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Abstract

We find necessary and sufficient conditions for the collapsibility of a finite simplicial
complex of arbitrary finite dimension. Our main result states that any finite systolic
simplicial complex of finite dimension, collapses to a point. A simplicial complex is systolic
if it is simply connected, connected and locally 6-large. Local 6-largeness is a simple
combinatorial condition defined in terms of links in the complex. Our proof is based on
the fact that any cycle in a systolic complex has a van Kampen diagram of minimal area
whose disk is itself systolic.
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1 Introduction

In this paper we give a combinatorial characterization of collapsible simplicial complexes of
arbitrary dimension. The proof uses van Kampen diagrams.

The combinatorial condition on simplicial complexes we consider is called local 6-largeness
and it was introduced by T. Januszkiewicz and J. Swiatkowski in [9] and independently by
F. Haglund in [8]. Local 6-largeness in dimension 2 is called the 6-property of the simplicial
complex (see [2], [9], [3], [4], [6], [5], [7], [11], [10]). A 2-dimensional simplicial complex has the
6-property if the link of each of its vertices is a graph of girth at least 6. The girth of a graph
is defined as the minimum number of edges in a circuit. A weaker condition, called weakly
systolicity, and resembling metric non-positive curvature, was introduced by D. Osajda in [13].

J. Corson and B. Trace proved in [3] that finite, simply connected, simplicial 2-complexes
with the 6-property, i.e. systolic 2-complexes, collapse to a point. It is the paper’s objective is
to show that finite dimensional systolic simplicial complexes enjoy the same property. Similar
to the proof given in [3], our proof also uses van Kampen diagrams (see [12]).

T. Januszkiewicz and J. Swiatkowski showed in 2006 that the weaker condition of con-
tractibility does characterize finite dimensional systolic simplicial complexes (see [9], chapter 4,
page 21). We strengthen this condition by showing that such complexes are even collapsible.
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We emphasize that it is known that weakly systolic complexes are collapsible. Namely,
V. Chepoi and D. Osajda proved their collapsibility in [1] (see Theorem 5.1) by showing that
the underlying graphs of such complexes are dismantable. Our proof, however, is shorter,
resembling the one given in [3] in the 2-dimensional case. Namely, we will introduce three
elementary operations on edge-paths in a simplicial complex and we will show, using a result
regarding van Kampen diagrams (see [9], chapter 1, page 11) that in a locally 6-large complex,
one can pass from one edge-path to any homotopic edge-path via a finite sequence of such
operations.

2 Preliminaries

We present in this section the notions we shall work with and the results we shall refer to.
Let X be a simplicial complex. A closed edge is an edge together with its endpoints. An

oriented edge of X is an oriented 1-simplex of X, e = [v0, v1]. We denote by i(e) = v0, the
initial vertex of e, by t(e) = v1, the terminus of e, and by e−1 = [v1, v0], the inverse of e.
A finite sequence α = e1e2...en of oriented closed edges in X such that t(ei) = i(ei+1) for all
1 ≤ i ≤ n−1, is called an edge-path in X. The inverse of α is the edge-path α−1 = e−1n ...e−12 e−11 .
If t(en) = i(e0), then we call α a closed edge-path or a cycle. We denote by |α| the number of
1-simplices contained in α and we call |α| the length of α.

Let α be an i-simplex of X. If β is a k-dimensional face of α but not of any other simplex
in X, then we say there is an elementary collapse from X to X \ {α, β}. If X = X0 ⊇ X1 ⊇
... ⊇ Xn = L are simplicial complexes such that there is an elementary collapse from Xj−1 to
Xj , 1 ≤ j ≤ n, then we say that X simplicially collapses to L.

Let σ be a simplex of X. The link of X at σ, denoted Lk(σ,X), is the subcomplex of X
consisting of all simplices in X which are disjoint from σ and which, together with σ, span a
simplex of X. The (closed) star of σ in X, denoted St(σ,X), is the union of all simplices of X
that contain σ. The star St(σ,X) is the join of σ and the link Lk(σ,X). We denote the join
operation by ∗. A subcomplex L in X is called full (in X) if any simplex of X spanned by a
set of vertices in L, is a simplex of L. A full cycle in X is a cycle that is full as subcomplex of
X. We define the systole of X by:

sys(X) = min{|α| : α is a full cycle in X}.

We introduce further a curvature condition on simplicial complexes in combinatorial terms.
We call a simplicial complex X 6-large if sys(X) ≥ 6 and sys(Lk(σ,X)) ≥ 6 for each simplex

σ of X. We call X locally 6-large if the star of every simplex of X is 6-large. We call X 6-systolic
if it is connected, simply connected and locally 6-large. We abbreviate 6−systolic to systolic.

A combinatorial map f : X1 → X2 between two simplicial complexes X1 and X2 is a
continuous map such that each open simplex of X1 is mapped homeomorphically onto an open
simplex of X2. We call a combinatorial map nondegenerate if it is injective on each simplex of
the triangulation. A combinatorial 2-complex is a simplicial 2-complex such that the 2-cells are
attached through continuous maps from S1 to the 1-skeleton of the complex. S1 denotes the
unit circle in R2. A combinatorial disk is a combinatorial 2-complex homeomorphic to a disk.

We shall study a simplicial complex X by associating to each cycle α in X a diagram in the
Euclidean plane, called a van Kampen diagram, which contains all the essential information
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about α. Van Kampen diagrams are useful tools for showing collapsibility (see [12], [3]).
Let α = e0e1...en be a cycle in X. A van Kampen diagram for α is a pair (D,φ). D is

a finite, simply connected combinatorial disk embedded in the plane, bounded by the closed
edge-path β = f0f1...fn. φ : D → X is a combinatorial map assigning to each edge fi of β in
∂D an edge φ(fi) = ei of α in X such that φ(f−1i ) = φ(fi)

−1 for all 0 ≤ i ≤ n. The area of the
diagram is given by the number of 2-simplices of D.

Let v be a vertex of X. The degree of v, denoted by deg v, is the number of edges having v
as initial vertex.

The following lemmas represent a higher dimensional version of well known results in small
cancellation theory which deals only with dimension 2 (see [12], chapter V, page 237 − 242).
They will play a crucial role when showing the main result of the paper.

Theorem 2.1. Let X be a simply connected simplicial complex and let α be a cycle in X.
Then there exists a nondegenerate van Kampen diagram (D,φ) for α (i.e. φ is a nondegenerate
combinatorial map) such that φ is a isomorphism from the boundary of D to α.

For the proof we refer to [9], chapter 1, page 12.

Theorem 2.2. Let X be a systolic simplicial complex and let α be a cycle in X. Let (D,φ)
be a nondegenerate van Kampen diagram for α. If D has minimal area, then D is systolic. If
moreover α is a full cycle, then D has at least one interior vertex and every boundary vertex of
D is contained in at least two 2-simplices.

For the proof see [9], chapter 1, page 14.

3 Collapsing a systolic simplicial complex

We consider in this section finite systolic simplicial complexes of arbitrary finite dimension and
prove that they are collapsible. J. Corson and B. Trace already showed that, in dimension 2,
systolicity implies collapsibility (see [3]). Our proof is similar to theirs relying on the following
result shown by T. Januszkiewicz and J. Swiatkowski in [9]: there exists, for any cycle in a
systolic complex, a van Kampen diagram of minimal area whose disk is itself systolic.

We start by showing an important inequality that holds in any triangulated disks whose
interior vertices have degree at least 6. It represents a combinatorial Gauss-Bonnet theorem on
triangulated disks. Its proof is also given in [3] (see Lemma 2.1).

Lemma 3.1. Let D be a triangulated disk whose interior vertices have degree at least 6.
Then: ∑

v∈∂D
(4− deg v) ≥ 6,

summing over the boundary vertices of D.

Proof: We denote the set of interior vertices of D by int(D). We denote by V , Vint, Vext, E,
Eext and F the number of vertices, interior vertices, exterior vertices, edges, exterior edges and
2-cells of D, respectively. The following relations hold in any triangulated disk: 1 = V −E+F
(Euler’s characteristic), 2E − Eext = 3F , Vext = Eext,

∑
v deg v = 2E. Using these relations,

we obtain:
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6 = 6(V − E + F ) =

= 6V − 6E + 6( 2
3E −

1
3Eext) =

= 6V − 2Eext − 2E =

= 6Vint + 4Vext − (
∑

v∈int(D)

deg v +
∑

v∈∂D
deg v) =

= (6Vint −
∑

v∈int(D)

deg v) + (4Vext −
∑

v∈∂D
deg v).

Thus

6 =
∑

v∈int(D)

(6− deg v) +
∑

v∈∂D
(4− deg v).

Because D is a disk whose interior vertices have degree at least 6, the above relation implies
that ∑

v∈∂D
(4− deg v) ≥ 6.

Let X be a simplicial n−complex, n arbitrary. We introduce the following elementary
operations on edge-paths in X.

1. Free reduction:

Let α be an edge-path containing a subpath of the form ee−1 and let β be the edge-path
obtained by deleting this subpath. We call the passage from α to β a free reduction.

2. Short-cut :

Let v0 and vk be two of the k + 1 vertices of a k-simplex σ of X, 2 ≤ k ≤ n. Let α =
e0e1...em and β = f0f1...fp be two edge-paths of X such that |α| 6= |β|, e0, ..., em, f0, ..., fp
being distinct edges of σ with i(e0) = i(f0) = v0, t(em) = t(fp) = vk, ei ∩ fj = ∅, 1 ≤ i ≤
m− 1, 1 ≤ j ≤ p− 1. The passage from α to β, is called a short-cut.

3. Elementary exchange:

Let τ be a (k − 1)-simplex in X spanned by the vertices v0, ..., vk−1. Let v0 and v1
be two vertices of X such that τ ∗ {v0} and τ ∗ {v1} are two distinct k-simplices of X,
2 ≤ k ≤ n. The passage from one edge-path to another, obtained by replacing a subpath
[v0, v

i][vi, v1], 0 ≤ i ≤ k − 1, by the subpath [v0, v
j ][vj , v1], 0 ≤ j ≤ k − 1, i 6= j, is called

an elementary exchange.

We notice that free reductions and short-cuts change the length of edge-paths, whereas
elementary exchanges do not. This will be important. Besides, we notice that none of the
elementary operations alter the endpoints of edge-paths.
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If we can pass from one edge-path α to another edge-path β via a finite sequence of ele-
mentary exchanges, then we call the edge-paths α and β exchangeable and we write α ≡ β. An
edge-path α is strongly reduced if for any edge-path β, exchangeable with α, β does not admit
a free reduction or short-cut.

If there exists a finite sequence of elementary operations passing from an edge-path α to
another edge-path β, then α and β are path-homotopic. The converse affirmation remains
true in locally 6-large simplicial complexes of arbitrary dimension. The proof of the following
theorem is similar to the one given by J. Corson and B. Trace for 2-complexes (see [3], Theorem
3.1).

Theorem 3.2. Let X be a locally 6-large simplicial complex of finite dimension. Let β
be a strongly reduced edge-path in X. Let α be any edge-path, path-homotopic to β such that
the cycle αβ−1 is a full subcomplex in X. Then there exists a finite sequence of elementary
operations passing from α to β.

Proof: We apply elementary operations on α until it becomes strongly reduced. We must
prove the existence of a finite sequence of elementary exchanges from α to β.

Since the paths α and β are path-homotopic, the cycle αβ−1 is null-homotopic. The proof
is by induction on the area of αβ−1. There exists a van Kampen diagram (D,φ) for αβ−1. We
choose D to be of minimal area. Because X is locally 6-large, and αβ−1 is a full cycle in X,
Theorem 2.2 guarantees that D is itself locally 6-large, it has at least one interior vertex and
every boundary vertex of D is contained in at least two 2-simplices.

Let v0, v1 and v2 be boundary vertices of D. Because D has at least one interior vertex,
at least one of deg v0, deg v1 or deg v2, say deg v0, must be three or greater. Because the
edge-paths α and β in X are strongly reduced, no boundary vertex of D has degree smaller
than 2. Hence (4− deg v0) ≤ 1 and (4− deg vi) ≤ 2 for i ∈ {1, 2}. Lemma 3.1 further implies

6 ≤ (4− deg v0) + (4− deg v1) + (4− deg v2)+

+
∑

v∈∂D,v/∈{v0,v1,v2}
(4− deg v) ≤

≤ 5 +
∑

v∈∂D,v/∈{v0,v1,v2}
(4− deg v).

So D has an exterior vertex v /∈ {v0, v1, v2} such that deg v ≤ 3. So deg v = 2 or deg v = 3.
The open star of v in D contains therefore one or two 2-simplices.

By deleting the open star of v in D, we perform either a short-cut or an elementary exchange
on, say α, and we reach another edge-path γ. Because the edge-paths α and β in X are strongly
reduced, we can not perform short-cuts on them. So there is an elementary exchange passing
from α to γ such that the area of γβ−1 is at least two less than that of αβ−1. The induction
hypothesis therefore implies that α ≡ γ ≡ β.

Let X be a simplicial n-complex. Let e, e′ be two directed edges in X such that i(e) =
i(e′) = v. We denote by ρ(e, e′) the length of a shortest edge-path in Lk(v,K) joining t(e) and
t(e′). We define ρ(e, e′) to be infinite, if there does not exist an edge-path joining t(e) and
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t(e′) in X. We call an edge-path e1...em in X a locally geodesic if ρ(e−1i , ei+1) ≥ n + 1 for
all 1 ≤ i < m. The name ’locally’ does not have its traditional meaning. Instead, it suggests
that on a locally geodesic one can not perform any elementary operations. So, no matter the
elementary operations one performs on X, there certainly exists in the subcomplex obtained
by performing an elementary operation on X, a locally geodesic joining those pairs of points
which are joined in X by a locally geodesic.

Remark 3.3. Let X be a finite n-dimensional locally 6-large simplicial complex and let α
be a closed edge-path in X. Consider the edge-paths obtained by performing an elementary
operation on α and put them in a list L. Note that there is a finite number of such edge-
paths. Consider further those edge-paths obtained by performing an elementary operation on
some edge-path in L. Put these edge-paths in another list. X being finite, continuing in this
manner, after a finite number of steps, we will either reach the trivial path, in which case α
is null homotopic, or every edge-path in the final list will have already occurred in a previous
list. So, in the second case, there is no finite sequence of elementary operations passing from
α to the trivial path. Hence, because X is locally 6-large, Theorem 3.2 ensures that α is not
path homotopic to the trivial path, i.e. it is not null homotopic. The edge-path α is therefore
essential.

The following result is an application of Theorem 3.2 showing the collapsibility of finite
systolic simplicial complexes of arbitrary dimension.

Corollary 3.4. Any finite systolic n−dimensional simplicial complex X is collapsible.

Proof: Let L be a connected, full subcomplex of X that has more than one vertex and that
does not admit any elementary collapses. So the dimension of L is at least 1. In case L is
1-dimensional, since it is not collapsible, it is not contractible either and its fundamental group
is therefore nontrivial.

Another case is when L is k-dimensional, 2 ≤ k ≤ n, and every m-simplex of L is a proper
face of at least two simplices of L, 0 ≤ m ≤ k − 1. Because L is finite, and it does not admit
any elementary operations, by choosing edges in succesion, we can construct in L a locally
geodesic α. As L is finite, some subpath of α, say β, is a closed locally geodesic in L. Being
a full subcomplex in a locally 6-large simplicial complex, L is itself a locally 6-large simplicial
complex (see [9], page 9, Fact 1.2(2)). Remark 3.3 hence guarantees that β is an essential
edge-path in L. The fundamental group of L is therefore nontrivial.

But any simply connected connected subcomplex of X has a trivial fundamental group.
Any simply connected subcomplex of X containing more than one vertex, admits therefore an
elementary collapse. So X can be collapsed to a point by a random sequence of elementary
collapses.

Because collapsible spaces are contractible, the following holds.

Corollary 3.5. Any finite systolic simplicial complex of finite dimension is contractible.
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Systolic simplicial complexes are collapsible 235

References

[1] V. Chepoi, D. Osajda, Dismantlability of weakly systolic complexes and applications,
Trans. Amer. Math. Soc. (2013), to appear.

[2] J. M. Corson, B. Trace, Geometry and algebra of nonspherical 2-complexes, J. London
Math. Soc. 54 (1996), 180− 198.

[3] J.-M. Corson, B. Trace, The 6-property for simplicial complexes and a combinatorial
Cartan-Hadamard theorem for manifolds, Proc. of the Amer. Math. Soc. 126, 3 (1998),
917− 924.

[4] M. Davis, The geometry and topology of Coxeter groups, London Mathematical Society
Monographs Series, vol. 32, Princeton University Press, Princeton, NJ, 2008.

[5] S. M. Gersten, J. R. Stallings, Combinatorial group theory and topology, Princeton
University Press, Princeton, New Jersey, 1987.

[6] E. Ghys, A. Haefliger, A. Verjovski, Group theory from a geometrical viewpoint,
World Scientific, Singapore, 1991.

[7] M. Gromov, Group theory from a geometrical viewpoint, Essay in Group Theory (S.
Gersten ed.), Springer, MRSI Publ. 8 (1987), 75− 263.

[8] F. Haglund, Complexes simpliciaux hyperboliques de grande dimension, Orsay 71 (2003),
preprint.

[9] T. Januszkiewicz, J. Swiatkowski, Simplicial nonpositive curvature, Publ. Math. IHES
(2006), 1− 85.
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