2(x) = [\theta,x]$ holds for all $x \in A^!$. We call $(A^!,\partial,\theta)$ the curved DG algebra dual to the PBW-deformation U of A. If U is an augmented PBW-deformation of A, then $(A^!,\partial)$ is a usual DG algebra.

Proposition 5. [HVZ3] Let $A = T(V)/(R)$ be a Koszul Artin-Schelter regular algebra of global dimension d, and let ξ be the Nakayama automorphism of A (see Sect. 1). Assume that \{x_1, \ldots, x_n\} is a basis of V, and \{x_1^*, \ldots, x_n^*\} is the dual basis of V^*.

Let $U = T(V)/(r - \nu(r) - \theta(r) : r \in R)$ be a PBW-deformation of A, and let $(A^!,\partial,\theta)$ be the curved DG algebra dual to U. Choose a basis \mathcal{w} of $A_{\nu}^!$, and assume that \{x_1, \ldots, x_n\} is the basis of A_{d-1} such that $x_i^* x_j = \delta_{ij} \mathcal{w}$. Assume further $\partial(\omega_i) = \lambda_i \mathcal{w}$ for all $i = 1, \ldots, n$. Then $\Ext_{U^!}(U, U \otimes U) = 0$ for $i \neq d$, and

\[\Ext_{U^!}(U, U \otimes U) \cong 1 U_{\xi},\]

where the automorphism ζ acts on the generator by $\zeta(x_i) = \xi(x_i) + \lambda_i$.

From the above proposition, we have the following result.

Theorem 9. [HVZ3] Let $A = T(V)/(R)$ be a Koszul Calabi-Yau algebra of dimension d. Assume that U is an augmented PBW-deformation of A, and that $(A^!,\partial)$ is the DG algebra dual to U. Then the following are equivalent:

(i) U is a Calabi-Yau algebra;

(ii) $E(U) = \oplus_{i=1}^d \Ext_{U^!}(k,k)$ is a graded symmetric algebra;

(iii) $\partial(A_{d-1}^!) = 0$.
Remark 1. A similar result also appeared in [WZ] under the hypothesis that \(A \) is Noetherian.

The Calabi-Yau property of a nonaugmented PBW-deformation is sometimes equivalent to that of an augmented one.

Theorem 10. [HVZ3, HZ] Let \(A = T(V)/(R) \) be a Koszul Calabi-Yau algebra of dimension \(d \). Assume that both \(U = T(V)/(r - \nu(r) - \theta(r) : r \in R) \) and \(U' = T(V)/(r - \nu(r) : r \in R) \) are PBW-deformations of \(A \). If \(U' \) is Calabi-Yau, then so is \(U \).

Conversely, if \(U \) is Calabi-Yau and \(A \) is a domain, then \(U' \) is Calabi-Yau.

We next consider PBW-deformations of some specific graded Calabi-Yau algebra. Let \(A \) be a Koszul Artin-Schelter regular algebra of global dimension \(d \). Let \(\xi \) be the Nakayama automorphism of \(A \) (see Sect. 1). Then the skew polynomial algebra \(A[z; \xi] \) is a Koszul Calabi-Yau algebra of global dimension \(d + 1 \) (see, Theorem 2). Let \(U = T(V)/(r - \nu(r) - \theta(r) : r \in R) \) be a PBW-deformation of \(A \), and let \(\zeta \) be the automorphism defined in Proposition 5. Then we have

Theorem 11. [HVZ5] Keep the notation as above.

(i) \(U[z; \zeta] \) is a PBW-deformation of \(A[z; \xi] \);

(ii) If, further, \(A \) is Calabi-Yau and \(A \) is a domain, then \(U[z; \zeta] \) is also Calabi-Yau.

If \(A = k[x_1, \ldots, x_n] \) is the polynomial algebra generated by variables \(x_1, \ldots, x_n \), then a PBW-deformation of \(A \) is equivalent to a Sridharan enveloping algebra of an \(n \)-dimensional Lie algebra. We recall from [Sr] the definition of Sridharan enveloping algebra. Let \(g \) be a finite dimensional Lie algebra, and let \(f \in Z^2(g, k) \) be a 2-cocycle, that is; \(f : g \times g \to k \) such that

\[
f(x, x) = 0 \text{ and } f(x, [y, z]) + f(y, [z, x]) + f(z, [x, y]) = 0
\]

for all \(x, y, z \in g \). The Sridharan enveloping algebra of \(g \) is defined to be the quotient algebra \(U_f(g) = T(g)/I \), where \(I \) is the two-sided ideal of \(T(g) \) generated by the elements

\[
x \otimes y - y \otimes x - [x, y] - f(x, y), \quad \text{for all } x, y \in g.
\]

The following result says that the Calabi-Yau property of a Sridharan enveloping algebra is independent of the choice of the 2-cocycle \(f \).

Theorem 12. [HVZ1] Let \(g \) be a finite dimensional Lie algebra. For an arbitrary 2-cocycle \(f \in Z^2(g, k) \), the following are equivalent.

(i) The Sridharan enveloping algebra \(U_f(g) \) is Calabi-Yau of dimension \(d \).

(ii) The universal enveloping algebra \(U(g) \) is Calabi-Yau of dimension \(d \).

(iii) \(\dim g = d \) and \(g \) is unimodular.

By the theorem above, we are able to classify all the Calabi-Yau Sridharan enveloping algebras of dimension 3.
Theorem 13. [HVZ1] A Sridharan enveloping algebra $U_f(g)$ is Calabi-Yau of dimension 3 if and only if $U_f(g)$ is isomorphic to $k\langle x, y, z \rangle/(R)$ with the commuting relations R listed in the following table:

<table>
<thead>
<tr>
<th>Case</th>
<th>${x, y}$</th>
<th>${x, z}$</th>
<th>${y, z}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z</td>
<td>$-2x$</td>
<td>$2y$</td>
</tr>
<tr>
<td>2</td>
<td>y</td>
<td>$-z$</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>z</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>y</td>
<td>$-z$</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>z</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

where $\{x, y\} = xy - yx$.

Acknowledgement. The first author is supported by an FWO-grant and grants from NSFC (No. 11171067), ZJNSF (No. LY12A01013), and SRF for ROCS, SEM.

References

Calabi-Yau algebras and their deformations

Received: 18.04.2013,
Accepted: 28.05.2013.

Department of Mathematics, Shaoxing College of Arts and Sciences, Shaoxing Zhejiang 312000, China
Email: jwhe@usx.edu.cn

Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1,
B-2020 Antwerp, Belgium
Email: fred.vanoystaeyen@ua.ac.be

Department of Mathematics and Statistics, University of Hasselt, 3590 Diepenbeek, Belgium
Email: yinhuo.zhang@uhasselt.be