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Abstract

We give a coring version for the external homogenization for Hopf algebras, which is a
generalization of a construction from graded rings, called the group ring of a graded ting.
We also provide a coring version of a Maschke-type theorem.
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1 Introduction

C. Nastasescu constructed in [7] the group ring of a graded ring. If G is a group and R is
a G-graded ring, then the group ring of R, denoted by R[G], is constructed on the free left
R-module with basis indexed by the elements of G, and turns out to be a strongly G-graded
ring, and even more than that, a crossed product. The inspiration for this construction was
provided by the operation of external homogenization for rings graded by the integers [10].

The construction was extended by C. Néstasescu, F. Panaite and F. Van Oystaeyen in [8] to
the case of Hopf algebra coactions: if H is a Hopf algebra and A is a right H-comodule algebra,
they define the external homogenization A[H] as a certain right H-comodule algebra structure
on A® H. It is proved in [8] that the subalgebra of coinvariants of A[H] is isomorphic, as an
algebra, to A, and A[H]°°!) C A[H] is a cleft extension, hence it is Galois and has the normal
basis property [1], [5]. This last fact about cleft extensions, as well as any other notions or
results concerning Hopf algebras that are mentioned here and not explained in detail may be
found in [4].

In the first section we will give a different proof for the fact that the external homogenization
A[H] is a crossed product. The point we are trying to make is that a big part of the external
homogenization construction may be recovered by dealing almost exclusively with corings. We
start by recalling the definition of a coring:
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Definition 1. Let A be a ring. An A-bimodule C is called a coring if there exist A-bimodule
maps A:C —C®aC and e :C —> A, such that A is coassociative and € is a counit.

The most basic example of a coring is a coalgebra over a commutative ring A, but we have to
point out that, even when the base ring A is commutative, the left and right A-module structures
need not be the same. Another fundamental example is the canonical coring associated to the
ring homomorphism i : B — A:

C=A®pA,

A:C—CR1C~ARp AR A, Aa®b)=a®1QYb,

and
e:C— A, ela®b)=ab.

Example 1. Let H be a k-Hopf algebra, and A a right H-comodule algebra via a — ajg) ®
ap). Then A ® H becomes an A-coring as follows: the left A-module structure is given by
multiplication on the first component, and the right A module structure is given by (a @ h)b =
abjo) ® hbpyy. The comultiplication is A : AQH — (AQ H)®a (A®H) ~ A® H®H,
A(a®h) =a® h@1y ® hg), and the counit ise: AQ H — A, e(a® h) = e(h)a.

Recall that if A4 is a right H-comodule algebra, and if B = A then A/B is a Hopf-Galois
extension if and only if the coring A ® H from Example 1 is isomorphic to the canonical coring
A ®p A via the map sending a ® b € A®p A to abg @by € A® H.

Corings were introduced by Sweedler in [13], and were given a lot of attention beginning
in the late 1990’s, after Takeuchi remarked that many examples of (generalized) Hopf modules
are in fact just comodules over some corings. For example, if A is a right H-comodule algebra,
the the category of right relative (A, H)-Hopf modules is equivalent to the category of right
comdules over the coring A ® H from Example 1. Moreover, if B = A°H then A/B is a
Hopf-Galois extension if and only if the coring A ® H from Example 1 is Galois with respect
to the group-like element 1 ® 1 [2, Example 5.4]. (Recall that if (C, z) is an A-coring with fixed
grouplike element z, and B = A°C = {a € A | pA(a) = a ® x}, then (C,7) is a Galois coring if
the canonical coring morphism can : A®@p A — C, can(a ® b) = axb is an isomorphism.)

For all unexplained facts about corings the reader is referred to [3].

2 External Homogenization

For the remainder of this note H will denote a Hopf algebra over the field k£, and A will be a
right H-comodule algebra. As shown in [8, Propositions 3.1 and 3.2], A ® H becomes a right
H-comodule algebra via:

(a®h)(b® g) = abg) ® S(b))hbjgg (2.1)

and

The subalgebra of coinvariants of A® H, denoted by (A® H)®) is the image of the injective
algebra map ¢ : A — A ® H, defined by

v(a) = ag ® S(ap))
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As in Example 1, with A replaced by A ® H with the right H-comdule algebra structure
described above, A ® H ® H becomes a A ® H-coring via

ATAHRH — A H® HQp0n A® H® H,

a@h®@gr—a®@h®g1) @111 g,

and
e(@®h®g) =a®he(g).

The left A ® H-module structure on A ® H ® H is given by
(a@h)(b®g®e)=(a®h)(b®g)®e=abg @ S(byy)hbyg®e (2.3)
and the right A ® H-module structure on A ® H ® H is given by
(b®g®e)(a® h) = bajy @ S(apy)gapha) @ eaghz) (2.4)

Since we are trying to deal with corings only, we can take the above as the definition
of the coring A ® H ® H, and check that it is a coring directly, without using Example 1.
This is extremely easy. The only condition that deserves to be checked is the fact that the
comultiplication is right A ® H-linear, but even that is very easy, as we see below.

A(beg®e)(a®h)) = Albag ® S(ap))gapha) @ eajh))
= bag) ® S(ap))gapha) @ ewyaghe) @
IR 6(2)a[4]h(3)

(b QR 6(1))(a[0] ® h(l)) ®R1IR1I® 6(2)a[1]h(2)
= b®g9@eq) @ (ap @ ha))(1 @ 1) @e)apih)
= bRgRen®@(1@1Rew)(a®h)
= (A(b®g®e))(a®h)

Proposition 1. /8, Corollary 3.11.(a)] (A® H® H,1®1® 1) is a Galois coring.

Proof: The canonical coring associated to p: A — A® H is A® H ®4 A® H has comulti-
plication
A:AQHR1 ARQH — AQH R4 AQH s AQ H

(because AQ HR4 AQH Qagn AQRHRAAQH~AQHR, AQH®4 AR H)
aRhRbRgr—a@hR®1R1RbX g,

and counit
c(a®@h®b®g)=(a®h)(bog) = abpg) ® S(b[l])hb[g]g

The left and right A-module structures on A ® H are given by

a(b ® h) = (CL[O] & S(aw))(b ® h) = a[()]b[o] & S(a[l]b[l])b[g]h (2.5)



372 S. Raianu

beh)a=(b® h)(a[o] & S(am)) = bap ® S(a[l])h (2.6)
We need to prove that the map
can: AQH®Rys AQH — AQHRH
defined by
can(a @ h @ b® g) = abjg) @ S(bp1))hbga) @ bi31g(2)

is an isomorphism of A ® H-corings. It is known in general that can is a morphism of corings,
but this is again very easy to check directly. For example, the check that can commutes with
comultiplication goes like this:

Afcan(a®h®@b® g)) abyo] @ S(bpy)hbg) @ bigg(z) @ 1@ 1@ byges)
(@@ h)(bo) ® 9(1)) @ byg2) @ (1@ 1 bpgyg(s))
= (a®h)(bp) ® g(1))0] @ (b} ® 1)) ®
R(1®1@bygam)

(a®h®1)(bo ® ga)) ® (1®1® byg)
(a®h®1)® (b ® g1) ® buj92))

= (can®can)A(a@h QbR g)

(the second equality uses (2.1), the third one uses (2.2), the fourth uses (2.4) and the fifth uses

(2.3)).

The fact that can preserves the counit is equally easy:
glcan(a@h®@b®g)) =c(a®@h®@b® g) = abg) ® S(b1))hbjgyg,

so the only thing left to check is that can has an inverse. The inverse, which is given explicitly

in [8, Corollary 3.11], is
a: AQHQ®H —AQQH R4 AR H
ala®@h®g)=a®hS(gn) ®1® ge).

Checking that o and can are inverse to each other is again immediate:

can(a(a@h® g)) = a®@ hS(9a1))g2) @ gz =a@h®g
and
alcan(a®@h®b®g)) = abg ® S(bpy)hbg91)S(bg19(2)) @ 1 @ bpajges)
= ab ® S(b[l])h ®1® by

(a® h)bjg) ® 1 ® bpyg (by (2.6))

a® h ® b[o](l ® bmg)

a®@h® b[o] &® S(bm)b[z]g (by (2.5))

= a®h®bRyg
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Corollary 1. [8, Corollary 3.11.(c)] A® H is equivalent to a crossed product of A and H with
invertible cocycle.

Proof: The only thing left to prove is that A ® H has the normal basis property, i.e. A ®
H ~ ¢(A) ® H, with the natural left p(A)-module and right H-comodule structures. The
isomorphism is given by

:AQH — p(A)®H, ®a®h)= ajpo ® S(a[l]) & a[g]h
and the immediately checked inverse (which is not given explicitly in [8]) is

v <p(A) QH — A®Q H, \I/(a[o] ®S(a[1]) ® h) =aj ® S(am)h

3 A Maschke-type theorem

Recal from [6] that an A-coring C is coseparable if there exists a C-bicomodule splitting of the
coproduct, i.e. there exists an A-bimodule map 7 :C ® 4 C — C such that

(C®A7T)O(AC®C):ACOW:(W(X)AC)O(C@AAC)
and
WOAC:C.

Also recall from [9] that a covariant functor F' : A — B is separable if the natural trans-
formation Hom4(—,—) — Homg(F(—), F(—)) splits functorially.
The main result of this section is the following

Proposition 2. (i) The coring A® H® H from the previous section is coseparable.
(ii) The forgetful functor F : MA®HOH s M 401 is separable.

Proof: By [2, Corollary 3.6.] (i) and (i¢) are equivaleent, so we only need to prove that the
forgetful functor F' : MA®HSH 4 A 0y is separable. Since A ® H ® H is isomorphic
to the canonical coring A ® H ®4 A ® H, we need to prove that the forgetful functor F' :
MASHEAADH 3 A 40 1 is separable. Since A ® H is faithfully flat over A ~ (A) (it is a
crossed product), we can apply [2, Corollary 3.7.] and it is enough to prove that the extension
p(A) — A®H is split, which means that there exists a ¢(A)-bimodule map F : AQH — p(A)
such that E(1® 1) =1®1 [11]. Now define

E(a® h) = ajo) ® S(a[l])s(h)
We have E(1®1) =1®1,
E((ajo) @ S(ap)))(b@ h)) = (ajg @ S(ap)) E(b @ h) = ajobjg) @ S(apbp))e(h),
and this is also equal to
E(a® h)(bjo) ® S(bpj)) = E((a® h)(bg) ® S(byy)))

and the proof is complete. O
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We now get the following Maschke-type theorem:

Corollary 2. Every right A® H® H-comodule which is semisimple (resp. projective, injective)
as a right A ® H-module is a semisimple (resp. projective, injective) A ® H @ H-comodule.

Proof: This is [2, Corollary 3.8.]. |

In the language of relative Hopf modules this becomes:

Corollary 3. If M € MQI@H is semisimple (resp. projective, injective) as a right AQ H-module
(i.e. as an object in Magn) is semisimple (resp. projective, injective) in Mf®H.

Please note that this last corollary is different from [8, Proposition 4.7.], which requires H
to be semisimple, and replaces ”A ® H-module” (i.e. the structure on A ® H is the algebra
structure defined at the beginning of Section 1) by " A ® H-comodule” (i.e. the structure on
A ® H is the coring structure defined in Example 1).

Acknowledgement. Many thanks to the referee for useful comments leading to an improved
exposition.
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