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Abstract

We continue studying normal left coideal subalgebras of a Hopf algebra H, realizing
them as invariants of H under the left hit action of Hopf subalgebras of H∗. We apply
this realization to test an equivalence relation on irreducible characters for two important
examples. The commutator sublagebra of H, which is the analogue of the commutator
subgroup of a group and the image of the Drinfeld map for quasitriangular Hopf algebras.
We end with the example H = D(kS3) where commutators are computed.
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Introduction

We study natural analogues of normal subgroups, namely normal left coideal subalgebras of a
Hopf algebra H. In §2 we consider HT , invariants under the left hit action, and show:

Theorem 2.4: Let H be a finite dimensional Hopf algebra over a field k, then there exists a
bijective correspondence between left coideal subalgebras T of H∗ and left coideal subalgebras
A of H. The maps

T → HT A→ (H∗)A

are inverses of each other, that is,

T = (H∗)H
T

A = H(H∗)A

We apply this theorem to normal left coideal subalgebras LKerV (defined in [2]) which are
natural generalizations of kernel of group representations, and show:

∗This research was supported by the Irael Science Foundation, 170-12.
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Theorem 2.8: Let H be a Hopf algebra over k and V a finite dimensional representation of H
with associated character χV . Let BV be the bialgebra (and thus the Hopf subalgebra) of H∗

generated by χV . Then
HBV = LKerV .

In §3 we study the special case of semisimple quasitriangular Hopf algebras. In this case
ImfQ, where fQ is the Drinfeld map, is a normal left coideal subalgebra of H. Let {ηj} be the
set of normalized class sums of H, defined in [5]. This set is the Hopf algebra analogue of the set
of representatives of conjugacy classes for groups. The equivalence relation on the irreducible
characters of H induced by the Hopf subalgebra B = (H∗)ImfQ satisfies:

Theorem 3.4: Let (H,R) be a quasitriangular semisimple Hopf algebra over a field k of
characteristic 0, let NQ = ImfQ and B = (H∗)NQ . Then the map fQ induces a bijective
correspondence between the equivalence classes {[χi]B} and the set of normalized class sums
{ηj} ∩NQ.

In §4 we study another natural example of a normal left coideal subalgebra, namely the
commutator algebra, H ′, defined in [1]. It turns out that H ′ equals the invariants of H under
the left hit action of B = kG(H∗). We prove:

Theorem 4.2: Let H be a d-dimensional semisimple Hopf algebra over an algebraically closed
field of characteristic 0 and let B = kG(H∗). Then:

(i) χi ≡B χj if and only if there exists σ ∈ G(H∗) so that χi = σχj . In this case di = dj .

(ii) The cardinality of the equivalence class of χi equals |G||Li| where

Li = {σ ∈ G(H∗)|σχi = χi}.

In particular, the cardinality of each equivalence class divides d.

A special element ofH ′, denoted by z2 was introduced and studied in [8]. When the character
algebra of H is commutative, we compute it from its generalized character table. In particular
we compute various objects mentioned above for H = D(kS3). As a result we show that in this
case H ′ = z2 ↼ H∗.

1 Preliminaries

Throughout this paper, H is a finite-dimensional Hopf algebra over a field k. We denote by S
and s the antipodes of H and H∗ respectively and Λ and λ the left and right integrals of H
and H∗ respectively so that 〈λ,Λ〉 = 1. Denote by Z(H) the center of H.

Recall that any subbialgebra of H is necessarily a Hopf subalgebra.
The Hopf algebra H∗ becomes a right and left H-module by the hit actions ↼ and ⇀ defined

for all a ∈ H, p ∈ H∗,

〈p ↼ a, a′〉 = 〈p, aa′〉 〈a ⇀ p, a′〉 = 〈p, a′a〉

H becomes a left and right H∗-module analogously.
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Denote by ȧd the left adjoint action of H on itself, that is, for all a, h ∈ H,

hȧda =
∑

h1aS(h2)

A left coideal subalgebra of H is called normal if it is stable under the left adjoint action of
H.

Recall [16], any left coideal subalgebra A of H contains a left integral ΛA. Moreover, if
A1 ⊂ A2 are left coideal subalgebras then A2 is free over A1. This implies in particular that:

Remark 1.1. If A 6= B are left coideal subalgebras of H then ΛA 6= ΛB . If H is semisimple,
then A is semisimple and 〈ΛA, 1〉 6= 0.

Denote by R(H) the k-span of all irreducible characters. It is an algebra called the character
algebra of H.

Let H be a semisimple Hopf algebra over an algebraically closed field of characteristic
0 and let {V0, . . . Vn−1} be a complete set of non-isomorphic irreducible H-modules. Let
{E0, . . . En−1} and Irr(H) = {χ0, . . . , χn−1} be the associated central primitive idempotents
and irreducible characters of H respectively, where E0 = Λ, the idempotent integral of H and
χ0 = ε. Let dimVi = di = 〈χi, 1〉, then λ = χH =

∑n−1
i=0 diχi. One has (see e.g [15, Cor.4.6]):

〈χi, Ej〉 = δijdj , Λ ↼ χj =
1

dj
S(Ej). (1)

In particular, {χi}, { 1
dj
Ej} are dual bases of R(H) and Z(H) respectively.

Recall that H is a Frobenius algebra. One defines a Frobenius map Ψ : HH∗ → H∗H∗ by

Ψ(h) = λ ↼ S(h) (2)

where H∗ is a right H∗-module under multiplication and H is a right H∗-module under right
hit. If H is semisimple then

Ψ(Z(H)) = R(H).

For a finite-dimensional Hopf algebra H we have for all p ∈ H∗,

Ψ−1(p) = Λ ↼ p.

Any simple subcoalgebra Bi of H∗ contains precisely one irreducible character that generates
Bi as a coalgebra. Since B =

⊕
i∈I Bi, where each Bi is a simple subcoalgebra of H∗, it

follows that B is the coalgebra generated by B ∩ Irr(H). Also, if χ ∈ B then all its irreducible
constituents belong to B as well.

In particular, if B is a Hopf subalgebra of H∗ then

λB =
∑

χi∈Irr(H)∩B

diχi

is a nonzero integral for B. In [14, Prop.18] the following equivalence relation was defined on
simple subcoalgebras of H∗ :

Ck ≡B Ck′ ⇔ BCk ⊃ Ck′
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By the proof of [14, Prop.18] one can check that the above equivalence relation can be stated
in terms of the following equivalence relation on Irr(H).

χi ≡B χj ⇔ λB
χi
di

= λB
χj
dj

(3)

When R(H) is commutative, let 1
dλ = F0, . . . , Fn−1 be the set of central primitive idem-

potents of R(H). Then {Fj} form another basis for R(H). Define the conjugacy class Ci
as:

Ci = Λ ↼ FiH
∗.

We generalize also the notions of Class sum and of a representative of a conjugacy class
as follows:

Ci = Λ ↼ dFi ηi =
Ci

dim(FiH∗)
. (4)

We refer to ηi as a normalized class sum. It follows (see e.g. [5]) that {ηi} is also a basis of
Z(H) dual to the basis {Fi} of R(H).

We can define now a generalized character table (ξij) for H where,

ξij = 〈χi, ηj〉 ,

0 ≤ i, j ≤ n − 1. Note that η0 = 1 and so ξi0 = 〈χi, 1〉 = di. Moreover, (ξij) is the change of
bases matrix between {χi} and {Fi}.

2 Hit-invariants and normal left coideal subalgebras

In this section we relate Hopf subalgebras of H∗ and normal left coideal subalgebras of H. We
do in fact realize them as invariants under the left hit action.

For any subalgebra T of H∗, denote by HT the set of T -invariants of H under the left hit
action. That is,

HT = {h ∈ H |b ⇀ h = 〈b, 1〉h, ∀b ∈ T} (5)

Remark 2.1. If H is semisimple and N is a left coideal subalgebra, then

(H∗)N = ΛN ⇀ H∗

Proposition 2.2. Let H be a finite dimensional Hopf algebra over any field k and T a subal-
gebra of H∗. Then:

(i) HT is a left coideal of H.
(ii) It T is a left ot a right coideal subalgebra of H∗ then HT is an left coideal subalgebra of

H.
(iii) If T is a normal left subalgebra in H∗ then HT is a Hopf subalgebra of H.
(iv) If T is a bialgebra then HT is a normal left coideal subalgebra of H.
(v). If T is a normal left coideal subalgebra of H∗ then HT is a Hopf subalgebra of H.
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Proof: (i) We need to show that HT ↼ H∗ ⊂ HT . Let b ∈ T, h ∈ HT , p ∈ H∗, then

b ⇀ (h ↼ p) = (b ⇀ h) ↼ p = 〈b, 1〉(h ↼ p).

Hence HT is a left coideal.
(ii) Assume T is a left coideal. Let b ∈ T, h, h′ ∈ HT , then

b ⇀ (hh′) =
∑

(b1 ⇀ h)(b2 ⇀ h′) = (b ⇀ h)h′ = 〈b, 1〉hh′.

The second equality follows from the fact that T is a left coideal. The same proof works if T is
a right coideal subalgebra.

(iii). By (ii) all we need to show is that HT is a right coideal, that is H∗ ⇀ HT ⊂ HT .
Since T is stable under the left adjoint action, we have that

bp =
∑

p3(s−1(p2)bp1) =
∑

p2(s−1(p1)ȧdb) ∈ H
∗T

for all b ∈ T, p ∈ H∗. Hence we have for b ∈ T, h ∈ HT , p ∈ H∗,

b ⇀ (p ⇀ h) = bp ⇀ h =
∑

p3s
−1(p2bp1) ⇀ h = 〈b, 1〉(p ⇀ h).

So (p ⇀ h) ∈ HT .
(iv). Assume T is a coalgebra. We need to show that HT is normal in H. Let h ∈ HT , x ∈

H, b ∈ T, then

b ⇀
∑

x1hS(x2) =

=
∑

(b1 ⇀ x1)(b2 ⇀ h)(b3 ⇀ S(x2))

=
∑

(b1 ⇀ x1)h(b2 ⇀ S(x2)) (since B is a coalgebra)

=
∑
〈b1, x2〉〈b2, S(x3)〉x1hS(x4)

=
∑
〈b, 1〉x1hS(x2).

Hence
∑
x1hS(x2) ∈ HT .

(v). By (ii) and (iii) HT is a bialgebra. Since H is finite dimensional it follows that it is a
Hopf subalgebra.

We have,

Lemma 2.3. For any subalgebra T of H∗ and a left coideal A of H we have:

A ⊂ HT ⇔ 〈p, a〉 = 〈p, 1〉〈ε, a〉 ∀a ∈ A, p ∈ T. (6)

If T and A are left coideal subalgebras of H∗ and H respectively, then

A ⊂ HT ⇔ T ⊂ (H∗)A. (7)

In particular,

T ⊂ (H∗)H
T

A ⊂ H(H∗)A (8)
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Proof: By applying ε ⊗ Id to both sides of (5) we get the right hand side of the equivalence
in (6). Conversely, if A is a left coideal satisfying the right hand side of the equivalence, then
A ⊂ HT by the definition of HT .

(7) follows directly from (6).
The first inclusion in (8) follows by taking A = HT in (7). The second inclusion follows by

replacing H with H∗ and taking T = (H∗)A.

We can show now,

Theorem 2.4. Let H be a finite dimensional Hopf algebra over a field k, then there exists a
bijective correspondence between left coideal subalgebras T of H∗ and left coideal subalgebras A
of H. The maps

T → HT A→ (H∗)A

are inverses of each other, that is,

T = (H∗)H
T

A = H(H∗)A

Proof: Let T be a left coideal subalgebra of H∗. Set A = HT , then A is a left coideal subalgebra
of H by Proposition 2.2(ii). By (8), T ⊂ (H∗)A. By Remark 1.1, equality will follow once we
prove that every nonzero left integral of T is indeed a left integral of (H∗)A. Let λT be a left
integral for T. For any p ∈ (H∗)A,

pλT ⇀ Λ = p ⇀ (λT ⇀ Λ) = 〈p, 1〉(λT ⇀ Λ)

The last equality follows from the fact that (λT ⇀ H) ⊂ HT = A, and A ⊂ H(H∗)A by (8).

hence pλT = 〈p, 1〉λT and we are done. The proof that A = H(H∗)T is identical replacing H by
H∗ and T by A in the above argument.

It follows from the theorem above and Proposition 2.2(iii) that we can relate in particular
normal left coideal subalgebras of H and Hopf subalgebras of H∗.

Corollary 2.5. Let H be a finite dimensional Hopf algebra. Then there exists a bijective
correspondence between Hopf subalgebras B of H∗ and normal left coideal subalgebras N of
H given by:

B → HB , N → (H∗)N .

Remark 2.6. The corollary above is in fact the bijective correspondence between normal
left coideal subalgebras and Hopf quotients of H discussed in [17]. Explicitly, if B is a Hopf
subalgebra of H∗ and π : H → B∗ is the corresponding Hopf projection, that is,

〈π(h), b〉 = 〈b, h〉 ,

for all b ∈ B, h ∈ H. Then

Hcoπ = {h ∈ H|h1 ⊗ π(h2) = h⊗ 1}.
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Now, for all p ∈ H∗, b ∈ B, 〈∑
h1 ⊗ π(h2), p⊗ b

〉
= 〈p, b ⇀ h〉 .

Hence it is easy to see that
HB = Hcoπ. (9)

Corollary 2.7. Let N = HB . Since

H ∼= Hcoπ ⊗H/HN+ ∼= HB ⊗B∗,

we obtain:

dim(HB) =
dimH

dimB
.

Certain normal left coideal subalgebras appear in [2] as a natural generalization of kernels
of group representations. For an H-module V define its left kernel as follows:

LKerV = {h ∈ H |
∑

h1 ⊗ h2 · v = h⊗ v, ∀v ∈ V }. (10)

As a corollary we suggest an additional description of left kernels. This can be proved
directly by Proposition 2.2(iii) and Theorem 2.4. It follows however from results of [2] after
adaptation.

Theorem 2.8. Let H be a Hopf algebra over k and V a finite dimensional representation of
H with associated character χV . Let BV be the bialgebra (and thus the Hopf subalgebra) of H∗

generated by χV . Then
HBV = LKerV .

Proof: Observe that B⊥V =
⋂
m annHV

⊗m. By [2, Th. 2.3.6], Hcoπ = LKerV , where π : H →
H/(∩mannHV ⊗m) is the canonical projection. The result follows now from (9).

3 The special case - quasitriangular Hopf algebras

Recall, if (H,R) is a finite dimensional quasitriangular Hopf algebra then the maps fR : H∗cop →
H, defined by fR(p) = 〈p,R1〉R2 and f∗R : H∗op 7→ H, defined by f∗R(p) = 〈p,R2〉R1 are Hopf
algebra maps. Then Q = R21R and the Drinfeld map fQ is given by fQ = f∗R ∗ fR. When
(H,R) is a quasitriangular Hopf algebra then R(H) is necessarily commutative. If H is also
semisimple then the Drinfeld map fQ is an algebra map from R(H) to Z(H).

The S-matrix for (H,R) is defined by:

sij = 〈χi, fQ(χj)〉. (11)

The quasitriangular Hopf algebra (H,R) is factorizable if fQ is a monomorphism, or equivalently,
if its S-matrix is invertible.
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Assume (H,R) is factorizable. Reorder the set {Fj} so that

fQ(Fj) = Ej

for all 1 ≤ j ≤ m. It follows that dim(FjH
∗) = d2j , where dj = 〈χj , 1〉. Also (see e.g [4, (15)]),

fQ(χj) =
1

dj
Cj = djηj . (12)

The last equality follows since dim(FjH
∗) = dim(EjH) = d2j . It follows that the S-matrix

satisfies
sij = djξij . (13)

It was shown in [6] that:

Lemma 3.1. Let (H,R) be a quasitriangular semisimple Hopf algebra over k. Then fQ maps
subcoalgebras of H∗ to left coideals of H stable under the adjoint action, and Hopf subalgebras
of H∗ to normal left coideal subalgebras of H.

We study next how quasitriangularity affects the equivalence relation defined in (3). We
start with the following more general situation:

Lemma 3.2. Let H be a semismple Hopf algebra so that R(H) is commutative, B be a Hopf
subalgebra of H∗ and N = HB . Consider the equivalence relation defined in (3). Then χi ≡B χ′i
if and only if 〈χi

di
, ηj〉 = 〈χ

′
i

d′i
, ηj〉 for all ηj ∈ N.

Proof: Assume λB
χi

di
= λB

χ′i
d′i
. Take λB so that 〈λB , 1〉 = 1, then we have:

〈χi
di
, ηj〉 = 〈χi

di
λB , ηj〉 = 〈χ

′
i

d′i
λB , ηj〉 = 〈χ

′
i

d′i
, ηj〉

Conversely, assume < χi

di
, ηj >=<

χ′i
d′i
, ηj > for all ηj ∈ N. Since R(H) is commutative

and N =
⊕

j Cj , we have for each n ∈ N, the central element Λȧdn is a linear combination of
{ηj} ∩N. Since characters are cocommutative it follows that:

〈χi
di
, n〉 = 〈χi

di
,Λȧdn〉 = 〈χ

′
i

d′i
,Λȧdn〉 = 〈χ

′
i

d′i
, n〉

for all n ∈ N. By Remark 2.1, (with H replacing H∗), N = λB ⇀ H. Hence we have for all
h ∈ H,

〈χi
di
λB , h〉 = 〈χi

di
, λB ⇀ h〉 = 〈χ

′
i

d′i
, λB ⇀ h〉 = 〈χ

′
i

d′i
λB , h〉.

Thus χi ≡B χ′i.

When H is quasitriangular more can be said:
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Proposition 3.3. Let (H,R) be a quasitriangular semisimple Hopf algebra over a field k of
characteristic 0, let NQ = ImfQ and B = (H∗)NQ . Then:

(i) The Hopf subalgebra B satisfies:

B = {b ∈ H |
∑

b1 ⊗ f∗Q(b2) = b⊗ 1} = {b ∈ H |
∑

fQ(b1)⊗ b2 = 1⊗ b}.

In particular, f∗Q(b) = 〈b, 1〉1 = fQ(b) for all b ∈ B.

(ii) χi ≡B χ′i if and only if fQ(χi

di
) = fQ(

χ′i
d′i

).

Proof: (i) B is a Hopf algebra since NQ is a left normal coideal subalgebra by Lemma 3.1. Let
b ∈ B, x ∈ H∗. By Remark 2.1, b = ΛNQ

⇀ p, thus,

〈f∗Q(ΛNQ
⇀ p), x〉 =

= 〈ΛNQ
⇀ p, fQ(x)〉 = 〈p, fQ(x)ΛNQ

〉
= 〈p,ΛNQ

〉〈fQ(x), 1〉 = 〈b, 1〉〈x, 1〉.

Hence f∗Q(b) = 〈b, 1〉1. Since B is a Hopf subalgebra, s(b) ∈ B, thus by above f∗Qs(b) = 〈b, 1〉1.
Hence Sf∗Qs(b) = 〈b, 1〉1 as well. Since Sf∗Qs = fQ we have also fQ(b) = 〈b, 1〉1 for all b ∈ B.

Since B is in particular a coalgebra, it follows now that for all b ∈ B,
∑
b1⊗ f∗Q(b2) = b⊗1.

Conversely, assume
∑
b1 ⊗ f∗Q(b2) = b⊗ 1. Then for all n = fQ(y),∑

〈n, b2〉b1 =
∑
〈y, f∗Q(b2)〉b1 = 〈y, 1〉〈b, 1〉 = 〈ε, n〉〈b, 1〉.

Hence b ∈ (H∗)NQ .

(ii). If χi ≡B χ′i then since fQ is multiplicative on R(H) and fQ(λB) = 1 by part (i), we
have:

fQ(
χi
di

) = fQ(λB
χi
di

) = fQ(λB
χ′i
d′i

) = fQ(
χ′i
d′i

)

Conversely, assume fQ(χi

di
) = fQ(

χ′i
d′i

). Note first that

f∗Qs(
χi
di

) = sfQ(
χi
di

) = sfQ(
χ′i
d′i

) = f∗Qs(
χ′i
d′i

).

Hence we have for all n = fQ(p) ∈ NQ,

〈s(χi
di

), n〉 =

= 〈s(χi
di

), fQ(p)〉 = 〈f∗Qs(
χi
di

), p〉 = 〈f∗Qs(
χ′i
d′i

), p〉 = 〈s(χ
′
i

d′i
), fQ(p)〉

= 〈s(χ
′
i

d′i
), n〉.
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By Lemma 3.2, we have s(χi) ≡B s(χ′i). Since λB = s(λB) and R(H) is commutative we have:

λB
χi
di

= s(λBs(
χi
di

)) = s(λBs(
χ′i
d′i

)) = λB
χ′i
d′i
.

Hence χi ≡B χ′i.

Recall the Hopf algebra surjection Φ : D(H)→ H given by [9]:

Φ(p ./ h) = fR(p)h.

A direct computation shows that

ΦfQD(H)
Φ∗ = fQ and ΦΨD(H)Φ

∗ = ΨH , (14)

where Ψ is the Frobenius map. Combining the above we have:

Theorem 3.4. Let (H,R) be a quasitriangular semisimple Hopf algebra over a field k of charac-
teristic 0, let NQ = ImfQ and B = (H∗)NQ . Then the map fQ induces a bijective correspondence
between the equivalence classes {[χi]B} and the set of normalized class sums {ηj} ∩NQ.

Proof: Since Φ∗(χi) ∈ D(H) is the character of Vj considered as a D(H)-module (see [5]), it
follows from (12) that:

fQD(H)
Φ∗(χi) = diη̂i

where η̂i is the corresponding normalized class sum in D(H). By [5, Lemma 2.4], Φ(η̂i) = ηsi
for some si ≥ 0, hence by (14) we have for all i,

fQ(
χi
di

) = ΦfQD(H)Φ
∗(
χi
di

) = ηsi (15)

By Proposition 3.3(ii) this map is injective. We show surjectivity. Let ηj = fQ(p). Since
ηj ∈ Z(H) we have by [3, Prop.2.5.5],

ηj =
∑

Λ1ηjS(Λ2) = fQ(Λ2 ⇀ p ↼ S(Λ1))

But Λ2 ⇀ p ↼ S(Λ1) is a cocommutative element in H∗, and since H is semisimple it follows
that it is an element of R(H). Thus f−1Q (ηj) =

∑
αiχi, hence by (15),

ηj =
∑
i

αifQ(χi) =
∑
s

βsηs.

Since {ηk} are linearly independent, it follows that ηs = ηj for all s, and thus fQ(χi

di
) = ηj for

all i in the above sum.
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4 The commutator algebra - a distinguished normal left coideal subalgebra

In this section we focus on a specific normal left coideal subalgebra, the commutator algebra,
first defined in [1]. It is a normal left coideal subalgebra of H for which H/(HH ′

+
) is commu-

tative and it is minimal with respect to this property. For H = kG one has H ′ = kG′, where
G′ is the commutator subgroup of G.

Based on [1, §6] and [6, Prop.1.14], it is not hard to see that if S is the set of all 1-dimensional
H-representations then

H ′ =
⋂
V ∈S

LKerV = {h ∈ H |σ ⇀ h = h ∀σ ∈ G(H∗)}. (16)

Generalizing from groups we describe H ′ in terms of Hopf algebraic commutators. These
commutators were defined and discussed in [8]. Let H be any Hopf algebra over k. Define
commutators in H as:

{a, b} =
∑

a1b1Sa2Sb2 Com = spank{{a, b} | a, b ∈ H }. (17)

It was shown in [8] that:

Proposition 4.1. Let H be a Hopf algebra over k, then Com is a left coideal of H and H ′ is
the algebra generated by Com.

When considering the normal left coideal subalgebra N = H ′, we have B = HN = kG(H∗).
The equivalence relation ≡B defined in (3) satisfies the following:

Theorem 4.2. Let H be a d-dimensional semisimple Hopf algebra over an algebraically closed
field of characteristic 0 and let B = kG(H∗). Then:

(i) χi ≡B χj if and only if there exists σ ∈ G(H∗) so that χi = σχj . In this case di = dj .

(ii) The cardinality of the equivalence class of χi equals |G||Li| where

Li = {σ ∈ G(H∗)|σχi = χi}.

In particular, the cardinality of each equivalence class divides d.

Proof: (i). Note that σχi is an irreducible character for all σ ∈ G(H∗). This follows since if
σχi =

∑
nkχk then χi =

∑
nkσ

−1χk. Since χi is irreducible this is possible only if χi = σ−1χk
for some k. Now, if χi ≡B χj then χj ∈ kG(H∗)χi.

(ii) Follows directly from part (i).

The commutator algebra is related to a specific element defined as follows:

z2 =
∑

Λ1
1Λ2

1SΛ1
2SΛ2

2, (18)
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where Λ1 and Λ2 are copies of the idempotent integral of H. In particular, for a finite group G,

z2,G =
1

|G|2
∑
a,b∈G

aba−1b−1

It was proved in [8] that for any semisimple Hopf algebra over a field of characteristic 0,

z2 =
∑
i

1

d2i
Ei. (19)

When R(H) is commutative then z2 can be computed directly from the character table as
follows:

Lemma 4.3. Assume R(H) is commutative. Then

z2 =
1

d

∑
k

(∑
t

1

dt
ξtk dim(FkH

∗)

)
ηk.

If H is also factorizable then

z2 =
1

d

∑
k

(∑
t

ξktdk

)
ηk.

Proof: Recall the character table is the change of bases matrix (written as rows) between {χi}
and {Fi}. Applying Ψ−1 yields that it is the change of bases matrix between { 1

di
SEi} and

{dim(FiH
∗)

d ηi}. The first formula follows now by using the coordinates of z2 given in (19).
If H is factorizable, then dim(FkH

∗) = d2k. By (13) sij = diξij and the matrix S is known
to be symmetric. Hence we obtain di

dj
ξij = ξji.

The following is a special case in which we test the ideas mentioned above. Let G be a finite
group and D(G) its Yetter Drinfeld double, which is always a factorizable Hopf algebra. The
product and the integral inside D(G) are given by:

(ε ./ g)(ph ./ 1) = pghg−1 ./ g, Λ = p1 ./
1

|G|
∑
g∈G

g. (20)

Thus we have:

Proposition 4.4. Let G be a finite group, k an algebraically closed field of characteristic 0 and
H = D(kG). For x ∈ G, let z2,CG(x) denote the element z2 of CG(x). Then the element z2 of
H satisfies:

z2 =
1

|G|2
∑
x∈G

px ./
∑

g,h∈CG(x)

ghg−1h−1 =
1

|G|2
∑
x∈G

px ./ |CG(x)|2z2,CG(x).
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Proof: 1. The first equality follows from (18) by using (20),∑
Λ1
1Λ1

2S(Λ1
2)S(Λ2

2) =

=
1

|G|2
∑

g,h,x,y∈G

(px ./ g)(py ./ h)(pg−1xg ./ g
−1)(ph−1yh ./ h

−1)

=
1

|G|2
∑

g,h,x,y∈G

pxpgyg−1pghg−1xgh−1g−1pghg−1h−1yhgh−1g−1 ./ ghg−1h−1

=
1

|G|2
∑
x∈G

px ./
∑

g,h∈CG(x)

ghg−1h−1.

The second equality follows from the definition of z2,CG(x).

We focus now on the specific example H = D(kS3). Based on the representations of the
centralizers (see details in [5, §3]), the characters for D(kS3) are computed as follows: χ0 = 1⊗ε

χ1 = 1⊗ (p1 + p(123) + p(132) − p(12) − p(13) − p(23))
χ2 = 1⊗ (2p1 − p(123) − p(132))
χ3 = (12)⊗ (p1 + p(12)) + (13)⊗ (p1 + p(13)) + (23)⊗ (p1 + p(23))

χ4 = (12)⊗ (p1 − p(12)) + (13)⊗ (p1 − p(13)) + (23)⊗ (p1 − p(23))
χ5 = (123)⊗ (p1 + p(123) + p(132)) + (132)⊗ (p1 + p(123) + p(132))

χ6 = (123)⊗ (p1 + ωp(123) + ω2p(132)) + (132)⊗ (p1 + ω2p(123) + ωp(132))

χ7 = (123)⊗ (p1 + ω2p(123) + ωp(132)) + (132)⊗ (p1 + ωp(123) + +ω2p(132)).

Since ηi = 1
di
fQ(χi), we obtain that η0 = ε ./ 1 and

η1 = (p1 + p(123) + p(132) − p(12) − p(13) − p(23)) ./ 1

η2 =
1

2
(2p1 − p(123) − p(132)) ./ 1

η3 =
1

3
(p1 + p(12)) ./ (12) + (p1 + p(13)) ./ (13) + (p1 + p(23)) ./ (23)

η4 =
1

3
(p1 − p(12)) ./ (12) + (p1 − p(13)) ./ (13) + (p1 − p(23)) ./ (23)

η5 =
1

2
(p1 + p(123) + p(132)) ./ (123) + (p1 + p(123) + p(132)) ./ (132)

η6 =
1

2
(p1 + ωp(123) + ω2p(132)) ./ (123) + (p1 + ω2p(123) + ωp(132)) ./ (132)

η7 =
1

2
(p1 + ω2p(123) + ωp(132)) ./ (123) + (p1 + ωp(123) + ω2p(132)) ./ (132).
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Hence the character table is given as follows:



η0 η1 η2 η3 η4 η5 η6 η7

χ0 1 1 1 1 1 1 1 1
χ1 1 1 1 −1 −1 1 1 1
χ2 2 2 2 0 0 −1 −1 −1
χ3 3 −3 0 1 −1 0 0 0
χ4 3 −3 0 −1 1 0 0 0
χ5 2 2 −1 0 0 2 −1 −1
χ6 2 2 −1 0 0 −1 −1 2
χ7 2 2 −1 0 0 −1 2 −1


One can see that G(H∗) = {χ0, χ1}. Hence the equivalence classes described in Theorem

4.2 are as follows:
{[χ0, χ1], [χ2], [χ3, χ4], [χ5], [χ6], [χ7]}

Since V1 is the only non-trivial 1-dimensional representation, it follows from (16) that H ′ =
LkerV1

. By using the character table it follows from [6, Cor.1.10]) that

LkerV1 = C0 ⊕ C1 ⊕ C2 ⊕ C5 ⊕ C6 ⊕ C7

Now, z2 can be computed either directly from the character table by using Lemma 4.3 or
by using Theorem 4.4.1. Both ways imply that:

z2 =

=
1

36
(8η0 + 4η1 + 6η2 + 6η5 + 6η6 + 6η7)

=
1

36
p1 ./ (18 · 1 + 9 · (123) + 9 · (132)) +

+
1

9
(p12 + p13 + p23) ./ 1 +

1

4
(p123 + p132) ./ 1

Since Ci = ηi ↼ H∗i for all i, it follows that

H ′ = C0 + C1 + C2 + C5 + C6 + C7 = z2 ↼ H∗ ⊂ ComH ⊂ H ′.

Thus D(kS3) exhibits an affirmative answer to the question raised in [8, Qu. 2.11] whether
z2 ↼ H∗ = Com.
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