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Abstract

We give a coring version for the external homogenization for Hopf algebras, which is a
generalization of a construction from graded rings, called the group ring of a graded ting.
We also provide a coring version of a Maschke-type theorem.
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1 Introduction

C. Năstăsescu constructed in [7] the group ring of a graded ring. If G is a group and R is
a G-graded ring, then the group ring of R, denoted by R[G], is constructed on the free left
R-module with basis indexed by the elements of G, and turns out to be a strongly G-graded
ring, and even more than that, a crossed product. The inspiration for this construction was
provided by the operation of external homogenization for rings graded by the integers [10].

The construction was extended by C. Năstăsescu, F. Panaite and F. Van Oystaeyen in [8] to
the case of Hopf algebra coactions: if H is a Hopf algebra and A is a right H-comodule algebra,
they define the external homogenization A[H] as a certain right H-comodule algebra structure
on A ⊗H. It is proved in [8] that the subalgebra of coinvariants of A[H] is isomorphic, as an
algebra, to A, and A[H]co(H) ⊆ A[H] is a cleft extension, hence it is Galois and has the normal
basis property [1], [5]. This last fact about cleft extensions, as well as any other notions or
results concerning Hopf algebras that are mentioned here and not explained in detail may be
found in [4].

In the first section we will give a different proof for the fact that the external homogenization
A[H] is a crossed product. The point we are trying to make is that a big part of the external
homogenization construction may be recovered by dealing almost exclusively with corings. We
start by recalling the definition of a coring:
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Definition 1. Let A be a ring. An A-bimodule C is called a coring if there exist A-bimodule
maps ∆ : C −→ C ⊗A C and ε : C −→ A, such that ∆ is coassociative and ε is a counit.

The most basic example of a coring is a coalgebra over a commutative ring A, but we have to
point out that, even when the base ring A is commutative, the left and right A-module structures
need not be the same. Another fundamental example is the canonical coring associated to the
ring homomorphism i : B −→ A:

C = A⊗B A,

∆ : C −→ C ⊗A C ' A⊗B A⊗B A, ∆(a⊗ b) = a⊗ 1⊗ b,
and

ε : C −→ A, ε(a⊗ b) = ab.

Example 1. Let H be a k-Hopf algebra, and A a right H-comodule algebra via a 7→ a[0] ⊗
a[1]. Then A ⊗ H becomes an A-coring as follows: the left A-module structure is given by
multiplication on the first component, and the right A module structure is given by (a⊗ h)b =
ab[0] ⊗ hb[1]. The comultiplication is ∆ : A ⊗ H −→ (A ⊗ H) ⊗A (A ⊗ H) ' A ⊗ H ⊗ H,
∆(a⊗ h) = a⊗ h(1) ⊗ h(2), and the counit is ε : A⊗H −→ A, ε(a⊗ h) = ε(h)a.

Recall that if A is a right H-comodule algebra, and if B = AcoH , then A/B is a Hopf-Galois
extension if and only if the coring A⊗H from Example 1 is isomorphic to the canonical coring
A⊗B A via the map sending a⊗ b ∈ A⊗B A to ab[0] ⊗ b[1] ∈ A⊗H.

Corings were introduced by Sweedler in [13], and were given a lot of attention beginning
in the late 1990’s, after Takeuchi remarked that many examples of (generalized) Hopf modules
are in fact just comodules over some corings. For example, if A is a right H-comodule algebra,
the the category of right relative (A,H)-Hopf modules is equivalent to the category of right
comdules over the coring A ⊗ H from Example 1. Moreover, if B = AcoH , then A/B is a
Hopf-Galois extension if and only if the coring A ⊗H from Example 1 is Galois with respect
to the group-like element 1⊗ 1 [2, Example 5.4]. (Recall that if (C, x) is an A-coring with fixed
grouplike element x, and B = AcoC = {a ∈ A | ρA(a) = a⊗ x}, then (C, x) is a Galois coring if
the canonical coring morphism can : A⊗B A −→ C, can(a⊗ b) = axb is an isomorphism.)

For all unexplained facts about corings the reader is referred to [3].

2 External Homogenization

For the remainder of this note H will denote a Hopf algebra over the field k, and A will be a
right H-comodule algebra. As shown in [8, Propositions 3.1 and 3.2], A ⊗H becomes a right
H-comodule algebra via:

(a⊗ h)(b⊗ g) = ab[0] ⊗ S(b[1])hb[2]g (2.1)

and
ρ : A⊗H −→ A⊗H ⊗H, ρ(a⊗ h) = a[0] ⊗ h(1) ⊗ a[1]h(2) (2.2)

The subalgebra of coinvariants of A⊗H, denoted by (A⊗H)co(H), is the image of the injective
algebra map ϕ : A −→ A⊗H, defined by

ϕ(a) = a[0] ⊗ S(a[1])
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As in Example 1, with A replaced by A ⊗ H with the right H-comdule algebra structure
described above, A⊗H ⊗H becomes a A⊗H-coring via

∆ : A⊗H ⊗H −→ A⊗H ⊗H ⊗A⊗H A⊗H ⊗H,

a⊗ h⊗ g 7−→ a⊗ h⊗ g(1) ⊗ 1⊗ 1⊗ g(2),

and
ε(a⊗ h⊗ g) = a⊗ hε(g).

The left A⊗H-module structure on A⊗H ⊗H is given by

(a⊗ h)(b⊗ g ⊗ e) = (a⊗ h)(b⊗ g)⊗ e = ab[0] ⊗ S(b[1])hb[2]g ⊗ e (2.3)

and the right A⊗H-module structure on A⊗H ⊗H is given by

(b⊗ g ⊗ e)(a⊗ h) = ba[0] ⊗ S(a[1])ga[2]h(1) ⊗ ea[3]h(2) (2.4)

Since we are trying to deal with corings only, we can take the above as the definition
of the coring A ⊗ H ⊗ H, and check that it is a coring directly, without using Example 1.
This is extremely easy. The only condition that deserves to be checked is the fact that the
comultiplication is right A⊗H-linear, but even that is very easy, as we see below.

∆((b⊗ g ⊗ e)(a⊗ h)) = ∆(ba[0] ⊗ S(a[1])ga[2]h(1) ⊗ ea[3]h(2))
= ba[0] ⊗ S(a[1])ga[2]h(1) ⊗ e(1)a[3]h(2) ⊗
⊗ 1⊗ 1⊗ e(2)a[4]h(3)
= (b⊗ g ⊗ e(1))(a[0] ⊗ h(1))⊗ 1⊗ 1⊗ e(2)a[1]h(2)
= b⊗ g ⊗ e(1) ⊗ (a[0] ⊗ h(1))(1⊗ 1)⊗ e(2)a[1]h(2)
= b⊗ g ⊗ e(1) ⊗ (1⊗ 1⊗ e(2))(a⊗ h)

= (∆(b⊗ g ⊗ e))(a⊗ h)

Proposition 1. [8, Corollary 3.11.(a)] (A⊗H ⊗H, 1⊗ 1⊗ 1) is a Galois coring.

Proof: The canonical coring associated to ϕ : A −→ A⊗H is A⊗H ⊗A A⊗H has comulti-
plication

∆ : A⊗H ⊗A A⊗H −→ A⊗H ⊗A A⊗H ⊗A A⊗H

(because A⊗H ⊗A A⊗H ⊗A⊗H A⊗H ⊗A A⊗H ' A⊗H ⊗A A⊗H ⊗A A⊗H)

a⊗ h⊗ b⊗ g 7−→ a⊗ h⊗ 1⊗ 1⊗ b⊗ g,

and counit
ε(a⊗ h⊗ b⊗ g) = (a⊗ h)(b⊗ g) = ab[0] ⊗ S(b[1])hb[2]g

The left and right A-module structures on A⊗H are given by

a(b⊗ h) = (a[0] ⊗ S(a[1]))(b⊗ h) = a[0]b[0] ⊗ S(a[1]b[1])b[2]h (2.5)
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(b⊗ h)a = (b⊗ h)(a[0] ⊗ S(a[1])) = ba[0] ⊗ S(a[1])h (2.6)

We need to prove that the map

can : A⊗H ⊗A A⊗H −→ A⊗H ⊗H

defined by
can(a⊗ h⊗ b⊗ g) = ab[0] ⊗ S(b[1])hb[2]g(1) ⊗ b[3]g(2)

is an isomorphism of A⊗H-corings. It is known in general that can is a morphism of corings,
but this is again very easy to check directly. For example, the check that can commutes with
comultiplication goes like this:

∆(can(a⊗ h⊗ b⊗ g)) = ab[0] ⊗ S(b[1])hb[2]g(1) ⊗ b[3]g(2) ⊗ 1⊗ 1⊗ b[4]g(3)
= (a⊗ h)(b[0] ⊗ g(1))⊗ b[1]g(2) ⊗ (1⊗ 1⊗ b[2]g(3))
= (a⊗ h)(b[0] ⊗ g(1))[0] ⊗ (b[0] ⊗ g(1))[1] ⊗
⊗ (1⊗ 1⊗ b[1]g(3))
= (a⊗ h⊗ 1)(b[0] ⊗ g(1))⊗ (1⊗ 1⊗ b[1]g(2))
= (a⊗ h⊗ 1)⊗ (b[0] ⊗ g(1) ⊗ b[1]g(2))
= (can⊗ can)∆(a⊗ h⊗ b⊗ g)

(the second equality uses (2.1), the third one uses (2.2), the fourth uses (2.4) and the fifth uses
(2.3)).

The fact that can preserves the counit is equally easy:

ε(can(a⊗ h⊗ b⊗ g)) = ε(a⊗ h⊗ b⊗ g) = ab[0] ⊗ S(b[1])hb[2]g,

so the only thing left to check is that can has an inverse. The inverse, which is given explicitly
in [8, Corollary 3.11], is

α : A⊗H ⊗H −→ A⊗H ⊗A A⊗H
α(a⊗ h⊗ g) = a⊗ hS(g(1))⊗ 1⊗ g(2).

Checking that α and can are inverse to each other is again immediate:

can(α(a⊗ h⊗ g)) = a⊗ hS(g(1))g(2) ⊗ g(3) = a⊗ h⊗ g

and

α(can(a⊗ h⊗ b⊗ g)) = ab[0] ⊗ S(b[1])hb[2]g(1)S(b[3]g(2))⊗ 1⊗ b[4]g(3)
= ab[0] ⊗ S(b[1])h⊗ 1⊗ b[2]g
= (a⊗ h)b[0] ⊗ 1⊗ b[1]g (by (2.6))

= a⊗ h⊗ b[0](1⊗ b[1]g)

= a⊗ h⊗ b[0] ⊗ S(b[1])b[2]g (by (2.5))

= a⊗ h⊗ b⊗ g
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Corollary 1. [8, Corollary 3.11.(c)] A⊗H is equivalent to a crossed product of A and H with
invertible cocycle.

Proof: The only thing left to prove is that A ⊗ H has the normal basis property, i.e. A ⊗
H ' ϕ(A) ⊗ H, with the natural left ϕ(A)-module and right H-comodule structures. The
isomorphism is given by

Φ : A⊗H −→ ϕ(A)⊗H, Φ(a⊗ h) = a[0] ⊗ S(a[1])⊗ a[2]h

and the immediately checked inverse (which is not given explicitly in [8]) is

Ψ : ϕ(A)⊗H −→ A⊗H, Ψ(a[0] ⊗ S(a[1])⊗ h) = a[0] ⊗ S(a[1])h

3 A Maschke-type theorem

Recal from [6] that an A-coring C is coseparable if there exists a C-bicomodule splitting of the
coproduct, i.e. there exists an A-bimodule map π : C ⊗A C −→ C such that

(C ⊗A π) ◦ (∆C ⊗ C) = ∆C ◦ π = (π ⊗A C) ◦ (C ⊗A ∆C)

and
π ◦∆C = C.

Also recall from [9] that a covariant functor F : A −→ B is separable if the natural trans-
formation HomA(−,−) −→ HomB(F (−), F (−)) splits functorially.

The main result of this section is the following

Proposition 2. (i) The coring A⊗H ⊗H from the previous section is coseparable.
(ii) The forgetful functor F :MA⊗H⊗H −→MA⊗H is separable.

Proof: By [2, Corollary 3.6.] (i) and (ii) are equivaleent, so we only need to prove that the
forgetful functor F : MA⊗H⊗H −→ MA⊗H is separable. Since A ⊗ H ⊗ H is isomorphic
to the canonical coring A ⊗ H ⊗A A ⊗ H, we need to prove that the forgetful functor F :
MA⊗H⊗AA⊗H −→ MA⊗H is separable. Since A ⊗ H is faithfully flat over A ' ϕ(A) (it is a
crossed product), we can apply [2, Corollary 3.7.] and it is enough to prove that the extension
ϕ(A) −→ A⊗H is split, which means that there exists a ϕ(A)-bimodule map E : A⊗H −→ ϕ(A)
such that E(1⊗ 1) = 1⊗ 1 [11]. Now define

E(a⊗ h) = a[0] ⊗ S(a[1])ε(h)

We have E(1⊗ 1) = 1⊗ 1,

E((a[0] ⊗ S(a[1]))(b⊗ h)) = (a[0] ⊗ S(a[1]))E(b⊗ h) = a[0]b[0] ⊗ S(a[1]b[1])ε(h),

and this is also equal to

E(a⊗ h)(b[0] ⊗ S(b[1])) = E((a⊗ h)(b[0] ⊗ S(b[1])))

and the proof is complete.
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We now get the following Maschke-type theorem:

Corollary 2. Every right A⊗H⊗H-comodule which is semisimple (resp. projective, injective)
as a right A⊗H-module is a semisimple (resp. projective, injective) A⊗H ⊗H-comodule.

Proof: This is [2, Corollary 3.8.].

In the language of relative Hopf modules this becomes:

Corollary 3. If M ∈MH
A⊗H is semisimple (resp. projective, injective) as a right A⊗H-module

(i.e. as an object in MA⊗H) is semisimple (resp. projective, injective) in MH
A⊗H .

Please note that this last corollary is different from [8, Proposition 4.7.], which requires H
to be semisimple, and replaces ”A ⊗ H-module” (i.e. the structure on A ⊗ H is the algebra
structure defined at the beginning of Section 1) by ”A ⊗ H-comodule” (i.e. the structure on
A⊗H is the coring structure defined in Example 1).
Acknowledgement. Many thanks to the referee for useful comments leading to an improved
exposition.
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