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Abstract

In this paper, the homotopy perturbation method (HPM) is applied to solve the multi-
pantograph delay equations with variable coefficients. The sufficient conditions are given to
assure the convergence of this method. Several examples are presented to demonstrate the
efficiency and reliability of the HPM and numerical results are discussed. Compared with
other related methods in references, the results of the HPM show its better performance
than others.
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1 Introduction

In this paper, we consider the following multi-pantograph equations

u′(t) = a(t)u(t) +

l∑
i=1

bi(t)u(qit) + f(t), 0 < t ≤ T, (1)

u(0) = u0, (2)

where a(t), bi(t) and f(t) are analytical functions, qi ∈ (0, 1), i = 1, 2, · · · , l.
The pantograph equations is a kind of delay differential equations and arise in many appli-

cations such as electrodynamics, astrophysics, nonlinear dynamical systems, probability theory
on algebraic structures, quantum mechanics and cell growth, etc.

In recent years, the multi-pantograph equations were studied by many authors numerically
and analytically. For instance, Muroya et al. [15] used the collocation method to solve the
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multi-pantograph delay equation numerically. In 2004, Liu and Li [13] showed some properties
of the analytic solution and numerical solution of the multi-pantograph equations, respectively.
On the other hand, Li and Liu [11] applied the Runge-Kutta methods to the multi-pantograph
delay equation. And Liu et al. [14] used the modified Runge-Kutta methods for solving the
pantograph equation. In 2005, Evans and Raslan [2] used the Adomian decomposition method
for solving the delay differential equation. In 2007, Keskin et al. [10] applied the differential
transform method to obtain the approximate solution. At the same time, Sezer and Dascioglu
[16] developed and applied the Taylor method to the generalized pantograph equation with
retarded case or advanced case. In addition, Sezer et al. [17] applied the Taylor method
to the nonhomogenous multi-pantograph equation with variable coefficients and obtained the
approximate solution. Lately, Brunner [1] used the collocation methods for pantograph-type
volterra functional equations with multiple delays and Yu [18] applied the variational iteration
method to the multi-pantograph delay equation, respectivley. The analytical results have been
obtained in terms of convergent series, but their computational process is complex.

Since the homotopy perturbation method (HPM) was proposed and developed by He [6-9],
this method has been successfully applied to solve many types of nonlinear problems [3-5]. In
practice, HPM is a powerful analytic tool and does not need small parameters in the equations.
Moreover, HPM yields rapidly convergent series solutions. On the other hand, the homotopy
analysis method (HAM) was presented and developed by Liao [12], this method also has been
successfully applied to solve many types of nonlinear problems. It is pointed out that HAM
involve the presence of an auxiliary parameter ~ which is determined from the so-called ~-curves
in order to ensure a fast convergence of the method. But in general case, it is not easy to get the
optimal values of ~ of HAM. In the iterative methods by HAM for solving the multi-pantograph
delay equations, if the convergence-control parameter ~ equates -1, then we get the HPM, which
is a special case of the late HAM.

In this paper, we intend to effectively employ the homotopy analysis method to solve the
multi-pantograph delay equations with variable coefficients. The approximate analytical results
can be obtained with only a few iterations. When the convergence-control parameter equates
-1 in the iterative methods, the convergence region and rate of solution of HPM series are
independent of the parameter. The sufficient conditions to guarantee the convergence of series
solution of the considered problems are presented. Finally, numerical results show that the
numerical solution approximates the exact solution with a high degree of accuracy. And the
procedure is more simple.

An outline of the paper is as follows. In Section 2, the homotopy analysis method will be
presented as it applies to the multi-pantograph delay equations. When the convergence-control
parameter equates -1, the sufficient conditions are given to assure the convergence of HPM. In
Section 3, the algorithm of HPM is implemented for some numerical examples. The conclusions
are made in the last section.

2 Construction of iterative methods by HAM

In the following we consider two cases of the source term f(t) for solving the multi-pantograph
delay equations.

(I). If f is independent of qi and u, then we use the homotopy analysis technique [7] and
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directly introduce a parameter p ∈ [0, 1] in the original equations in the form

(1− p)L(u(t)) = hp(L(u(t))−
l∑

i=1

bi(t)u(qit)), 0 < t ≤ T, (3)

u(0) = u0, (4)

where L(u(t)) = u′(t)− a(t)u(t)− f(t) and h is the convergence-control parameter. Of course,
we can use other linear operators. For example, L(u(t)) = u′(t) − a(t)u(t) or L(u(t)) = u′(t),
accordingly we need change the nonlinear part.

Assume that the solution of Eqs. (3)-(4) can be expressed as a power series in p :

u(t) =
∞∑
j=0

uj(t)p
j . (5)

Substituting (5) into (3)-(4) and obtaining following equations

p0 : L(u0(t)) = 0, u0(0) = u0,

pn : L(un(t)) = (1 + h)L(un−1(t))− h
l∑

i=1

bi(t)un−1(qit), un(0) = 0, n = 1, 2 · · · ,

From the above equations, we suppose that

L(un(t)) = −h
n∑

j=1

(1 + h)n−j
l∑

i=1

bi(t)uj−1(qit), n = 1, 2 · · · ,

According to the mathematical induction, we have

L(un+1(t)) = (1 + h)L(un(t))− h
l∑

i=1

bi(t)un(qit)

= −h(1 + h)
n∑

j=1

(1 + h)n−j
l∑

i=1

bi(t)uj−1(qit)− h
l∑

i=1

bi(t)un(qit)

= −h
n+1∑
j=1

(1 + h)n+1−j
l∑

i=1

bi(t)uj−1(qit), n = 1, 2 · · · .

So we obtain

un+1(t) = −h
n+1∑
j=1

(1 + h)n+1−j
l∑

i=1

∫ t

0

bi(η)uj−1(qiη)e
∫ t
η
a(s)dsdη.

Setting h = −1 in above equations, we have the algorithm of HPM

u0(t) = u0e
∫ t
0
a(s)ds +

∫ t

0

f(η)e
∫ t
η
a(s)dsdη, (6)

un(t) =
l∑

i=1

∫ t

0

bi(η)un−1(qiη)e
∫ t
η
a(s)dsdη, n = 1, 2, · · · . (7)
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Therefore, we get the n-order approximate solution

ûn(t) =
n∑

j=0

uj(t) = u0(t) +
l∑

i=1

∫ t

0

bi(η)ûn−1(qiη)e
∫ t
η
a(s)dsdη. (8)

(II). If f is dependent on qi and u, then we adopt following perturbation equation

(1− p)L̃(ũ(t)) = hp(L̃ũ− f(t, q1, · · · , ql)−
l∑

i=1

bi(t)ũ(qit)), 0 < t ≤ T, (9)

ũ(0) = u0, (10)

where L̃(ũ(t)) = ũ′(t)−a(t)ũ(t). Taking h = −1 and using the same technique and denotations,
we substitute (5) into (9)-(10) and obtain the following equations

ũ0(t) = u0e
∫ t
0
a(s)ds, (11)

ũ1(t) =

∫ t

0

(f(η, q1, · · · , ql) +
l∑

i=1

bi(η)ũ0(qiη))e
∫ t
η
a(s)dsdη, (12)

ũn(t) =
l∑

i=1

∫ t

0

bi(η)ũn−1(qiη)e
∫ t
η
a(s)dsdη, n = 2, 3, · · · . (13)

Therefore, we have the following n-order approximate solution

ûn(t) =

n∑
j=0

ũj(t) = ũ0(t) +

∫ t

0

(f(η, q1, · · · , ql) +
l∑

i=1

bi(η)ûn−1(qiη))e
∫ t
η
a(s)dsdη. (14)

It is pointed out that Eq. (14) is same with Eq. (8) as n ≥ 1, when f is independent of
u. The iteration formula (6)-(7) and (11)-(13) makes a recurrence sequence ûn(t) respectively.
Obviously, the limit of the sequence ûn(t) will be the solution of Eqs. (1)-(2).

Theorem 2.1. Assume that a(t), bi(t), (i = 1, · · · , l) and f(t) are continuous functions on
the closed interval [0, T ], then the series of (8) is convergent as n → ∞ for t ∈ [0, T ].

Proof. According to (6), we have ||u0(t)||∞ ≤ M, where M is constant and ||u0(t)||∞ =
max
t∈[0,T ]

|u0(t)|.

From (7), we obtain

|u1(t)| = |
l∑

i=1

∫ t

0

bi(η)u0(qiη)e
∫ t
η
a(s)dsdη| ≤ Me||a(t)||∞T

l∑
i=1

||bi(t)||∞t ≤ Ct,

where C = Me||a(t)||∞T
l∑

i=1

||bi(t)||∞ and ||a(t)||∞ = max
t∈[0,T ]

|a(t)|.
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From (7)-(8), it follows that

|u2(t)| = |
l∑

i=1

∫ t

0

bi(η)u1(qiη)e
∫ t
η
a(s)dsdη|

≤ Me||a(t)||∞T
l∑

i=1

||bi(t)||∞
∫ t

0

Cqiηdη ≤ q
C2

2!
t2,

where q = max
1≤i≤l

qi < 1. Furthermore, we get

|u3(t)| = |
l∑

i=1

∫ t

0

bi(η)u2(qiη)e
∫ t
η
a(s)dsdη|

≤ Me||a(t)||∞T
l∑

i=1

||bi(t)||∞
∫ t

0

q
C2

2!
(qiη)

2dη ≤ q3
C3

3!
t3.

Suppose that |un(t)| ≤ q
(n−1)n

2
Cn

n!
tn. According to the mathematical induction, we have

|un+1(t)| ≤ |
l∑

i=1

∫ t

0

bi(η)un(qiη)e
∫ t
η
a(s)dsdη|

≤ Me||a(t)||∞T
l∑

i=1

||bi(t)||∞
∫ t

0

q
(n−1)n

2
Cn

n!
(qit)

ndη

≤ q
n(n+1)

2
Cn+1

(n+1)! t
n+1, (0 < q < 1).

As we know the series of
∞∑

n=0
q

n(n+1)
2

Cn+1

(n+1)! t
n+1 is convergent for the whole solution domain

t ∈ (−∞,+∞), hence the series of (8) is absolute convergence, i.e., the sequence ûn(t) is
convergent for all t ∈ [0, T ] as n → ∞.

Remark: If we choose other values of the convergence-control parameter h of HAM, it is
not easy to obtain the rigorous convergence results for the general n-order approximate solution.
It is pointed out that we can get the different results for other values of h and the h-curves
of a fixed example for demonstrating the convergence of HAM. But we have to compute many
series terms for the higher order analytical approximate solutions. Since HPM does not need
small parameters and it is easy to use, we present some examples which only use zero-order
approximation to get the exact solution for HPM in the next section. So the values of parameter
h are optimal in these cases. For other examples, the determination of optimum values of the
parameters h and the speed of convergence of these iterative methods need further study.

3 Numerical experiments

In this section we present some numerical experiments to check the numerical theory developed
in the previous section, and the performances of HPM will be shown by the problems with the
analytical solutions.
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Example 1. [11] Now we consider the following multi-pantograph delay equation{
u′(t) = −u(t) + b1(t)u(

1
2 t) + b2(t)u(

1
4 t), 0 < t ≤ 1,

u(0) = 1.

where b1(t) = −e−
1
2 t sin( 12 t) , b2(t) = −2e−

3
4 t sin( 14 t) cos(

1
2 t).

According to Eqs. (6)-(7), we obtain

u0(t) = e−t,
u1(t) = (2 cos( 12 t) +

4
3 cos(

3
4 t)− 4 cos( 14 t) +

2
3 )e

−t,
u2(t) = ( 3227 cos(

9
16 t) +

32
5 cos( 5

16 t) +
4
3 cos(

1
2 t) +

4
3 cos(

1
4 t)−

32
3 cos( 1

16 t)−
32
21 cos(

7
16 t)

+32
3 cos( 3

16 t)− 8 cos( 38 t)−
8
5 cos(

5
8 t) +

40
21 cos(

7
8 t) +

20
9 cos( 34 t) +

32
45 cos(

15
16 t)

−32
11 cos(

11
16 t)−

32
13 cos(

13
16 t)−

8
3 cos(

1
8 t) +

550156
135135 )e

−t.

Comparison of the approximate solution û2(t) with the exact solution u(t) = e−t cos(t) is
illustrated in Table 1. Numerical results is the same as the results by the variational iteration
method in [18]. But the computational process of HPM is easy. Moreover, if we consider the
following perturbation equation

u′(t) = −u(t)− e−t sin t+ p(b1(t)u(
1

2
t) + b2(t)u(

1

4
t) + e−t sin t).

Then we can get u0(t) = e−t cos(t), and un(t) = 0, ∀n ≥ 1. Namely ûn(t) = u(t).

Table 1. Numerical comparison of ûn(t) of Example 1 with u(t)
t 0 0.2 0.4 0.6 0.8 1.0

û2(t) 1.00000 0.80241 0.61741 0.45296 0.31306 0.19880
u(t) 1.00000 0.80241 0.61741 0.45295 0.31305 0.19877

|û2(t)−u(t)|
|u(t)| 0 7.05E-9 4.77E-7 6.01E-6 3.95E-5 1.91E-4

Example 2. [2] Solve the following pantograph delay equation{
u′(t) = 1

2u(t) +
1
2e

1
2 tu( 12 t), 0 < t ≤ 1,

u(0) = 1.

According to Eqs. (6)-(7), we obtain

u0(t) = e
1
2 t,

u1(t) = 2(e
1
4 t − 1)e

1
2 t,

u2(t) = ( 83e
3
8 t − 4e

1
4 t + 4

3 )e
1
2 t,

u3(t) = ( 6421e
7
16 t − 16

3 e
3
8 t + 8

3e
1
4 t − 8

21 )e
1
2 t,

u4(t) = ( 1024315 e
15
32 t − 128

21 e
7
16 t + 32

9 e
3
8 t − 16

21e
1
4 t + 16

315 )e
1
2 t,

u5(t) = ( 327689765 e
31
64 t − 2048

315 e
15
32 t + 256

63 e
7
16 t − 64

63e
3
8 t + 32

315e
1
4 t − 32

9765 )e
1
2 t,

u6(t) = ( 2097152615195 e
63
128 t − 65536

9765 e
31
64 t + 4096

945 e
15
32 t − 512

441e
7
16 t + 128

945e
3
8 t − 64

9765e
1
4 t + 64

615195 )e
1
2 t.

Here the exact solution is et. In [16], it is pointed out that the Taylor methods has better
results than the spline methods. And the absolute errors of Adomian decomposition methods
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and Taylor methods seem like each other. Comparison of the approximate solution û5(t) and
û6(t) with the computed results by Taylor methods is illustrated in Table 2. Numerical results
show that HPM approximates the exact solution with a high degree of accuracy, using only few
terms. Moreover, if we consider following perturbation equation

u′(t) = u(t) + p(
1

2
e

1
2 tu(

1

2
t)− 1

2
u(t)).

Then we can get u0(t) = et, and un(t) = 0, ∀n ≥ 1. Namely ûn(t) = u(t).

Table 2. Numerical comparison of ûn(t) of Example 2 with u(t)
t 0.2 0.4 0.6 0.8 1.0

|u(t)−û5(t)|
|u(t)| 4.13E-14 2.57E-12 2.84E-11 1.55E-10 5.76E-10

|u(t)−û6(t)|
|u(t)| 0 1.19E-15 1.86E-14 1.41E-13 6.54E-13

Taylor (N=8) 1.18E-12 5.04E-10 1.62E-8 1.81E-7 1.13E-6
Taylor (N=12) 1.80E-16 8.93E-16 1.20E-13 4.21E-12 6.36E-11

Example 3. [18] Consider the multi-pantograph delay equation{
u′(t) = − 5

6u(t) + 4u( 12 t) + 9u( 13 t) + t2 − 1, 0 < t ≤ 1,
u(0) = 1.

According to Eqs. (6)-(7), we obtain

u0(t) =
6
5 t

2 − 72
25 t+

282
125 − 157

125e
− 5

6 t,

u1(t) = −7536
625 e−

5
12 t + 72

25 t
2 − 3024

125 t+ 8028
125 − 12717

625 e−
5
18 t − 19887

625 e−
5
6 t,

u2(t) =
3737448
3125 − 241152

3125 e−
5
24 t + 864

125 t
2 − 101088

625 t− 1610847
3125 e−

5
18 t − 4272912

15625 e−
5
36 t

−954576
3125 e−

5
12 t − 3090231

12500 e−
5
54 t + 13925343

62500 e−
5
6 t,

u3(t) = −3157056
3125 t+ 62092656

3125 − 46301184
109375 e−

5
48 t − 5821995204

1328125 e−
5

108 t − 541244592
78125 e−

5
36 t

−2011931136
859375 e−

5
72 t − 30546432

15625 e−
5
24 t + 1127952783

312500 e−
5
18 t + 167104116

78125 e−
5
12 t

−391435821
62500 e−

5
54 t − 2252778399

812500 e−
5

162 t − 2932264952559
5317812500 e−

5
6 t + 10368

625 t2.

Comparison of the approximate solution û3(t) with the exact solution u(t) = 1+ 67
6 t+ 1675

72 t2+
12157
1296 t3 is illustrated in Table 3. This results is different from the variational iteration method’s,
since we choose the different initial values. Of course, we can get the same results by choosing
the proper initial values.

Table 3: Numerical comparison of ûn(t) of Example 3 with u(t)
t 0 0.2 0.4 0.6 0.8 1.0

û3(t) 1.00000 4.23202 9.68320 17.5864 28.0635 41.1495
u(t) 1.00000 4.23893 9.78923 18.1012 29.6250 44.8110

|u(t)−û3(t)|
|u(t)| 4.09E-12 1.63E-3 1.08E-2 2.84E-2 5.27E-2 8.17E-2

Example 4. [16] Consider the following pantograph delay equation{
u′(t) = −u(t)− u(0.8t),
u(0) = 1.
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According to Eqs. (6)-(7), we obtain

u0(t) = e−t,

u1(t) = (−5e
1
5 t + 5)e−t,

u2(t) = ( 1259 e
9
25 t − 25e

1
5 t + 100

9 )e−t,

u3(t) = (−15625
549 e

61
125 t + 625

9 e
9
25 t − 500

9 e
1
5 t + 8000

549 )e−t,

u4(t) = ( 9765625202581 e
369
625 t − 78125

549 e
61
125 t + 12500

81 e
9
25 t − 40000

549 e
1
5 t + 2560000

202581 )e−t,

u5(t) = (−30517578125
425622681 e

2101
3125 t + 48828125

202581 e
369
625 t − 1562500

4941 e
61
125 t + 1000000

4941 e
9
25 t

− 12800000
202581 e

1
5 t + 3276800000

425622681 )e−t,

u6(t) = ( 4768371582031254907003889249 e
11529
15625 t − 152587890625

425622681 e
2101
3125 t + 976562500

1823229 e
369
625 t

− 125000000
301401 e

61
125 t + 320000000

1823229 e
9
25 t − 16384000000

425622681 e
1
5 t + 16777216000000

4907003889249 )e−t.

Comparison of the approximate solution û5(t) and û6(t) with the exact solution by Taylor
method [16] is illustrated in Table 4. Clearly, the HPM has better results than the Taylor
method. On the other hand, we consider the HAM for solving this problem. By using the
iterative method in Section2, we obtain the following equations:{

u′
0(t) = −u0(t),

u0(0) = 1.{
u′
1(t) = −u1(t) + hu0(0.8t),

u1(0) = 0.{
u′
n(t) = −un(t) + (1 + h)(u′

n−1(t) + un−1(t)) + hun−1(0.8t),
un(0) = 0. n ≥ 2

Then we have

u0(t) = e−t,
u1(t) = 5h(e0.2t − 1)e−t,

u2(t) = [(5h− 20h2)e
t
5 + 125h2

9 e
9t
25 + 55h2

9 − 5h]e−t, · · · .

So we get the approximation solution û2(t) of HAM. Now we choose different values of the
convergence-control parameter h to compute the second-order approximate solution, numerical
results are shown in Figure 1. Obviously, we can see that the optimal values of h is less than
-1. If the exact solution is known, we can get the optimal values. It is our further study for the
general cases.

Table 4. Numerical comparison of ûn(t) of Example 4 with u(t)
t 0 0.2 0.4 0.6 0.8 1.0

Taylor (N=8) 1.00000 0.66469 0.433561 0.276483 0.171494 0.102744
Taylor (N=11) 1.00000 0.66469 0.433561 0.276482 0.171484 0.102670

û5(t) 1.00000 0.664691 0.433561 0.276481 0.171476 0.102643
û6(t) 1.00000 0.664691 0.433561 0.276482 0.171484 0.102671

Example 5. [17] Consider the pantograph equation of third order{
u′′′(t) = −u(t)− u(t− 0.3) + e−t+0.3, 0 ≤ t ≤ 1
u(0) = 1, u′(0) = −1, u′′(0) = 1.
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Figure 1: Numerical solutions at different values of convergence-control parameter h.

According to Eqs. (6)-(7), then we get u0(t) = e−t, ui(t) = 0, i = 1, 2 · · · . Hence, we obtain
ûn(t) = u0(t) = e−t, which is the exact solution. Compared with the Adomian decomposition
method [2] and the Taylor method [16], this method is the best way to solve above problem.

Example 6. [2] Consider the pantograph equation of second order{
u′′(t) = 3

4u(t) + u( 12 t)− t2 + 2, 0 < t ≤ 1,
u(0) = 0, u′(0) = 0.

According to Eqs. (6)-(7), we get the solutions

u0(t) = t2 − 1
12 t

4,
u1(t) =

1
12 t

4 − 2
885 t

6,
u2(t) =

2
885 t

6 − 1
32144 t

8,
u3(t) =

1
32144 t

8 − 1
3846150 t

10,
u4(t) =

1
3846150 t

10 − 1
676923060 t

12,
u5(t) =

1
676923060 t

12 − 1
163963963800 t

14, ....

Here, the exact solution is u(t) = t2. If we take more terms of the convergence series, we also
obtain the same result. Namely, lim

n→∞
ûn(t) = t2.

4 Conclusions

In this paper, we successfully apply HPM to the multi-pantograph delay equations without any
assumptions and restrictions on the parameters. And we obtain the high approximate solutions
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or the exact solutions within a few iterations. Some numerical experiments have been provided
to illustrate that the present method are effective in accuracy and convergence speed. In a
word, the HPM is a promising method for many nonlinear problems.
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