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Abstract

We continue studying normal left coideal subalgebras of a Hopf algebra H, realizing
them as invariants of H under the left hit action of Hopf subalgebras of H*. We apply
this realization to test an equivalence relation on irreducible characters for two important
examples. The commutator sublagebra of H, which is the analogue of the commutator
subgroup of a group and the image of the Drinfeld map for quasitriangular Hopf algebras.
We end with the example H = D(kS3) where commutators are computed.
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Introduction
We study natural analogues of normal subgroups, namely normal left coideal subalgebras of a
Hopf algebra H. In §2 we consider HT, invariants under the left hit action, and show:

Theorem 2.4: Let H be a finite dimensional Hopf algebra over a field k, then there exists a
bijective correspondence between left coideal subalgebras T of H* and left coideal subalgebras
A of H. The maps

T—H" A— (H)"

are inverses of each other, that is,

T=(H)T A=pHg")"

We apply this theorem to normal left coideal subalgebras LKery (defined in [2]) which are
natural generalizations of kernel of group representations, and show:

*This research was supported by the Irael Science Foundation, 170-12.
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Theorem 2.8: Let H be a Hopf algebra over k and V' a finite dimensional representation of H
with associated character xy . Let By be the bialgebra (and thus the Hopf subalgebra) of H*
generated by xy. Then

HPBV = LKery.

In §3 we study the special case of semisimple quasitriangular Hopf algebras. In this case
Imfq, where fq is the Drinfeld map, is a normal left coideal subalgebra of H. Let {n;} be the
set of normalized class sums of H, defined in [5]. This set is the Hopf algebra analogue of the set
of representatives of conjugacy classes for groups. The equivalence relation on the irreducible
characters of H induced by the Hopf subalgebra B = (H*)™/e satisfies:

Theorem 3.4: Let (H,R) be a quasitriangular semisimple Hopf algebra over a field k of
characteristic 0, let Ng = Imfg and B = (H*)N2. Then the map fo induces a bijective
correspondence between the equivalence classes {[x;]5} and the set of normalized class sums
{n;} N Nq.

In §4 we study another natural example of a normal left coideal subalgebra, namely the

commutator algebra, H’, defined in [1]. It turns out that H’ equals the invariants of H under
the left hit action of B = kG(H*). We prove:

Theorem 4.2: Let H be a d-dimensional semisimple Hopf algebra over an algebraically closed
field of characteristic 0 and let B = kG(H*). Then:
(i) xs =B X; if and only if there exists o € G(H™*) so that x; = ;. In this case d; = d;.
(ii) The cardinality of the equivalence class of x; equals % where
L, ={0 € GH")|ox: = xi}-
In particular, the cardinality of each equivalence class divides d.

A special element of H', denoted by 2z was introduced and studied in [8]. When the character
algebra of H is commutative, we compute it from its generalized character table. In particular
we compute various objects mentioned above for H = D(kS3). As a result we show that in this
case H' = zo — H*.

1 Preliminaries

Throughout this paper, H is a finite-dimensional Hopf algebra over a field k. We denote by S
and s the antipodes of H and H* respectively and A and A the left and right integrals of H
and H* respectively so that (A, A) = 1. Denote by Z(H) the center of H.

Recall that any subbialgebra of H is necessarily a Hopf subalgebra.

The Hopf algebra H* becomes a right and left H-module by the hit actions «— and — defined
foralla e H,pe H*,

(p—a,d’) =(p,ad’)  (a—p,d)=(pda)

H becomes a left and right H*-module analogously.
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Denote by -, the left adjoint action of H on itself, that is, for all a,h € H,

hgqa =Y hiaS(hs)

A left coideal subalgebra of H is called normal if it is stable under the left adjoint action of
H.

Recall [16], any left coideal subalgebra A of H contains a left integral A4. Moreover, if
Ay C Ay are left coideal subalgebras then As is free over A;. This implies in particular that:

Remark 1.1. If A # B are left coideal subalgebras of H then A4 # Ap. If H is semisimple,
then A is semisimple and (A4,1) # 0.

Denote by R(H) the k-span of all irreducible characters. It is an algebra called the character
algebra of H.

Let H be a semisimple Hopf algebra over an algebraically closed field of characteristic
0 and let {Vp,...V,_1} be a complete set of non-isomorphic irreducible H-modules. Let
{Eo,...Ep—1} and Irr(H) = {xo0,.-.,Xn-1} be the associated central primitive idempotents
and irreducible characters of H respectively, where Fy = A, the idempotent integral of H and
Xo = ¢. Let dimV; = d; = (x4, 1), then A = yg = Z?:_Ol dix;. One has (see e.g [15, Cor.4.6]):

(6B = by, Ay = - S(E)). 1)

In particular, {x;}, {%EJ} are dual bases of R(H) and Z(H) respectively.

Recall that H is a Frobenius algebra. One defines a Frobenius map ¥ : Hy+ — Hj. by

W(h) = A= 5(h) (2)

where H* is a right H*-module under multiplication and H is a right H*-module under right
hit. If H is semisimple then
U(Z(H)) = R(H).

For a finite-dimensional Hopf algebra H we have for all p € H*,
U lp)=A~—p.

Any simple subcoalgebra B; of H* contains precisely one irreducible character that generates
B; as a coalgebra. Since B = @iel B;, where each B; is a simple subcoalgebra of H*, it
follows that B is the coalgebra generated by B NIrr(H). Also, if x € B then all its irreducible
constituents belong to B as well.

In particular, if B is a Hopf subalgebra of H* then

Ap= Y. dixi

x:€lrr(H)NB

is a nonzero integral for B. In [14, Prop.18] the following equivalence relation was defined on
simple subcoalgebras of H* :
Ck =B Ck' 54 BC}C D Ck'
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By the proof of [14, Prop.18] one can check that the above equivalence relation can be stated
in terms of the following equivalence relation on Irr(H).

_ Xi X3
i =B Xj © AB= = Ap== 3
Xi =B X By ij (3)

When R(H) is commutative, let é)\ = Fpy,...,F,_1 be the set of central primitive idem-
potents of R(H). Then {F;} form another basis for R(H). Define the conjugacy class C;
as:

We generalize also the notions of Class sum and of a representative of a conjugacy class
as follows:
Ci

We refer to n; as a normalized class sum. It follows (see e.g. [5]) that {n;} is also a basis of
Z(H) dual to the basis {F;} of R(H).

We can define now a generalized character table (§;;) for H where,
&ij = (X 05) 5

0 <4i,7 <n—1. Note that ng = 1 and so &y = (xs, 1) = d;. Moreover, (&;;) is the change of
bases matrix between {x;} and {F;}.

2 Hit-invariants and normal left coideal subalgebras

In this section we relate Hopf subalgebras of H* and normal left coideal subalgebras of H. We
do in fact realize them as invariants under the left hit action.
For any subalgebra T of H*, denote by HT the set of T-invariants of H under the left hit
action. That is,
H' ={he H|b—h=(b,1)h, Vb€ T} (5)

Remark 2.1. If H is semisimple and N is a left coideal subalgebra, then

Proposition 2.2. Let H be a finite dimensional Hopf algebra over any field k and T a subal-
gebra of H*. Then:

(i) HT is a left coideal of H.

(ii) It T is a left ot a right coideal subalgebra of H* then HT is an left coideal subalgebra of
H.

(iii) If T is a normal left subalgebra in H* then HT is a Hopf subalgebra of H.

(iv) If T is a bialgebra then HT is a normal left coideal subalgebra of H.

(v). If T is a normal left coideal subalgebra of H* then HT is a Hopf subalgebra of H.
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Proof: (i) We need to show that H” «~ H* ¢ HT. Let b€ T, h € H”, p € H*, then
b—=(h—=p)=(b—-h)=p=(b1)(h— p).

Hence HT is a left coideal.
(ii) Assume T is a left coideal. Let b € T, h,h’ € HT, then

b— () = (by — h)(by = h') = (b— h)l' = (b, 1)hh’.

The second equality follows from the fact that T is a left coideal. The same proof works if T is
a right coideal subalgebra.

(iii). By (ii) all we need to show is that H” is a right coideal, that is H* — HT c HT.
Since T is stable under the left adjoint action, we have that

bp = ps(s~ (p2)bp1) = Y _pa(s ' (p1)gqb) € H'T
for all b € T, p € H*. Hence we have for b€ T, he€ H', pc H*,
b—(p—h)=bp—h=> pss ' (pabpr) = h = (b,1)(p — h).

So (p—h)e HT.
(iv). Assume 7 is a coalgebra. We need to show that H” is normal in H. Let h € HT, x
H,beT, then

b= w1hS(wg) =

= ) (br = x1)(by = h)(bs — S(2))
2.
2.
2.
Hence Y x1hS(z2) e( HT.

(v). By (ii) and (iii) H” is a bialgebra. Since H is finite dimensional it follows that it is a
Hopf subalgebra. 0

— ) (b2 — S(x2)) (since B is a coalgebra)

b, 1 .Tth LL’Q

(b1
(b1, 22) (b2, S(x3))z1hS(74)
(

We have,
Lemma 2.3. For any subalgebra T of H* and a left coideal A of H we have:
Ac H' & (p,a) = (p,1)(e,a) Vac A, peT. (6)
If T and A are left coideal subalgebras of H* and H respectively, then
Ac HT & T c (H"). (7)

In particular,

TcHHY AcHE) (8)
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Proof: By applying € ® Id to both sides of (5) we get the right hand side of the equivalence
in (6). Conversely, if A is a left coideal satisfying the right hand side of the equivalence, then
A C HT by the definition of HT.

(7) follows directly from (6).

The first inclusion in (8) follows by taking A = HT in (7). The second inclusion follows by
replacing H with H* and taking T = (H*)%. 0

We can show now,

Theorem 2.4. Let H be a finite dimensional Hopf algebra over a field k, then there exists a
bijective correspondence between left coideal subalgebras T of H* and left coideal subalgebras A
of H. The maps

T—H" A— (HH"
are inverses of each other, that is,
)A

T=H)T A=HE

Proof: Let T be a left coideal subalgebra of H*. Set A = HT, then A is a left coideal subalgebra
of H by Proposition 2.2(ii). By (8), T C (H*)?. By Remark 1.1, equality will follow once we
prove that every nonzero left integral of T is indeed a left integral of (H*)?. Let Az be a left
integral for T. For any p € (H*)4,

pdr—=A=p—=(Ar—=A)={p,1Y(Ar = A)

The last equality follows from the fact that (A\r — H) C HT = A, and A C HED" by (8).
hence pAr = (p, 1)Ar and we are done. The proof that A = H 9" is identical replacing H by
H* and T by A in the above argument. a

It follows from the theorem above and Proposition 2.2(iii) that we can relate in particular
normal left coideal subalgebras of H and Hopf subalgebras of H*.

Corollary 2.5. Let H be a finite dimensional Hopf algebra. Then there exists a bijective
correspondence between Hopf subalgebras B of H* and normal left coideal subalgebras N of
H given by:

B— HB, N (H"Y.

Remark 2.6. The corollary above is in fact the bijective correspondence between normal
left coideal subalgebras and Hopf quotients of H discussed in [17]. Explicitly, if B is a Hopf
subalgebra of H* and 7 : H — B* is the corresponding Hopf projection, that is,

(w(h),b) = (b, h),
for all b€ B, h € H. Then

H™ = {h € Hlhy ® 7(hy) = h® 1}
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Now, for allp e H*, b € B,

(Y m@nha).p@b) = (p,b—h).

Hence it is easy to see that
HP = HT, (9)

Corollary 2.7. Let N = HE. Since
H=>~H"® H/HNT =~ H?  B*,
we obtain:

. dim H
dim(H?) = TmB

Certain normal left coideal subalgebras appear in [2] as a natural generalization of kernels
of group representations. For an H-module V define its left kernel as follows:

LKery ={h € H| Y m®hy-v=h®v,YveV} (10)

As a corollary we suggest an additional description of left kernels. This can be proved
directly by Proposition 2.2(iii) and Theorem 2.4. It follows however from results of [2] after
adaptation.

Theorem 2.8. Let H be a Hopf algebra over k and V a finite dimensional representation of
H with associated character xv. Let By be the bialgebra (and thus the Hopf subalgebra) of H*
generated by xyv. Then

HPv = LKery.

Proof: Observe that B =), anngV®™. By [2, Th. 2.3.6], H®" = LKery, where 7 : H —
H/(NmanngV®™) is the canonical projection. The result follows now from (9). O

3 The special case - quasitriangular Hopf algebras

Recall, if (H, R) is a finite dimensional quasitriangular Hopf algebra then the maps fg : H**°P —
H, defined by fr(p) = (p, R')R? and f}, : H*°P — H, defined by fx(p) = (p, R*)R' are Hopf
algebra maps. Then @ = R?'R and the Drinfeld map fq is given by fo = f * fr. When
(H, R) is a quasitriangular Hopf algebra then R(H) is necessarily commutative. If H is also
semisimple then the Drinfeld map fg is an algebra map from R(H) to Z(H).

The S-matrix for (H, R) is defined by:

Sij = <Xi,fQ(Xj)>~ (11)

The quasitriangular Hopf algebra (H, R) is factorizable if f¢ is a monomorphism, or equivalently,
if its S-matrix is invertible.
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Assume (H, R) is factorizable. Reorder the set {F};} so that
fo(Fy) = E;
for all 1 < j < m. It follows that dim(F;H*) = d3, where d; = (x;,1). Also (see e.g [4, (15)]),

1

fo(xj) = d—jcj = d;n;- (12)

The last equality follows since dim(F;H*) = dim(E;H) = d?. It follows that the S-matrix
satisfies

sij = d;j&ij- (13)

It was shown in [6] that:

Lemma 3.1. Let (H, R) be a quasitriangular semisimple Hopf algebra over k. Then fo maps
subcoalgebras of H* to left coideals of H stable under the adjoint action, and Hopf subalgebras
of H* to normal left coideal subalgebras of H.

We study next how quasitriangularity affects the equivalence relation defined in (3). We
start with the following more general situation:

Lemma 3.2. Let H be a semismple Hopf algebra so that R(H) is commutative, B be a Hopf
subalgebra of H* and N = HB. Consider the equivalence relation defined in (3). Then x; = X!
if and only if (3*,m;) = (X%, m;) for allm; € N.

Proof: Assume )\Bd—f = )‘BZ% Take Ap so that (Ap,1) =1, then we have:

Xi Xi Xé X/i
<d7’nj> = <d7)\B’nj> = <I)\B777j> = W’W

Conversely, assume < %,ﬂj >=< %,nj > for all n; € N. Since R(H) is commutative

and N = j C;, we have for each n € N, the central element A n is a linear combination of
i} N N. Since characters are cocommutative it follows that:
1j

Xi Xi X; Xi

(G = s bgam) = (G Aggn) = (5, 1)

for all n € N. By Remark 2.1, (with H replacing H*), N = A\p — H. Hence we have for all
h € H,

Xi Xi X; Xi
<d71)\B7h> = <E,AB — h> = <d7;.,)\B — h> == <j;AB,h>

Thus x; =B X}- |

When H is quasitriangular more can be said:
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Proposition 3.3. Let (H,R) be a quasitriangular semisimple Hopf algebra over a field k of
characteristic 0, let Ng =Imfq and B = (H*)Ne. Then:

(i) The Hopf subalgebra B satisfies:

B={beH|Y bi®fsb)=b@1}={becH|Y folbr)@by=1®b}.
In particular, f&(b) = (b,1)1 = fq(b) for allb € B.
(i) x: = X, if and only if fo(%) = fo(3).

Proof: (i) B is a Hopf algebra since Ny is a left normal coideal subalgebra by Lemma 3.1. Let
be B, x € H*. By Remark 2.1, b = Ay, — p, thus,

(fo(Ang = p),2) =
(Ang = . fo(@)) = (P, fo(x)An,)
= <p’ANQ><fQ(m)’ > = <b7 1><.’I}, 1>'

Hence f¢(b) = (b,1)1. Since B is a Hopf subalgebra, s(b) € B, thus by above f5s(b) = (b,1)1.

Hence Sf¢s(b) = (b, 1)1 as well. Since Sfs = fq we have also fq(b) = (b, 1)1 for all b € B.
Since B is in particular a coalgebra, it follows now that for all b € B, » b1 ® f5(ba) = b® 1.
Conversely, assume Y by ® f¢(b2) = b® 1. Then for all n = fo(y),

D mbo)br =Y (y, f5(b2))br = (y,1)(b,1) = (,1) (b, 1).

Hence b € (H*)Ne.

ii). If x; =p X} then since fg is multiplicative on R(H) and fgo(Ag) = 1 by part (i), we
i Q Q
have:

fo(3h) = fon ) = fan ) = falF)

Conversely, assume fq (%) = fQ(%)' Note first that

i

/ /

Xy g Xy e X
Hence we have for all n = fo(p) € No,

Xi B
(s(3)m) =

= {53 Ja®) = (fos(3).p) = (Us(3).p) = <s<§;f'>,fQ<p>>

Xi
= <8(d7),n>-
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By Lemma 3.2, we have s(x;) =p s(x}). Since Ap = s(Ap) and R(H) is commutative we have:
/

) = Apt

At = s(Aps(X) = s(Aps(X .

/
d; d; d,

Hence x; = X}- 0

Recall the Hopf algebra surjection ® : D(H) — H given by [9]:

P(prah) = frp)h.
A direct computation shows that
Pfopm® = fo and @UpyH)®" =Ty, (14)
where ¥ is the Frobenius map. Combining the above we have:

Theorem 3.4. Let (H, R) be a quasitriangular semisimple Hopf algebra over a field k of charac-
teristic 0, let Ng = Imfq and B = (H*)Na. Then the map fq induces a bijective correspondence
between the equivalence classes {[xi]p} and the set of normalized class sums {n;} N Ng.

Proof: Since ®*(x;) € D(H) is the character of V; considered as a D(H)-module (see [5]), it
follows from (12) that:

fQD(H)CD*(Xi) = dzﬁz

where 7); is the corresponding normalized class sum in D(H). By [5, Lemma 2.4], ®(7;) = 7,
for some s; > 0, hence by (14) we have for all i,

fa(3) = apum® (35 = s (15)

By Proposition 3.3(ii) this map is injective. We show surjectivity. Let n; = fo(p). Since
n; € Z(H) we have by [3, Prop.2.5.5],

m =Y Ain;S(As) = fo(Ay = p— S(Ay))

But Ay — p — S(A1) is a cocommutative element in H*, and since H is semisimple it follows
that it is an element of R(H). Thus fél(nj) =Y a;Xi, hence by (15),

ni = 2 aifolx) = D B

Since {7y} are linearly independent, it follows that 7, = n; for all s, and thus fo(%%) = 7; for
all ¢ in the above sum. ]
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4 The commutator algebra - a distinguished normal left coideal subalgebra

In this section we focus on a specific normal left coideal subalgebra, the commutator algebra,
first defined in [1]. Tt is a normal left coideal subalgebra of H for which H/(HH'") is commu-
tative and it is minimal with respect to this property. For H = kG one has H' = kG’, where
G’ is the commutator subgroup of G.

Based on [1, §6] and [6, Prop.1.14], it is not hard to see that if S is the set of all 1-dimensional
H-representations then

H' = () LKery ={h € H|o = h=hVo € G(H")}. (16)
veS

Generalizing from groups we describe H' in terms of Hopf algebraic commutators. These
commutators were defined and discussed in [8]. Let H be any Hopf algebra over k. Define
commutators in H as:

{a,b} = ZalblSangg Com = span;{{a,b}|a,b € H}. (17)

It was shown in [8] that:

Proposition 4.1. Let H be a Hopf algebra over k, then Com is a left coideal of H and H' is
the algebra generated by Com.

When considering the normal left coideal subalgebra N = H’, we have B = HY = kG(H*).
The equivalence relation =p defined in (3) satisfies the following:

Theorem 4.2. Let H be a d-dimensional semisimple Hopf algebra over an algebraically closed
field of characteristic 0 and let B = kG(H*). Then:
(i) xi =B x; if and only if there exists o € G(H*) so that x; = ox; . In this case d; = d;.

€]

(i) The cardinality of the equivalence class of x; equals o] where

In particular, the cardinality of each equivalence class divides d.
Proof: (i). Note that ox; is an irreducible character for all ¢ € G(H*). This follows since if

oxi = Y. nkXk then x; = Y ngo~1xy. Since x; is irreducible this is possible only if x; = 0~ xx
for some k. Now, if x; =g x; then x; € kG(H*)x;.

(ii) Follows directly from part (i). 0

The commutator algebra is related to a specific element defined as follows:

2= AJATSA}SAZ, (18)
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where A' and A? are copies of the idempotent integral of H. In particular, for a finite group G,

Z aba~tp!

a,beG

It was proved in [8] that for any semisimple Hopf algebra over a field of characteristic 0,
1

When R(H) is commutative then zz can be computed directly from the character table as
follows:

Lemma 4.3. Assume R(H) is commutative. Then

1 1. .
2= zk: (zt: PR dim(F,H )) o
If H is also factorizable then

29 = éz (Z fktdk> M-
O\ ¢

Proof: Recall the character table is the change of bases matrix (written as rows) between {x;}
and {F;}. Applying ! yields that it is the change of bases matrix between {d%SEz} and
{Mm}. The first formula follows now by using the coordinates of zo given in (19).

If H is factorizable, then dim(FyH*) = d2. By (13) s;; = d;&;; and the matrix S is known

to be symmetric. Hence we obtain %fij =& 0
J

The following is a special case in which we test the ideas mentioned above. Let G be a finite
group and D(G) its Yetter Drinfeld double, which is always a factorizable Hopf algebra. The
product and the integral inside D(G) are given by:

1
(o) (o) =pyug-r g, A=piot iy > g (20)
geG
Thus we have:

Proposition 4.4. Let G be a finite group, k an algebraically closed field of characteristic 0 and
H = D(kG). For x € G, let 25 0 (z) denote the element zo of Cq(x). Then the element z3 of
H satisfies:

14—
Zy = |G|2 Zp:r[X] Z ghg™"h |G|2 ZpI[Xl|Cg( )‘ 22,06 (z)-

zeG g,heCq(z) zeG
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Proof: 1. The first equality follows from (18) by using (20),

> AIALS(A3)S(A3) =

- L > (e 29)(py 2R (Pg-rag 2 g7 ) (Pr-1yn BT

2
|G| g,h,z,ye€G

— 1 h —lh—l
- W PxPgyg—1Pghg—1agh—1g—1Pghg—1h—lyhgh—1g—1 X gng
g;hz,yeG

= IGlQZm > ghgT'hh

zeG g,heCq(x)

The second equality follows from the definition of 25 ¢, (a)- 0

We focus now on the specific example H = D(kSs). Based on the representations of the
centralizers (see details in [5, §3]), the characters for D(kS3) are computed as follows: yo = 1®¢

X1 = 1® (p1 +pa2s) +Pase) — Paz) — P(13) — P(23))

X2 =1® (2p1 — pai23) — P32))

x3 = (12) ® (p1 +paz)) + (13) @ (p1 + pas)) + (23) @ (p1 + p(23))

xa = (12) ® (p1 — paz)) + (13) @ (p1 — paz)) + (23) ® (p1 — P(23))

x5 = (123) ® (p1 + pa2s) + Pas2)) + (132) @ (p1 + p123) + P132))

xo = (123) ® (p1 + wp(izs) + w’pasz)) + (132) @ (p1 + w?p(123) + wp(132))

x7 = (123) ® (p1 + w2p(123) +wp@sz)) + (132) @ (p1 + wp(i23) + +w2p(132)).
Since 1; = dif (x:), we obtain that 79 = ¢ > 1 and

m = (p1 +pa23) +Pas2) — P12) — Pas) — P(23)) > 1

2 = %(2171 —P(123) — P(132)) > 1

N = %(pl +pa2)) > (12) + (p1 + pas)) > (13) + (p1 + Pas)) > (23)

M = %(pl = Pa2)) > (12) + (p1 = paz)) 2 (13) + (pr — P(23)) > (23)

N5 = %(Pl +P(123) + P(as2)) > (123) + (p1 + p(123) + P(132)) > (132)

e = %(Pl +wp(12s) + W P(1s2)) > (123) + (p1 + W’ pra23) + wWp(isz)) 4 (132)
o= %(pl +w?p(12s) + wp(132)) > (123) + (p1 + wp(123) + W p(asz)) 4 (132).
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Hence the character table is given as follows:

o M 72 N3 Ma 75 T Nr
xo [ 1 1 1 1 1 1 1 1
X1 1 1 1 -1 -1 1 1 1
x2 | 2 2 2 0 0o -1 -1 -1
xs| 3 -3 0 1 -1 0 0 0
xa| 3 -3 0 -1 1 0 0 0
X5 | 2 2 -1 0 0 2 -1 -1
X6 | 2 2 -1 0 0o -1 -1 2
X7 \ 2 2 =1 0 o -1 2 -1

One can see that G(H*) = {xo, x1}. Hence the equivalence classes described in Theorem
4.2 are as follows:
{[XO)XI]? [XQ]a [X37X4]a [X5]a [X6]a [X?]}

Since V; is the only non-trivial 1-dimensional representation, it follows from (16) that H' =
Lkery, . By using the character table it follows from [6, Cor.1.10]) that

Lkery, =€ @€, & ¢ DT Dy

Now, z9 can be computed either directly from the character table by using Lemma 4.3 or
by using Theorem 4.4.1. Both ways imply that:

z9 =
1
= %(8770 + 4y + 6m2 + 615 + 616 + 61)7)
1
= gop1>a(18-149-(128) +9- (132)) +
1 1
+ 5(?12 + P13+ p23) 1+ Z(Pu?, + pi32) <1

Since €; =n; — H for all 7, it follows that
H =C+¢€ +C+C5+C+C; =20+ H*CCompy C H'.

Thus D(kS3) exhibits an affirmative answer to the question raised in [8, Qu. 2.11] whether
z9 — H* = Com.

References
[1] S. Burciu, Normal coideal subalgebras of semisimple Hopf algebras, Algebra, Geometry, and
Mathematical Physics, Journal of Physics: Conference Series 346 (2012),1-10.

[2] S. Burciu, Kernel of representations and coideal subalgebras for Hopf algebras, Glasgow
Math. J. 54 (2012) 107-119.

[3] M. COHEN AND S. WESTREICH, Some interrelations between Hopf algebras and their duals,
J. Algebra 283 (2005), no. 1, 42-62.



Hit-invariants and commutators for Hopf algebras 313

[4]
[5]

(6]

7]
&
9]

[10]

[11]

12]

13]

[14]

[15]

[16]

(17]
(18]

M. COHEN AND S. WESTREICH, Structure constants related to symmetric Hopf algebras, J.
Alg. 324 (2010), pp. 3219-3240.

M. CoHEN AND S. WESTREICH, Conjugacy Classes, Class Sums and Character Tables for
Hopf Algebras, Communications in Algebra, 39, (2011), 4618-4633.

M.COHEN AND S. WESTREICH, Recovering information from character tables of Hopf algebras,
Hopf algebras and tensor categories, Contemporary Math (585), Amer. Math. Soc , (2013),
213-227.

M. COHEN AND S. WESTREICH, Character tables and normal left coideal subalgebra,
arXiv:1212.5785 [math.QA].

M. COHEN AND S. WESTREICH, Are we counting or measuring something? arXiv:1304.0968
[math.QA].

V. G. DRINFELD, On Almost Cocommutative Hopf Algebras, Leningrad Math. J. 1 (1990),
321-342.

R. DIJKGRAAF, V. PASQUIER, P. ROCHE, QuasiHopf algebras, group cohomology and orbifold
models, Nucl. Phys. B. Proc. Suppl. 18B(1990), 60-72.

G.I. Kac, Certain arithmetic properties of ring groups, Funct. Anal. Appl. 6 (1972) 158-160.
R. G. LARSON, Characters of Hopf algebras, J. Alg. 17 (1971), 352-368.

G. MasoON, The quantum double of a finite group and its role in conformal field theory,
Groups 93 Galway/St. Andrews, LMS Lecture notes 212, Cambridge University Press, 1995
(2) 405-417.

W. D. NicHOLS AND M. B. RICHMOND, The Grothendieck algebra of a Hopf algebra I, Comm.
Algebra 26 (1998), no. 4, 1081-1095.

H-J SCHNEIDER, Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. of Math.,
72, (1990), 167-195.

S. SKRYABIN, Projectivity and freeness over comodule algebras, Trans. Amer. Math. Soc. 359
(2007), 2597-2623.

TAKEUCHI. Quotient Spaces for Hopf Algebras. Comm. Alg., 22(7):2503-2523, 1995.
Y. Zuu, Hopf algebras of prime dimension, Int. Math. Res. Not. 91994), 53-59.

Received: 10.04.2013,
Accepted: 14.06.2013.

Department of Mathematics, Ben Gurion University, Beer Sheva, Israel
E-mail: miaGmath.bgu.ac.il

Department of Management, Bar-Ilan University, Ramat-Gan, Israel
E-mail: swestric@biu.ac.il



